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Abstract: We are undoubtedly living in an age where we are exposed to a remarkable array of visual

imagery. While we may have historically had confidence in the integrity of this imagery, today’s

digital technology has begun to erode this trust. From the tabloid magazines to the fashion industry,

main-stream media outlets, scientific journals, political campaigns, courtrooms, and the photo hoaxes

that land in our email in-boxes, doctored photographs are appearing with a growing frequency and

sophistication. Over the past five years, the field of digital forensics has emerged to help return some

trust to digital images. Here I review the state of the art in this new and exciting field.

Digital watermarking has been proposed as a means by which an image can be authenticated (see,

for example, [21, 5] for general surveys). The drawback of this approach is that a watermark must

be inserted at the time of recording, which would limit this approach to specially equipped digi-

tal cameras. In contrast to these approaches, passive techniques for image forensics operate in the

absence of any watermark or signature. These techniques work on the assumption that although

digital forgeries may leave no visual clues of having been tampered with, they may alter the un-

derlying statistics of an image. The set of image forensic tools can be roughly categorized into five

categories: (1) pixel-based techniques detect statistical anomalies introduced at the pixel level; (2)

format-based techniques leverage the statistical correlations introduced by a specific lossy compres-

sion scheme; (3) camera-based techniques exploit artifacts introduced by the camera lens, sensor or

on-chip post-processing; (4) physically-based techniques explicitly model and detect anomalies in

the three dimensional interaction between physical objects, light, and the camera; and (5) geometric-

based techniques make measurements of objects in the world and their positions relative to the cam-

era. I have selected several representative forensic tools within each of these categories to review. In

so doing, I have undoubtedly omitted some worthy papers. My hope, however, is that this survey

offers a representative sampling of the emerging field of image forgery detection.
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1 Pixel-based

The legal system routinely relies on a range of forensic analysis ranging from forensic identification

(DNA or fingerprint), to forensic odontology (teeth), forensic entomology (insects), and forensic ge-

ology (soil). In the traditional forensic sciences, all manner of physical evidence are analyzed. In

the digital domain, the emphasis is on the pixel – the underlying building block of a digital image. I

describe four techniques for detecting various form of tampering, each of which directly or indirectly

analyze pixel-level correlations that arise from a specific form of tampering.

1.1 Cloning

Perhaps one of the most common image manipulations is to clone (copy/paste) portions of the im-

age to conceal a person or object in the scene. When care is taken it can be difficult to visually detect

cloning. And, since the cloned regions can be of any shape and location, it is computationally impos-

sible to search all possible image locations and sizes. Two computationally efficient algorithms have

been developed to detect cloned image regions [11, 34] (see also [27, 23, ?]).

The authors in [11] first apply a block Discrete Cosine Transform (DCT). Duplicated regions are

detected by lexicographically sorting the DCT block coefficients, and grouping similar blocks with

the same spatial offset in the image. In a related approach, the authors in [34] apply a principal

component analysis (PCA) on small fixed-size image blocks to yield a reduced dimension represen-

tation. Duplicated regions are again detected by lexicographically sorting and grouping all of the

image blocks. In both cases, the DCT or PCA representation are employed to reduce computational

complexity, and so that the clone detection is robust to minor variations in the image due to additive

noise or lossy compression.

1.2 Re-sampling

In order to create a convincing composite, it is often necessary to re-size, rotate, or stretch portions

of an image. For example, when creating a composite of two people, one person may have to be

re-sized to match the relative heights. This process requires re-sampling the original image onto a

new sampling lattice, introducing specific periodic correlations between neighboring pixels. Because

these correlations are unlikely to occur naturally, their presence can be used to detect this specific

manipulation [36] (related approaches are described in [?, 38, 31, 22]).
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Consider the simple example of up-sampling a 1-D signal x(t) of length m by a factor of two using

linear interpolation to yield y(t). The odd samples of the re-sampled signal take on the values of the

original signal: y(2i − 1) = x(i), i = 1, . . . ,m, while the even samples are the average of adjacent

neighbors of the original signal:

y(2i) = 0.5x(i) + 0.5x(i + 1). (1)

