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Abstract. Recognizing people by gait has a unique advantage over other
biometrics: it has potential for use at a distance when other biometrics
might be at too low a resolution, or might be obscured. In this paper, an
improved method for gait recognition is proposed. The proposed work
introduces a nonlinear machine learning method, kernel Principal Com-
ponent Analysis (KPCA), to extract gait features from silhouettes for
individual recognition. Binarized silhouette of a motion object is first
represented by four 1-D signals which are the basic image features called
the distance vectors. The distance vectors are differences between the
bounding box and silhouette, and extracted using four projections to sil-
houette. Classic linear feature extraction approaches, such as PCA, LDA,
and FLDA, only take the 2-order statistics among gait patterns into ac-
count, and are not sensitive to higher order statistics of data. Therefore,
KPCA is used to extract higher order relations among gait patterns
for future recognition. Fast Fourier Transform (FFT) is employed as a
preprocessing step to achieve translation invariant on the gait patterns
accumulated from silhouette sequences which are extracted from the sub-
jects walk in different speed and/or different time. The experiments are
carried out on the CMU and the USF gait databases and presented based
on the different training gait cycles. Finally, the performance of the pro-
posed algorithm is comparatively illustrated to take into consideration
the published gait recognition approaches.

1 Introduction

The image-based individual human identification methods, such as face, finger-
prints, palmprints, generally require a cooperative subject, views from certain
aspects, and physical contact or close proximity. These methods cannot reli-
ably recognize non-cooperating individuals at a distance in the real world under
changing environmental conditions. Gait, which concerns recognizing individuals
by the way they walk, is a relatively new biometric without these disadvantages
[1]-[6][8]. In other words, a unique advantage of gait as a biometric is that it of-
fers potential for recognition at a distance or at low resolution when the human
subject occupies too few image pixels for other biometrics to be perceivable.
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Various gait recognition techniques have been proposed and can be broadly
divided as model-based and model-free approaches. Model based approaches
[13][21] aim to derive the movement of the torso and/or the legs. They usually
recover explicit features describing gait dynamics, such as stride dimensions and
the kinematics, of joint angles.

Model-free approaches are mainly silhouette-based approaches. The silhouette
approach[8][14][9][12][3][2][6] characterizes body movement by the statistics of the
patterns produced by walking. These patterns capture both the static and dy-
namic properties of body shape. A hidden Markov models based framework for
individual recognition by gait is presented in [9]. The approach in [14] first ex-
tracts key frames from a sequence and then the similarity between two sequences
is computed using the normalized correlation. The template matching method in
[5] is extended to gait recognition by combining transformation based on canonical
analysis and used eigenspace transformation for feature selection. In the work in
[8], the similarity between the gallery sequence and the probe sequence is directly
measured by computing the correlation corresponding time-normalized frame
pairs. The approach in [3] presents self similarity and structural stride parameters
(stride and cadence) used PCA applied to self-similarity plots that are derived by
differencing. In [2], eigenspace transformation based on PCA is first applied to the
distance signals derived from a sequence of silhouette images, then classification
is performed on gait patterns produced from the distance vectors. Han et. al. [6]
used the Gait Energy Image formed by averaging silhouettes and then deployed
PCA and multiple discriminant analysis to learn features for fusion.

In this paper, we presents an improved silhouette-based (model-free) approach
and kernel PCA is applied to extract the gait features. The main purpose and
contributions of this paper:

– An improved spatio-temporal gait representation, we called gait pattern,
is first proposed to characterize human walking properties for individual
recognition by gait. The gait pattern is created by the distance vectors. The
distance vectors are differences between the bounding box and silhouette,
and are extracted by using four projections of silhouette.

– A Kernel Principal Component Analysis (KPCA) based method is then ap-
plied for feature extraction. KPCA is a state-of-the art nonlinear machine
learning method. Experimental results achieved by PCA and KPCA based
methods are comparatively presented.

– FFT is employed to achieve translation invariant on the gait patterns which
are especially accumulated from silhouette sequences extracted from the sub-
jects walk in different speed and/or different time. Consequently, FFT+
KPCA based method is developed to achieve higher recognition for individ-
uals in the database includes training and testing sets do not correspond to
the same walking styles.

