

Karadeniz Technical University Department of Computer Engineering Lecturer Ömer ÇAKIR

COM 2005 Data Structures
Final Exam, 01.11.2019, 10:00, D-1
Duration: 61 Minutes

NUMBER :	NAME				ALUATION	
		٠		-	,	
	SIGNATURE	:		L]	
Evam Evecution Instructions of Faci	ulty of Enginnering	ı ch	hould be obeyed. Questions are related to 1.4.1	2 of Prog	ram	Learning Outcomes

```
void insertOrdered(DoublyNode* newNode,
                  DoublyNode* current)
 if(.....)
 {
      newNode->next
                         = current;
      newNode->prev
                         = current->prev;
      current->prev->next = newNode;
      current->prev
                         = newNode;
 }
 else
   insertOrdered(newNode, current->next);
int main()
 DoublyLinkedList list; DoublyNode* newNode;
 newNode = new DoublyNode;
 newNode->elem = "Paul"; newNode->score = 720;
 list.insertOrdered(newNode, list.header->next);
 newNode = new DoublyNode;
 newNode->elem = "Rose"; newNode->score = 590;
 list.insertOrdered(newNode, list.header->next);
 newNode = new DoublyNode;
 newNode->elem = "Anna";
                        newNode->score = 660;
 list.insertOrdered(newNode, list.header->next);
 newNode = new DoublyNode;
 newNode->elem = "Mike";
                         newNode->score =1105;
 list.insertOrdered(newNode, list.header->next);
}
```

Complete the function insertOrdered(). (25P)
 Assume that Header's and Trailer's scores are 0.
 You'll loose 5P from wrong answer.

8 4 12 2 6 10 14 1 3 5 7 9 11 13 15

2. Assume that the numbers above are inserted into a binary tree. Assume again that another 3 new binary trees are generated by the output of the inorder, preorder and postorder traversals of this binary tree. Which of the following is the ascending of the *levels* of these 3 new binary trees? (25P)

You'll loose **5P** from wrong answer.

- (A) inorder < preorder < postorder
- (B) inorder < postorder < preorder
- (C) preorder < inorder < postorder
- (D) preorder < postorder < inorder</p>
- (E) postorder < inorder < preorder
- (F) postorder < preorder < inorder

8 4 12 2 6 10 14 1 3 5 7 9 11 13 15

	3.	Assuming	that the	numbers	above are	inserted	into a Heap:
--	----	----------	----------	---------	-----------	----------	--------------

a) What is the	output of the print() ?	(25P)

_									
6)	1		5		4			15

b) What is the output of the print() after removeMin()? (25P)

0	2							14