Since each sample of the original signal can be found in the re-sampled signal, the interpolated pixels

can be expressed in terms of the re-sampled samples only:

y(2i) = 0.5y(2i− 1) + 0.5y(2i + 1). (2)

That is, across the entire re-sampled signal, each even sample is precisely the same linear combina-

tion of its adjacent two neighbors. In this simple case a re-sampled signal can be detected by noticing

that every other sample is perfectly correlated to its neighbors. This correlation is not limited to up-

sampling by a factor of two. A large range of re-samplings introduces similar periodic correlations. If

the specific form of the re-sampling correlations is known, then it would be straightforward to deter-

mine which pixels are correlated to their neighbors. If it is known which pixels are correlated to their

neighbors, then the specific form of the correlations can be easily determined. But in practice neither

are known. The expectation/maximization (EM) algorithm is used to simultaneously solve each of

these problems. The EM algorithm is a two-step iterative algorithm: (1) in the E-step the probability

of each pixel being correlated to their neighbors is estimated; and (2) in the M-step the specific form

of the correlations between pixels is estimated. Assuming a linear interpolation model, the E-step

reduces to a Bayesian estimator, and the M-step reduces to weighted least squares estimation. The

estimated probability is then used to determine if a portion of the image has been re-sampled.

1.3 Splicing

A common form of photo manipulation is the digital splicing of two or more images into a single

composite. When performed carefully, the border between the spliced regions can be visually imper-

ceptible. However, in [7, 32], the authors show that splicing disrupts higher-order Fourier statistics,

which can subsequently be used to detect splicing.

Consider a 1-D signal x(t) and its Fourier transform X(ω). The power spectrum P (ω) = X(ω)X∗(ω)

is routinely used to analyze the frequency composition of a signal (∗ denotes complex conjugate).
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Moving beyond the power spectrum, the bispectrum

B(ω1, ω2) = X(ω1)X(ω2)X∗(ω1 + ω2) (3)

measures higher-order correlations between triples of frequencies ω1, ω2 and ω1 + ω2. Subtle dis-

continuities that result from splicing manifest themselves with an increase in the magnitude of the

bispectrum and in a bias in the bispectrum phase which are used to detect splicing in audio [7] and

in images [32].

1.4 Statistical

There are a total of 256n2
possible 8-bit grayscale images of size n × n. With as few as n = 10

pixels, there are a whopping 10240 possible images (more than the estimated number of atoms in the

universe). If we were to randomly draw from this enormous space of possible images, it would be

exceedingly unlikely to obtain a perceptually meaningful image. These observations suggest that

photographs contain specific statistical properties. The authors in [9] and [1, 2] exploit statistical

regularities in natural images to detect various types of image manipulations.

The authors in [9] compute first- and higher-order statistics from a wavelet decomposition. This

decomposition splits the frequency space into multiple scale and orientation subbands. The statistical

model is composed of the first four statistical moments of each wavelet subband, and on higher-order

statistics that capture the correlations between the various subbands. Supervised pattern classifica-

tion is employed to classify images based on these statistical features. In a complementary approach,

the authors in [1] construct a statistical model based on local co-occurrence statistics from image

bit-planes. Specifically, the first four statistical moments are computed from the frequency of bit

agreements and disagreements across bit planes. Nine features embodying binary string similarity

are extracted from these measurements. Another eight features are extracted from the histograms

of these measurements. The sequential floating forward search algorithm is used to select the most

descriptive features, which are then used in a linear regression classifier for discriminating authen-

tic from manipulated images. In both cases, the statistical model is used to detect everything from

basic image manipulations such as re-sizing and filtering [1], to discriminating photographic from

computer generated images [29] and detecting hidden messages (steganography) [30].
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2 Format-based

The first rule in any forensic analysis must surely be “preserve the evidence”. In this regard, lossy

image compression schemes such as JPEG might be considered a forensic analysts worst enemy. It

is ironic, therefore, that the unique properties of lossy compression can be exploited for forensic

analysis. I describe three forensic techniques that detect tampering in compressed images, each of

which explicitly leverage details of the lossy JPEG compression scheme.