– A large number of papers in literature reported their performance without us-
ing different training numbers. Here, we provide some quantitative compara-
tive experiments to examine the performance of the proposed gait recognition
algorithm with different number of training gait cycles of each person.
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2 Gait Pattern Representation

In this paper, we only consider individual recognition by activity-specific human
motion, i.e., regular human walking, which is used in most current approaches
of individual recognition by gait. We first represent the spatio-temporal infor-
mation in a single 2D gait template (pattern) by using multi-projections of sil-
houette. We assume that silhouettes have been extracted from original human
walking sequences. A silhouette preprocessing procedure [8][17] is then applied
on the extracted silhouette sequences. It includes size normalization (proportion-
ally resizing each silhouette image so that all silhouettes have the same height)
and horizontal alignment (centering the upper half silhouette part with respect
to its horizontal centroid). In a processed silhouette sequence, the process of
period analysis of each gait sequence is performed as follows: once the person
(silhouette) has been tracked for a certain number of frames, then we take the
projections and find the correlation between consecutive frames, and do normal-
ization by subtracting its mean and dividing by its standard deviation, and then
smooth it with a symmetric average filter. Further we compute its autocorre-
lation to find peaks indicate the gait frequency (cycle) information. Hence, we
estimate the real period as the average distance between each pair of consecutive
major peaks [20][2].

2.1 Representation Construction

Gait pattern is produced from the projections of silhouettes which are generated
from a sequence of binary silhouette images, Bt(x, y), indexed spatially by pixel
location (x, y) and temporally by time t. An example silhouette and the distance
vectors corresponding to four projections are shown in Figure 1. The distance
vectors (projections) are the differences between the bounding box and the outer
contour of silhouette. There are 4 different image features called the distance
vectors; top-, bottom-, left- and right-projections. The size of 1D signals for left-
and right-projections is the height of the bounding box. The values in the both
signals are the number of columns between bounding box and silhouette at each
row. The size of the 1D signals for both top- and bottom-distance vectors is the
width of the bounding box, and the values of the signals are the number of rows
between the box and silhouette at each column.

Thus, each gait pattern can separately be formed as a new 2D image. For
instance, gait pattern image for top-projection is formulated as PT (x, t) =∑

y Bt(x, y) where each column (indexed by time t) is the top-projections (row
sum) of silhouette image Bt(x, y), as shown in Figure 1 (Middle-Top). The
meaning of Bt(x, y) is complement of silhouette shape, that is empty pixels
in the bounding box. Each value PT (x, t) is then a count of the number of rows
empty pixels between the top side of the bounding box and the outer contours in
that columns x of silhouette image Bt(x, y). The result is a 2D pattern, formed
by stacking row projections (from top of the bounding box to silhouette) to-
gether to form a spatio-temporal pattern. A second pattern which represents the
bottom-projection PB(x, t) =

∑
−y Bt(x, y) can be constructed by stacking row
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Fig. 1. Silhouette representation. (Left) Silhouette and four projections, (Middle)
Gait patterns produced from top and bottom projections, (Right) Gait patterns ob-
tained from left and right projections.
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projections (from bottom to silhouette), as shown in Figure 1 (Middle-Bottom).
The third pattern PL(y, t) =

∑
x Bt(x, y) is then constructed by stacking

columns projections (from left of the bounding box to silhouette) and the last
pattern PR(y, t) =

∑
−x Bt(x, y) is also finally constructed by stacking columns

projections (from right to silhouette), as shown in Figure 1 (Right), respectively.
For simplicity of notation, we write

∑
y,

∑
−y,

∑
x, and

∑
−x as shorthand for

∑Contour−of−silhouette
y=Top−of−the−box ,

∑Contour−of−silhouette
y=Bottom−of−the−box,

∑Contour−of−silhouette
x=Left−side−of−the−box, and

∑Contour−of−silhouette
x=Right−side−of−the−box, respectively.
The variation of each component of the distance vectors can be regarded as gait

signature of that object. From the temporal distance vector plots, it is clear that
the distance vector is roughly periodic and gives the extent of movement of differ-
ent part of the subject. The brighter a pixel in 2D patterns in Figure 1 (Middle
and Right), the larger value is the value of the distance vector in that position.

