
Karadeniz Technical University

Department of Computer Engineering

Lecturer Ömer ÇAKIR

COM 2005 Data Structures

Final Exam, 09.01.2026, 08:30

Duration : 75 Minutes

NUMBER : ………….… NAME : ……………………………..…….……………

 SIGNATURE : ……………………..…………….…………...

EVALUATION

1[.....] 2[.....] 3[.....] 4[.....] SUM[.........]

Faculty of Engineering Exam Directives must be followed. Questions are related to 1,4,12 of the Program Learning Outcomes

void removeOrdered(string & e, int & i ,
 DoublyNode * current)
{

if (empty())
{

cout << "List is empty !" << endl;
return ;

}

if (current != trailer)
{

if ((e.compare(current - >elem) == 0)
 && (current - >score == i))
{

current - >prev - >next = current - >next;
current - >next - >prev = current - >prev;
delete current ;
return ;

}

removeOrdered(e, i , current - >next);
}
else

cout << e << " is not found" << endl;
}

int main()
{

DoublyLinkedList list;

list.insertOrdered("Paul" , 720);
list.insertOrdered("Rose" , 590);
list.insertOrdered("Anna" , 660);
list.insertOrdered("Mike" , 1105);
list.insertOrdered("Rob" , 750);
list.insertOrdered("Jack" , 510);
list.insertOrdered("Jill" , 740);

cout << "List after insertions :" << endl;
list.printH2T();

list.removeOrdered("Jack" , 510,
 list.header - >next);
list.removeOrdered("Mike" , 1105,
 list.header - >next);
list.removeOrdered("Paul" , 720,
 list.header - >next);

cout << " \ nList after removals:" << endl;
list.printH2T();

}

1. How many times does the function removeOrdered()

call itself recursively when removing Jack, Mike and Paul?
(30P)

http://www.ktu.edu.tr/dosyalar/14_00_00_f1057.pdf
http://www.katalog.ktu.edu.tr/DersBilgiPaketi/oloprogram.aspx?pid=9&lang=1

void BinaryTree ::eulerLike(TreeNode * v) const
{
 if (v - >left != NULL)
 {
 eulerLike(v - >left);
 }

 cout << v - >elem;

 if (v - >right != NULL)
 {
 eulerLike(v - >right);
 cout << v - >elem;
 }
}

int main()
{
 BinaryTree binaryTree;
 binaryTree.addNode(binaryTree.root, 7);
 binaryTree.addNode(binaryTree.root, 3);
 binaryTree.addNode(binaryTree.root, 11);
 binaryTree.addNode(binaryTree.root, 1);
 binaryTree.addNode(binaryTree.root, 5);
 binaryTree.addNode(binaryTree.root, 9);
 binaryTree.addNode(binaryTree.root, 13);

 binaryTree.eulerLike(binaryTree.root);
}

2. What is the output of the program above? (20P)

3. How many times does the function eulerLike () call

itself recursively? (20P)

7

131

5

62

4

9

10

128

4. Add 14 to the Splay Tree above. (30P)