2.1 JPEG Quantization

Most cameras encode images in the JPEG format. This lossy compression scheme allows for some

flexibility in how much compression is achieved. Manufacturers typically configure their devices

differently to balance compression and quality to their own needs and tastes. As described in [8],

this difference can be used to identify the source (camera make/model) of an image.

Given a three channel color image (RGB), the standard JPEG compression scheme proceeds as

follows. The RGB image is first converted into luminance/chrominance space (YCbCr). The two

chrominance channels (CbCr) are typically subsampled by a factor of two relative to the luminance

channel (Y). Each channel is then partitioned into 8×8 pixel blocks. These values are converted from

unsigned to signed integers (e.g., from [0, 255] to [−128, 127]). Each block is converted to frequency

space using a 2-D discrete cosine transform (DCT). Depending on the specific frequency and channel,

each DCT coefficient, c, is then quantized by an amount q: bc/qc. This stage is the primary source

of compression. The full quantization is specified as a table of 192 values – a set of 8 × 8 values

associated with each frequency, for each of three channels (YCbCr). For low compression rates, these

values tend towards a value of 1, and increase for higher compression rates. With some variations,

the above sequence of steps are employed by JPEG encoders in digital cameras and photo-editing

software. The primary source of variation in these encoders is the choice of quantization table. As

such, a signature of sorts is embedded within each JPEG image. The quantization tables can be

extracted from the encoded JPEG image, or blindly estimated from the image as described in [6].

Note that the quantization tables can vary from within a single camera as a function of the quality

setting, and while the tables are somewhat distinct, there is some overlap across cameras of different

make and model. Nevertheless, this simple observation allows for a crude form of digital image

ballistics, whereby the source of an image can be confirmed or denied.
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Figure 1: Shown along the top row are histograms of single quantized signals with steps 2 (left) and 3 (right).
Shown in the bottom row are histograms of double quantized signals with steps 3 followed by 2 (left), and 2
followed by 3 (right). Note the periodic artifacts in the histograms of double quantized signals.

2.2 Double JPEG

At a minimum, any digital manipulation requires that an image is loaded into a photo-editing soft-

ware and re-saved. Since most images are stored in the JPEG format, it is likely that both the orig-

inal and manipulated images are stored in this format. In this scenario, the manipulated image is

compressed twice. Because of the lossy nature of the JPEG image format, this double compression

introduces specific artifacts not present in singly compressed images (assuming that the image was

not also cropped prior to the second compression). The presence of these artifacts can, therefore, be

used as evidence of some manipulation [25, 35].1

As described in the previous section, quantization of the DCT coefficients c is the primary man-

ner in which compression is achieved, denoted as, qa(c) =
⌊

c
a

⌋
, where a is the quantization step (a

strictly positive integer). De-quantization brings the quantized values back to their original range:

q−1
a (c) = ac. Note that quantization is not invertible, and that de-quantization is not the inverse

function of quantization. Double quantization that results from double compression is given by:

qab(c) =
⌊⌊

c
b

⌋
b
a

⌋
, where a and b are the quantization steps. Double quantization can be represented

as a sequence of three steps: quantization with step b, followed by de-quantization with step b, fol-

lowed by quantization with step a. Consider now a set of coefficients normally distributed in the

range [0, 127]. To illustrate the nature of the double quantization artifacts, consider four different

quantizations of these coefficients. Shown in the top row of Figure 1 are the histograms of the co-

efficients quantized with steps 2 and 3. Shown in the bottom row are the histograms of the double

1Note that double JPEG compression does not necessarily prove malicious tampering. For example, it is possible to

inadvertently save an image after simply viewing it.
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quantized coefficients with steps 3 followed by 2, and 2 followed by 3. When the step size decreases

(bottom left) some bins in the histogram are empty, because the first quantization places the samples

of the original signal into 42 bins, while the second quantization re-distributes them into 64 bins.

When the step size increases (bottom right) some bins contain more samples than their neighboring

bins, because the even bins receive samples from four original histogram bins, while the odd bins

receive samples from only two. In both cases of double quantization, note the periodicity of the

artifacts introduced into the histograms. It is this periodicity that the authors in [35] exploited to

detect double JPEG compression. The work of [13] extended this approach to detect localized traces

of double compression.