3 Human Recognition Using Gait Patterns

In this section, we describe the proposed approach for gait-based human recogni-
tion. Binarized silhouettes are produced by using motion segmentation which is
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Fig. 2. System diagram of human recognition using the proposed approach

achieved via background modeling using a dynamic background frame estimated
and updated in time, for details see to [7]. In the training procedure, each training
silhouette sequence is divided into cycles by gait cycle estimation. Training gait
patterns are then computed from each cycle. To be achieve translation invariant
for the situation that training and test sequences are obtained from the subjects
walk different speed and/or different time, the 2D gait pattern is transformed
to spectral domain by using frequency transform (FFT). Next, features useful
for distinguishing between different persons are extracted by kernel PCA-based
nonlinear feature extraction method from the normalized gait pattern. As a re-
sult, training gait transformation matrices and training gait features that form
feature databases are obtained. This is independently repeated for each gait pat-
terns produced from the projections. In the recognition procedure, each test gait
silhouette sequence is processed to generate test gait patterns. These patterns
are then transformed by transformation matrices to obtain gait pattern features.
Test gait pattern features are compared with training gait pattern features in the
database. This is separately performed for each gait pattern features constructed
by each projections. Finally a feature fusion strategy is applied to combine gait
pattern features at the decision level to improve recognition performance. The
system diagram is shown in Figure 2.

3.1 Kernel PCA

The kernel PCA (KPCA) is a technique for nonlinear dimension reduction of
data with an underlying nonlinear spatial structure. A key insight behind KPCA
is to transform the input data into a higher-dimensional feature space [15]. The
feature space is constructed such that a nonlinear operation can be applied in the
input space by applying a linear operation in the feature space. Consequently,
standard PCA can be applied in feature space to perform nonlinear PCA in the
input space.

Given k class for training, and each class represents a sequence of the distance
vector signals of a person. Multiple sequences of each subject can be added for
training, but we have used a sequence includes one gait cycle. Let Pw

i,j be the
jth distance vector signal in the ith class for w projection to silhouette and Mi
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the number of such distance vector signals in the ith class. The total number of
training samples is Mw

t = Mw
1 + Mw

2 + ... + Mw
k , as the whole training set can

be represented by [Pw
1,1, P

w
1,2, .., P

w
1,M1

, Pw
2,1, ..., P

w
k,Mk

]. For ease of understanding,
we denote the training samples, Pw

i,j , as χi ∈ �N , i = 1, .., M , where M is total
number of samples.

Thus, given a set of examples χi ∈ �N , i = 1, ...M, which are centered,∑M
i=1 χi = 0, PCA finds the principal axis by diagonalizing the covariance

matrix:

C =
1
M

M∑

i=1

χiχ
T
j (1)

Eigenvalue equation, λv = Cv is solved where v is eigenvector matrix. First few
eigenvectors are used as the basic vectors of the lower dimensional subspace.
Eigen features are then derived by projecting the examples onto these basic
vectors [16].

In kernel PCA, the data, χ from input space is first mapped to a higher
dimensional feature space by using a map Φ : �N → F , and then performing a
linear PCA in F . The covariance matrix in this new space F is,

C =
1
M

M∑

i=1

Φ(χi)Φ(χi)T (2)

Now the eigenvalue problem becomes λV = CV . As mentioned previously we
do not have to explicitly compute the nonlinear map Φ. The same goal can be
achieved by using the kernel function k(χi, χj) = (Φ(χi)·Φ(χj)), which implicitly
computes the dot product of vector χi and χj in the higher dimensional space
[15]. The most often used kernel functions are Gaussian kernel, polynomial ker-
nels, and sigmoid kernels [15]. Gaussian kernel was used for the experimentation
in this work, and it is defined as,

k(χi, χj) = exp

(

−‖χi − χj‖2

2σ2

)

, (3)

