Karadeniz Technical University
Department of Computer Engineering
Lecturer Omer CAKIR

COM 2005 Data Structures
Final Exam, 09.01.2026, 08:30
Duration : 75 Minutes

SOLUTIONS

void removeOrdered(string& e, int& i,

DoublyNode* current)

{
if Cempty())
{
cout << "List is empty !"™ << endl;
return;
}
if (current != trailer)
{
if ((Ce.compare(current—>elem) == 0)
&& (current->score == i))
{
current—>prev—>next = current->next;
current—>next—>prev = current->prev;
delete current;
return;
}
removeOrdered(e, i, current—>next);
}
else
cout << e << "™ is not found" << endl;
H
int main()
{
DoublyLinkedList list;
list.insertOrdered("Paul™, 720);
list.insertOrdered("Rose”, 590);
list.insertOrdered("Anna", 660);
list.insertOrdered("Mike", 1105);
list.insertOrdered("Rob", 750);
list.insertOrdered("Jack”, 510);
list.insertOrdered("Jill™, 740);
cout << "List after insertions :" << endl;
list.printH2T();
list.removeOrdered("Jack", 510,
list.header—>next);
list.removeOrdered("Mike™, 1105,
list.header—>next);
list.removeOrdered("Paul”, 720,
list.header—>next);
cout << "\nList after removals:" << endl;
list.printH2T();
H

1. How many times does the function removeOrdered()
call itself recursively when removing Jack, Mike and Paul?

(30P)

7

void BinaryTree::

eulerLike(Treellode* v) const

{
if (v—->left != NULL)
{
eulerLike(v—->left);
H
cout << v—->elenm;
if (v->right != NULL)
{
eulerLike(v->right);
cout << v—>elenm;
H
H
int main()
{
BinaryTree binaryTree;
binaryTree.addNode(binaryTree.root, 7);
binaryTree.addNode(binaryTree.root, 3);
binaryTree.addNode(binaryTree.root, 11);
binaryTree.addNode(binaryTree.root, 1);
binaryTree.addNode(binaryTree.root, 5);
binaryTree.addNode(binaryTree.root, 9);
binaryTree.addNode(binaryTree.root, 13);
binaryTree.eulerLike(binaryTree.root);
H
2. What is the output of the program above? (20P)

1({3|5(3

7|9(11|13|11|7

3. How many times does the function eulerLike() call

itself recursively?

(20P)

6

(D
O (13
OO
@) &6 @2
» ©

4. Add 14 to the Splay Tree above.

(30P)