2.3 JPEG Blocking

As described in the previous sections, the basis for JPEG compression is the block DCT transform.

Because each 8 × 8 pixel image block is individually transformed and quantized, artifacts appear at

the border of neighboring blocks in the form of horizontal and vertical edges. When an image is

manipulated, these blocking artifacts may be disturbed.

In [28], the authors characterize the blocking artifacts using pixel value differences within and

across block boundaries. These differences tend to be smaller within blocks than across blocks. When

an image is cropped and re-compressed, a new set of blocking artifacts may be introduced that do

not necessarily align with the original boundaries. Within- and across-block pixel value differences

are computed from 4-pixel neighborhoods that are spatially offset from each other by a fixed amount,

where one neighborhood lies entirely within a JPEG block, and the other borders or overlaps a JPEG

block. A histogram of these differences is computed from all 8 × 8 non-overlapping image blocks.

A 8 × 8 “blocking artifact” matrix (BAM) is computed as the average difference between these his-

tograms. For uncompressed images, this matrix is random, while for a compressed image, this matrix

has a specific pattern. When an image is cropped and re-compressed, this pattern is disrupted. Su-

pervised pattern classification is employed to discriminate between authentic and inauthentic BAMs.

In [41], the authors describe how to detect more localized manipulations from inconsistencies in

blocking artifacts. From a region of the image which is presumed to be authentic, the level of quanti-

zation is first estimated for each of 64 DCT frequencies. Inconsistencies between the DCT coefficients
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D and the estimated amount of quantization Q are computed as:

B =
64∑

k=1

∣∣∣∣D(k)−Q(k)round
(

D(k)
Q(k)

)∣∣∣∣ . (4)

Variations in B across the image are used to detect manipulated regions.

3 Camera-based

Grooves made in gun barrels impart a spin onto the projectile for increased accuracy and range.

These grooves introduce somewhat distinct markings to the bullet fired, and can therefore be used

to link a bullet with a specific handgun. In the same spirit, several image forensic techniques have

been developed that specifically model artifacts introduced by various stages of the imaging process.

I describe four techniques for modeling and estimating different camera artifacts. Inconsistencies in

these artifacts can then be used as evidence of tampering.

3.1 Chromatic Aberration

In an ideal imaging system, light passes through the lens and is focused to a single point on the sen-

sor. Optical systems, however, deviate from such ideal models in that they fail to perfectly focus light

of all wavelengths. Specifically, lateral chromatic aberration manifests itself as a spatial shift in the

locations where light of different wavelengths reach the sensor. In [16], the authors show that this

lateral aberration can be approximated as an expansion or contraction of the color channels with re-

spect to one another. Shown in Figure 2(a), for example, is an image overlayed with a vector field that

represents the misalignment of the red channel relative to the green channel. Shown in Figure 2(b)

is this same image where the fish was added to the image. Note that in this case, the local lateral

aberration in this tampered region are inconsistent with the global aberration. The authors of [16]

describe how to estimate lateral chromatic aberration in order to detect this type of manipulation.

In classical optics, the refraction of light at the boundary between two media is described by Snell’s

law: n sin(θ) = nf sin(θf ), where θ is the angle of incidence, θf is the angle of refraction, and n and

nf are the refractive indices of the media through which the light passes, Figure 2(c). The refractive

index of glass, nf , depends on the wavelength of the light that traverses it. This dependency results

in polychromatic light being split according to wavelength as it exits the lens and strikes the sensor.