Pairwise similarity between input examples are captured in a matrix K which
is also called Gram matrix. Each entry Ki,j of this matrix is calculated using
kernel function k(χi, χj). Eigenvalue equation in terms of Gram matrix written
as (see[15]),

MAΛ = KA, (4)

with A = (α1, ..., αM ) and Λ = diag(λ1, ..., λM ). A is a M x M orthogonal eigen-
vector matrix and Λ is a diagonal eigenvalue matrix with diagonal elements in
decreasing order. Since the eigenvalue equation is solved for A’s instead of eigen-
vectors Vi of Kernel PCA, we will have to normalize A to ensure that eigenvalues
of Kernel PCA have unit norm in the feature space, therefore αj = αj/

√
λj .

After normalization the eigenvector matrix, V , of Kernel PCA is computed as
follows,

V = DA (5)
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where D = [Φ(χi)Φ(χ2) · · · Φ(χM )] is the data matrix in feature space. Now let
χ be a test example whose map in the higher dimensional feature space is Φ(χ).
The Kernel PCA features for this example are derived as follows:

F = V T Φ(χ) = AT B, (6)

where B = [Φ(χ1) · Φ(χ)Φ(χ2) · Φ(χ) · · · Φ(χM ) · Φ(χ)]T .

3.2 Similarity Measurement

Weighted Euclidean Distance (WED) measuring has initially been selected for
classification [23], and is defined as follow:

WED : dk =
N∑

i=1

(f(i) − fk(i))2

(sk)2
(7)

where f is the feature vector of the unknown gait pattern, fk and sk denote the
kth feature vector and its standard deviation, and N is the feature length. In
order to increase the recognition performance, a fusion task is developed for the
classification results given by each projections.

3.3 Fusion

Two different strategies were developed. In strategy 1, each projection is sepa-
rately treated. Then the strategy is to combine the distances of each projection
at the end by assigning equal weight. The final similarity using strategy 1 is
calculated as follows:

Di =
4∑

j=1

wj ∗ dji (8)

where Di is the fused distance similarity value, j is the algorithm’s index for pro-
jection, w its normalized weight, di its single projection distance similarity value,
and 4 is the number of projections (left, right, top, bottom). In conclusion, if any
2 of the distance similarity values in the 4 projections give maximum similari-
ties for the same person, then the identification is determined as to be positive.
Therefore, fusion strategy 1 has rapidly increased the recognition performance
in the experiments.

In the experimental studies, it has been seen that some projections have given
more robust results than others. For example, while a human moves in the lateral
view, with respect to image plane, the back side of the human gives more indi-
vidual characteristics of gait. The projection corresponding to that side can give
more reliable results, and in such case, is called the dominant feature. As a result,
strategy 2 has also been developed to further increase recognition performance.
In the strategy 2, if the dominant projection, or at least 2 projections of others,
are positive for an individual, then the final identification decision is positive.
The dominant feature in this work is automatically assigned by estimating the
direction of motion objects under tracking [17].
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4 Experiments and Results

We evaluate the performance of the method on CMU’s MoBo database[18], and
USF database [8].

4.1 CMU Database

This database has 25 subjects (23 males, 2 females) walking on a treadmill. Each
subject is recorded performing four different types of walking: slow walk, fast
walk, inclined walk, and slow walk holding ball. There are about 8 cycles in
each sequence, and each sequences is recorded at 30 frames per second. It also
contains six simultaneous motion sequences of 25 subjects, as shown in figure 3.

We did mainly different two type experiments on this database: In type I,
all subjects in train set and test set walk on the treadmill at the same walking
type. In type II, all subjects walk on the treadmill at different two walking types,
and it is called that fast walk and slow walk. We did two kinds of experiment
for each type investigation. They are: I.1) train on fast walk and test on fast
walk, I.2) train on slow walk and test on slow walk. Type II: II.1) train on slow
walk and test on fast walk; II.2) train on fast walk and test on slow walk.

First, we use six gait cycles of each person are selected to form a training set,
and the rest is used to test. PCA-based method was employed to extract the fea-
tures from gait patterns, and then the WED based NN is used for classification.
The fusion was finally performed to achieve the final decision. We first tested
the performance of this algorithm for Type I, and it is summarized in Table 1.
It can be seen from Table 1 that the right person in the top one match 100% of
the times for the cases where testing and training sets correspond to the same
walking styles for all viewpoints.