Shown in Figure 2(c), for example, is a schematic showing the splitting of short wavelength (solid
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(a)

(b) (c)

Figure 2: Chromatic aberration: (a) superimposed on the original image is a vector field showing the pixel
displacement between the red and green channels; (b) the fish, taken from another image, was added to this
image and its chromatic aberration are inconsistent with the global pattern; (c) Polychromatic light enters the
lens at an angle θ, and emerges at an angle which depends on wavelength. As a result, different wavelengths
of light, two of which are represented as the red (dashed) and the green (solid) rays, will be imaged at different
points, xr and xg , giving rise to chromatic aberration.

green ray) and long wavelength (dashed red ray) light. Denote the position of the green and red rays

on the sensor as (xr, yr) and (xg, yg). In the presence of chromatic aberration these positions can be

modeled as:

xr = α(xg − x0) + x0 and yr = α(yg − y0) + y0, (5)

where α is a scalar value, and (x0, y0) is the center of the distortion. The estimation of these model

parameters is framed as an image registration problem. Since the aberration results in a misalignment

between the color channels, the model parameters are estimated by maximizing the alignment of

the color channels. Specifically, the mutual information between the red and green color channels

are maximized (a similar estimation is performed to determine the distortion between the blue and

green channels). Local estimates of the chromatic aberration are then compared to the estimated
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global aberration to detect tampering.

3.2 Color Filter Array

A digital color image consists of three channels containing samples from different bands of the color

spectrum, e.g., red, green, and blue. Most digital cameras, however, are equipped with a single CCD

or CMOS sensor, and capture color images using a color filter array (CFA). Most CFAs employ three

color filters (red, green, and blue) placed atop each sensor element. Since only a single color sample is

recorded at each pixel location, the other two color samples must be estimated from the neighboring

samples in order to obtain a three-channel color image. The estimation of the missing color sam-

ples is referred to as CFA interpolation or demosaicking. The simplest demosaicking methods are

kernel-based that act on each channel independently (e.g., bilinear or bicubic interpolation). More

sophisticated algorithms interpolate edges differently from uniform areas to avoid blurring salient

image features. Regardless of the specific implementation, CFA interpolation introduces specific sta-

tistical correlations between a subset of pixels in each color channel. Since the color filters in a CFA

are typically arranged in a periodic pattern, these correlations are periodic. At the same time, it is

unlikely that the original recorded pixels will exhibit the same periodic correlations. As such these

correlations can be used as a type of digital signature.

If the specific form of the periodic correlations is known, then it would be straightforward to deter-

mine which pixels are correlated to their neighbors. On the other hand, if it is known which pixels are

correlated to their neighbors, the specific form of the correlations can be easily determined. In prac-

tice, of course, neither are known. In [37] the authors describe how to simultaneously determine both

the form of the correlations and which pixels are and are not CFA interpolated (see also [3, 4]). The

authors employed the expectation/maximization (EM) algorithm. The EM algorithm is a two-step

iterative algorithm: (1) in the E-step the probability of each pixel being correlated to their neighbors

is estimated; and (2) in the M-step the specific form of the correlations between pixels is estimated.

By modeling the CFA correlations with a simple linear model, the E-step reduces to a Bayesian es-

timator, and the M-step reduces to weighted least squares estimation. In an authentic image, it is

expected that a periodic pattern of pixels will be highly correlated to their neighbors – deviations

from this pattern are therefore evidence of localized or global tampering.

10



3.3 Camera Response

Because most digital camera sensors are very nearly linear, there should be a linear relationship

between the amount of light measured by each sensor element, and the corresponding final pixel

value. Most cameras, however, apply a point-wise non-linearity in order to enhance the final image.

The authors in [24] describe how to estimate this mapping, termed a response function, from a single

image. Differences in the response function across the image are then used to detect tampering (a

related approach is described in [14]).

Consider an edge where the pixels below the edge are of a constant color C1 and the pixels above

the edge are of a different color C2. If the camera response is linear, then the intermediate pixels

along the edge should be a linear combination of the neighboring colors. The deviation of these in-

termediate pixel values from this expected linear response are used to estimate the camera response

function. The inverse camera response function that brings the pixel colors back to a linear relation-

ship are estimated using a maximum a posteriori estimator (MAP). In order to stabilize the estimator,

edges are selected such that areas on either side of the edge are similar, the variances on either side

of the edge are small, the difference between C1 and C2 is large, and the pixels along the edge are

between C1 and C2. Constraints are also imposed on the estimated camera response function: the

function should be monotonically increasing with at most one inflexion point, and should be similar

for each of the color channels. Since the camera response function can be estimated locally, significant

variations in this function across the image can be used to detect tampering.