Second, seven kinds of experiment tests were designed: one (two, three, four,
five, six, or seven) gait cycle(s) of each person was randomly selected for training,
and the other seven gait cycles were used for authentication, respectively. During
the experiments, the features are extracted by using the eigenspace method given
above. Based on these tests, the matching is separately conducted and the results
for Type I experiment are given in Figures 4 and 5. The results illustrated in
Figures 4 and 5 are obtained from the experiments: train on fast walk and test on
fast walk; train slow walk and test on slow walk, respectively. The experimental

Fig. 3. The six CMU database viewpoints

View 1 View 2 View 3 View 4 View 5 View 6
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Table 1. Gait Recognition across different views (CMU Data)

CMU Gait Database View Points
Test – Train View 1 View 3 View 4 View 5 View 6
Fast – Fast 100 100 100 100 100
Slow – Slow 100 100 100 100 100

results show that the recognition rate is increased when the more gait cycles
are used as training test. We did not need to apply kernel PCA-based feature
extraction on the gait patterns, because PCA-based method had achieved the
high recognition rates (100%) in this type of the experiments.
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Fig. 4. Illustration of the recognition performance variation with different training gait
cycles of each person. Train on fast walk, test on fast walk.

View 1 View 3 View 4

View 5 View 6

The third experiment, we called Type II, was also done on the gait sequences
extracted from the subjects walk on the treadmill with different speed. It is
called as slow walk and fast walk. For the case of training with fast walk and
testing on slow walk, and vice versa, the dip in performance is caused due to
the fact that for some individual as biometrics suggests, there is a considerable
change in body dynamics and stride length as a person changes his speed. The
results for Type II experiments are also summarized in Table 2. Table 2 shows
experimental results obtained by different feature extraction methods presented
in this paper. In this table, rank1 performance means the percentage of the
correct subjects appearing in the first place of the retrieved rank list and rank5
means the percentage of the correct subjects appearing in any of the first five
places of the retrieved rank list. The performance in this table is the recognition
rate under these two definitions.
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Fig. 5. Illustration of the recognition performance variation with different training gait
cycles of each person. Train on slow walk and test on slow walk.

There are 8 gait cycles at the slow walking and fast walking data sets for each
view. The 8 cycles in one walking type are used as train set, the 8 cycles in other
walking type are used as test set. The gait patterns are produced as explained in
section 2.1. The features in the gait patterns are extracted by using four different
features extraction methods given in Table 2. When it is considered, it seen that
kernel PCA-based feature extraction gives better performance than PCA-based
method. There is quite possible translation variant problem between two gait
patterns extracted from the subjects walk with different walking styles and/or
different times. To achieve translation invariant for the proposed method, the
gait pattern in the spatial domain is first transformed to the spectral domain by
using one dimensional (1-D) FFT. 1-D FFT process is independently performed
in horizontal or vertical directions for the gait patterns produced from both

Table 2. Experiments for two different walking styles with different view points. Each
walking styles includes 8 gait cycles.

Train View 1 View 3 View 4 View 5 View 6
Test Method Rank: 1 5 Rank: 1 5 Rank: 1 5 Rank: 1 5 Rank: 1 5

Slow PCA 31.5 46 44 64.5 27 58.5 29 44 46 64.5
KPCA 33 54 46.5 68.5 34.5 60.5 35 54 48 63.5

Fast
FFT+PCA 65 89 80 91.5 63 91 64.5 87 67 87.5

FFT+KPCA 73 89 76.5 92.5 71.5 94 64 89 76 91.5

Fast
PCA 27 50.5 52 68.5 28 67.5 26 47.5 49 65

KPCA 39.5 62 53.5 69 31.5 59 24.5 51 49 65

Slow FFT+PCA 61.5 85 74.5 88 62.5 90.5 64 85 73.5 88
FFT+KPCA 66.5 89.5 79.5 91.5 61 89.5 67 90 74 88.5
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the left and right-projections or for the gait patterns produced from both the
top- and bottom-projections, respectively. Then PCA- and kernel PCA-based
feature extraction methods are employed to achieve higher recognition rates,
as illustrated in Table 2. Consequently, highest recognition rates for most view
points were achieved by using FFT+KPCA based feature extraction method.

Table 3 compares the recognition performance of different published
approaches on MoBo database. Several papers have published results on this
data set, hence, it is a good experiment data set to benchmark the performance
of the proposed algorithm. Table 3 lists the reported identification rates for eight
algorithms on eight commonly reported experiments. The first row lists the per-
formance of the proposed method. For seven experiments the performance of the
proposed algorithm is always highest score. The numbers for given in Table 3
are as read from graphs and tables in the cited papers. The number of the sub-
jects in the training set and test set is 25. In the test experiments for train on
fast walk and test on slow walk, or vice versa, 200 gait patterns (25 persons X 8
gait cycles) for each experiment were used to present the performance of the
proposed method.

Table 3. Comparison of several algorithm on MoBo dataset

Train Slow Fast Slow Fast
Test Slow Fast Fast Slow

Viewpoint View 1 View 3 View 1 View 3 View 1 View 3 View 1 View 3
Proposed method 100 100 100 100 73 76.5 66.5 79.5

BenAbdelkader et.al.[3] 100 96 100 100 54 43 32 33
UMD [9][10][11] 72 - 70 - 32 - 58 -

UMD [13] 72 - 76 - 12 - 12 -
CMU [14] 100 - - - 76 - - -

Baseline [8] 92 - - - 72 - - -
MIT[19] 100 - - - 64 - - -

4.2 USF Database

The USF database [8] is finally considered. This database consists of persons walk-
ing in elliptical paths in front of the camera. Some samples are shown in Figure 6.
For each person, there are up to five covariates: viewpoints (left/right), two differ-
ent shoe types, surface types (grass/concrete), carrying conditions (with/without
a briefcase), and time and clothing. Eight experiments are designed for individual
recognition as shown in Table 4. Sarkar et. al. [8] propose a baseline approach to
extract human silhouette and recognize an individual in this database. The ex-
periments in this section begin with these extracted binary silhouette data. These
data are noisy, e.g., missing of body parts, small holes inside the objects, severe
shadow around feet, and missing and adding some parts around the border of sil-
houettes due to background characteristics. In Table 4, G and C indicate grass
and concrete surfaces, A and B indicate shoe types, and L and R indicate left and
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Fig. 6. Some sample images in the database described in [22][8]

right cameras, respectively. The number of subjects in each subset is also given in
square bracket. Each one also includes 4-5 gait cycle sequence.

The experimental results on the standard USF HumanID Gait database ver-
sion 1.7 are summarized in Table 4. In this table, the performance of PCA-
and KPCA-based feature extraction methods are comparatively illustrated. The
matching is also conducted independently based on weighted Euclidean dis-
tance classifier. The decision results based on the fusion strategies, explained in
section 3.3, are additionally given in Table 4. Fusion 1 and Fusion 2 indicate
that the results are produced by using the strategy I and the strategy II, respec-
tively. It is observed from the experiments that, the recognition performance is
increased when the strategy II is used in the fusion process.

Table 4. Classification performance for the USF data set, version 1.7

PCA KPCA
Experiment Fusion 1 Fusion 2 Fusion 1 Fusion 2

CAL[71] 78.8 85.9 84.5 90.1
CAR[71] 85.9 88.7 85.9 87.3
CBL[43] 74.4 86.04 81.3 90.6
CBR[43] 83.7 93.02 79.06 88.3
GAL[68] 86.7 92.6 88.2 92.6
GAR[68] 79.4 82.3 80.8 85.2
GBL[44] 90.9 93.1 93.1 95.4
GBR[44] 77.2 86.3 86.3 90.9