3.4 Sensor Noise

As a digital image moves from the camera sensor to the computer memory, it undergoes a series of

processing, including: quantization, white balancing, demosaicking, color correction, gamma correc-

tion, filtering and, usually, JPEG compression. This processing introduces a distinct signature into

the image. The authors in [12] model this processing with a generic additive noise model, and use

statistics from the estimated noise for image forensics. In [40], the authors model camera process-

ing with a series of in-camera processing operations and a second filtering. The parameters of this

camera processing are then used to determine if an image has undergone any form of subsequent

processing.

The authors in [10] model camera processing with an additive and multiplicative noise model.
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The parameters of the noise model are estimated from the original camera, or a series of images orig-

inating from the known camera. Correlations between the estimated camera noise and the extracted

image noise are then used to authenticate an image. The effect of the in-camera processing is modeled

as follows:

I(x, y) = I0(x, y) + γI0(x, y)K(x, y) + N(x, y), (6)

where I0(·) is the noise-free image, γ is a multiplicative constant, K(·) is the multiplicative noise

(termed photo-response non-uniformity noise (PRNU)), and N(·) is an additive noise term. Since the

PRNU varies across the image, it can be used to detect local or global inconsistencies in an image. The

PRNU is estimated from a series of authentic images using wavelet-based noise removal techniques.

As a general rule, at least 50 images are required to obtain accurate estimates of the PRNU. Fewer im-

ages could be used if they were generally low-pass in nature (e.g., imags of the sky). Authentication

is performed through a block-wise correlation between the estimated PRNU and an image whose

authenticity has been called into question. The PRNU has also been shown to be distinct to a specific

sensor [26]. As such, the PRNU can also be used for camera ballistics – that of identifying the specific

camera from which an image originated.

4 Physics-based

Consider the creation of a forgery showing two movie stars, rumored to be romantically involved,

walking down a sunset beach. Such an image might be created by splicing together individual im-

ages of each movie star. In so doing, it is often difficult to exactly match the lighting effects under

which each person was originally photographed. I describe three techniques for estimating different

properties of the lighting environment under which a person or object was photographed. Differ-

ences in lighting across an image can then be used as evidence of tampering.

4.1 Light Direction (2-D)

Because the right side of the face in Figure 3(a) is more illuminated than the left, we can infer that

a light source is positioned to the right. This observation can be formalized by making simplifying

assumptions: the amount of light striking a surface is proportional to the surface normal and the

direction to the light. With knowledge of 3-D surface normals, the direction to the light source can
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(a) (b) (c)

Figure 3: The direction to a single light source can be determined from (a) the lighting gradient across the face,
or (b) the position of the specularity (white dot) on the eye. More complex lighting environments consisting of
multiple colored lights (c) can be modeled as piecewise continuous functions on the sphere.

therefore be estimated [33]. Because 3-D surface normals usually cannot be determined from a single

image, the authors in [15] consider only the 2-D surface normals at the occluding object boundary.

In return, they estimate two of the three components of the light source direction. Although there

remains an ambiguity in the estimated light direction, these two components of light direction are

still useful in a forensic setting.

In order to simplify the estimation of light source direction, it is assumed that the surface of interest

is Lambertian (the surface reflects light isotropically), has a constant reflectance value, and is illumi-

nated by a point light source infinitely far away. Under these assumptions, the image intensity can

be expressed as I(x, y) = R( ~N(x, y) · ~L)+A, where R is the constant reflectance value, ~L is a 3-vector

pointing in the direction of the light source, ~N(x, y) is a 3-vector representing the surface normal at

the point (x, y), and A is a constant ambient light term. Since only the direction to the light source is

of interest, the reflectance term, R, can be considered to have unit-value. At the occluding boundary

of a surface, the z-component of the surface normal is zero. In addition, the x- and y-components

of the surface normal can be estimated directly from the image. Under this added assumption, the
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image intensity is now given by:

I(x, y) = ~N(x, y) · ~L + A =
(
Nx(x, y) Ny(x, y)

) Lx

Ly

 + A. (7)

Note that in this formulation, the z-component of both the surface normal and light direction are

ignored since Nz(x, y) = 0. With at least three points with the same reflectance, R, and distinct

surface normals, ~N , the light source direction and ambient term can be solved for using standard

least-squares estimation. A quadratic error function, embodying the imaging model of Equation (7),

is given by:

E(~L,A) =

∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣


Nx(x1, y1) Ny(x1, y1) 1

Nx(x2, y2) Ny(x2, y2) 1
...

...
...

Nx(xp, yp) Ny(xp, yp) 1

 .


Lx

Ly

A

−


I(x1, y1)

I(x2, y2)
...

I(xp, yp)



∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣

2

=
∣∣∣∣∣∣M~v −~b

∣∣∣∣∣∣2 . (8)

This quadratic error function is minimized using standard least-squares estimation to yield ~v =

(MT M)−1MT~b. This process can be repeated for different objects or people in the image to verify

that the lighting is consistent.

4.2 Light Direction (3-D)

The estimation of light source direction in the previous section was limited to 2-D because it is usually

difficult to determine 3-D surface normals from a single image. In [20], the authors describe how to

estimate the 3-D direction to a light source from the light’s reflection in the human eye, Figure 3(b).

The required 3-D surface normals are determined by leveraging a 3-D model of the human eye.

Shown in Figure 4 is the basic imaging geometry where the reflection of the light is visible in the

eye. This reflection is termed a specular highlight. In this diagram, the three vectors ~L, ~N and ~R

correspond to the direction to the light, the surface normal at the point at which the highlight is

formed, and the direction in which the highlight will be seen. The law of reflection states that a

light ray reflects off of a surface at an angle of reflection θr equal to the angle of incidence θi, where

these angles are measured with respect to the surface normal ~N . Assuming unit-length vectors, the

direction of the reflected ray ~R can be described in terms of the light direction ~L and the surface

normal ~N :

~R = ~L + 2(cos(θi) ~N − ~L) = 2 cos(θi) ~N − ~L. (9)
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Light
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L

Figure 4: The formation of a specular highlight on an eye (small white dot on the iris). The position of the
highlight is determined by the surface normal ~N and the relative directions to the light source ~L and viewer
~V .

By assuming a perfect reflector (~V = ~R), the above constraint yields:

~L = 2 cos(θi) ~N − ~V = 2
(

~V T ~N
)

~N − ~V . (10)

The light direction ~L can therefore be estimated from the surface normal ~N and view direction ~V at a

specular highlight. This estimated light direction can be compared across several people in an image

or the estimated light direction using the technique described in the previous section.

4.3 Light Environment

In the previous two sections a simplified lighting model consisting of a single dominant light source

was assumed. In practice, however, the lighting of a scene can be complex – any number of lights can

be placed in any number of positions, creating different lighting environments, Figure 3(c). In [19],

the authors describe how to estimate a low-parameter representation of such complex lighting envi-

ronments.

The authors begin by leveraging the observation [39] that the appearance of a Lambertian surface

can be well approximated by:

E( ~N) ≈
2∑

n=0

n∑
m=−n

r̂nln,mYn,m( ~N), (11)

where E( ~N) is the amount of lighting striking a surface (irradiance) with surface normal ~N , r̂n are

known constants, Yn,m(·) are the spherical harmonic functions 2, and ln,m are the unknown linear

2Spherical harmonics form an orthonormal basis for piecewise continuous functions on the sphere and are analogous
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weights on these functions. Note that this expression is linear in the nine lighting environment co-

efficients, l0,0 to l2,2, and can therefore be estimated using standard least-squares estimation. This

solution, however, requires 3-D surface normals from at least nine points on the surface of an object.

Without multiple images or known geometry, this requirement may be difficult to satisfy from an

arbitrary image. The key observation in [19] is that by considering only the occluding boundary of

an object, Equation (11) simplifies to:

E( ~N) = l1,−1
2π
3 Y1,−1( ~N) + l1,1

2π
3 Y1,1( ~N) + l2,−2

π
4 Y2,−2( ~N) + l2,2

π
4 Y2,2( ~N) + l0,0

π
2
√

π
− l2,0

π
16

√
5
π , (12)

where, most critically, the functions Yi,j(·) depend only on the x and y components of the surface

normal ~N . That is, the five lighting coefficients can be estimated from only 2-D surface normals.