To analyze the relationship between the performance of the proposed method
and number of training gait cycles of each person, four kinds of experiment types
were designed: one (two, three, or four) training gait cycle(s) of each person was
randomly selected for training, and the other gait cycles were used for authentica-
tion, respectively. These experimental results are given in Figure 7. KPCA- and
PCA-based features extraction methods are comparatively illustrated, as well.
In the Figure 7, y-axis indicates recognition rate, and x-axis indicates the num-
ber of training gait cycles of each person. When the plotted results in Figure 7
are considered, it can be seen that kernel PCA-based feature extraction approach
achieves better performance than PCA-based approach. From the results we can
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Fig. 7. Illustration of the recognition performance variation with different training gait
cycles of each person

report that the accuracy can be greatly improved with the growth of the training
gait cycles. For instance, when the proposed algorithm is trained using 1 gait
cycle in the experiment GBL, an accuracy of 72.1% is achieved. When 4 gait
cycles are used for training, a higher accuracy of 95.4% can be gotten. It is evi-
dent that training gait cycle number can play an important role in the matching
process. More training gait cycles lead to a high recognition rate.

Table 5 compares the recognition performance of different published
approaches on the USF silhouette version 1.7. The performance of the proposed
algorithm is better than other approaches in GBR, GBL, CAR, CBR, CAL, and
CBL, and slightly worse in GAL.

Table 5. Comparison of recognition performance using different approaches on USF
silhouette sequence version 1.7

Exp. The method Baseline[22] NLPR[2] UMD-Indirect[9] UMD-Direct[9] GEI [6]
GAL 92.6 79 70.42 91 99 100
GBR 90.9 66 58.54 76 89 90
GBL 95.4 56 51.22 65 78 85
CAR 87.3 29 34.33 25 35 47
CBR 88.3 24 21.43 29 29 57
CAL 90.1 30 27.27 24 18 32
CBL 90.6 10 14.29 15 24 31

5 Conclusion

In this paper, we first propose to improve the spatio-temporal gait representa-
tion, which is multi-projections of silhouettes developed by our previous work
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[20], for individual recognition by gait. As the others contributions and novelties
in this paper, 1) Kernel PCA based features extraction approach for gait recog-
nition is then presented, 2) FFT-based pre-processing is also proposed to achieve
translation invariant for the gait patterns which are produced from silhouette
sequences extracted from the subjects walk in different walking styles. 3) The
experimental results were finally submitted to examine the performance of the
proposed algorithm with different training gait cycles. The proposed approach
achieves highly competitive performance with respect to the published major
gait recognition approaches.

Acknowledgments. This research was partially supported by The Research
Foundation ofKaradenizTechnicalUniversity (GrantNo:KTU-2004.112.009.001).
The authors would like to thank to Dr. R.T. Collins from Carnegie Mellon Uni-
versity, U.S.A., for providing us with the CMU database, Dr. S. Sarkar from the
University of South Florida, U.S.A., for providing us with the USF database.

References

1. Nixon, M.S., Carter, J.N.: Automatic Recognition by Gait. Proceeding of the
IEEE 94(11), 2013–2023 (2006)

2. Wang, L., Tan, T., Ning, H., Hu, W.: Silhouette Analysis-Based Gait Recognition
for Human Identification. IEEE Trans. on PAMI 25(12), 1505–1518 (2003)

3. BenAbdelkader, C., Cutler, R.G., Davis, L.S.: Gait Recognition Using Image Self-
Similarity. EURASIP Journal of Applied Signal Processing 4, 1–14 (2004)

4. Veres, G.V., et al.: What image information is important in silhouette-based gait
recognition?. In: Proc. IEEE Conference on Computer Vision and Pattern Recog-
nition vol. 2, pp. 776–782 (2004)

5. Huang, P., Harris, C., Nixon, M.S.: Human Gait Recognition in Canonical Space
Using Temporal Templates. IEE Vision Image and Signal Processing 146, 93–100
(1999)

6. Han, J., Bhanu, B.: Individual Recognition Using Gait Image Energy. IEEE Trans.
on Pattern Analysis and Machine Intelligence 28(2), 316–322 (2006)

7. Ekinci, M., Gedikli, E.: Background Estimation Based People Detection and Track-
ing for Video Surveillance. In: Yazıcı, A., Şener, C. (eds.) ISCIS 2003. LNCS,
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