In addition, Equation (12) is still linear in its now five lighting environment coefficients, which can

be estimated using standard least-squares estimation. The addition of a regularization term further

improves the stability of the estimation. The estimated coefficients can be compared to detect lighting

inconsistencies within an image.

5 Geometric-based

5.1 Principal Point

In authentic images, the principal point (the projection of the camera center onto the image plane) is

near the center of the image. When a person or object is translated in the image, the principal point

is moved proportionally. Differences in the estimated principal point across the image can therefore

be used as evidence of tampering. In [18], the authors described how to estimate a camera’s princi-

pal point from the image of a pair of eyes (i.e., two circles) or other planar geometric shapes. They

showed how translation in the image plane is equivalent to a shift of the principal point. Inconsis-

tencies in the principal point across an image can then be used as evidence of tampering.

The limbus, the boundary between the iris and the sclera is well modeled with a circle. Con-

sider now the projection of a pair of eyes (circles) that are assumed to be co-planar. In this case, the

transformation from world to image coordinates can be modeled with a 3×3 planar projective trans-

formation matrix H : ~x = H ~X , where the world points ~X and image points ~x are represented by 2-D

to the Fourier basis on the line or plane.
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homogeneous vectors. The transformation H can be estimated from the known geometry of a per-

son’s eyes, and factored into a product of matrices that embody the camera’s intrinsic and extrinsic

parameters:

H = λ


f 0 c1

0 f c2

0 0 1

 (
~r1 ~r2 ~t

)
, (13)

where λ is a scale factor, the left-most matrix is the intrinsic matrix (where f is the focal length and

(c1, c2) is the principal point), and the right-most matrix embodies the rigid-body transformation

(rotation/translation) between world and camera coordinates. Once factored, the intrinsic matrix

yields the desired estimate of the principal point. If in the creation of a composite of two or more

people, a person was moved from their position in the original image, then the estimated principal

points for each person will be inconsistent, and is evidence of tampering.

5.2 Metric Measurements

Shown in Figure 5 is an image of a license plate that is largely illegible. Also shown in this figure

(bottom right panel) is the result of transforming the license plate as if it were viewed head-on.

This rectified image clearly reveals the license plate number. In [17], the authors review several

tools from projective geometry that allow for the rectification of planar surfaces and, under certain

conditions, the ability to make real-world measurements from a planar surface. Three techniques for

the rectification of planar surfaces imaged under perspective projection are described. Each method

requires only a single image. The first method exploits knowledge of polygons of known shape

(e.g., street sign, license plate, lettering on a billboard). The second method requires knowledge of

two or more vanishing points on a plane and, for example, a pair of known angles on the plane.

The third method requires two or more coplanar circles (e.g., car wheels). In each case, the world to

image transformation is estimated, thereby allowing for the removal of planar distortions and metric

measurements to be made on the plane.

6 The Future

Today’s technology allows digital media to be altered and manipulated in ways that were simply

impossible twenty years ago. Tomorrow’s technology will almost certainly allow for us to manipulate
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Figure 5: Shown on the left is the original image. Shown on the top right is a close-up of the license plate
which is largely illegible. Shown in the bottom right is the result of planar rectification followed by histogram
equalization.

digital media in ways that today seem unimaginable. And as this technology continues to evolve it

will become increasingly more important for the science of digital forensics to try to keep pace.

There is little doubt that as we continue to develop techniques for exposing photographic frauds,

new techniques will be developed to make better and harder to detect fakes. And while some of

the forensic tools may be easier to fool than others, some tools will be difficult for the average user

to circumvent. For example, once disturbed, the color filter array interpolation can be re-generated

by simply placing an image onto its original lattice and re-interpolating each color channel. On the

other hand, correcting for inconsistent lighting is non-trivial in a standard photo-editing software. As

with the spam/anti-spam and virus/anti-virus game, an arms race between the forger and forensic

analyst is somewhat inevitable. The field of image forensics however has and will continue to make

it harder and more time consuming (but never impossible) to create a forgery that cannot be detected.
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