


Accurate and efficient collision detection in complex environments is one of the foundations of today’s
cutting-edge computer games. Yet collision detection is notoriously difficult to implement robustly
and takes up an increasingly large fraction of compute cycles in current game engines as increasingly
detailed environments are becoming the norm.

Real-time Collision Detection is a comprehensive reference on this topic, covering it with both breadth
and depth. Not only are the fundamental algorithms explained clearly and in detail, but Ericson’s book
covers crucial implementation issues, including geometric and numeric robustness and cache-efficient
implementations of the algorithms. Together, these make this book a “must have” practical reference for
anyone interested in developing interactive applications with complex environments.

—Matt Pharr,
Senior Software Developer, NVIDIA

Christer Ericson’s Real-time Collision Detection is an excellent resource that covers the fundamentals
as well as a broad array of techniques applicable to game development.

—Jay Stelly,
Senior Engineer, Valve

Christer Ericson provides a practical and very accessible treatment of real-time collision detection. This
includes a comprehensive set of C++ implementations of a very large number of routines necessary
to build such applications in a context which is much broader than just game programming. The
programs are well-thought out and the accompanying discussion reveals a deep understanding of the
graphics, algorithms, and ease of implementation issues. It will find a welcome home on any graphics
programmer’s bookshelf although it will most likely not stay there long as others will be constantly
borrowing it.

—Hanan Samet,
Professor of Computer Science, University of Maryland

Real-Time Collision Detection is an excellent resource that every serious engine programmer should
have on his bookshelf. Christer Ericson covers an impressive range of techniques and presents them
using concise mathematics, insightful figures, and practical code.

—Eric Lengyel,
Senior Programmer, Naughty Dog

If you think you already know everything about collision detection, you're in for a surprise! This book
not only does an excellent job at presenting all the collision detection methods known to date, it also
goes way beyond the standard material thanks to a plethora of juicy, down-to-earth, hard-learned
implementation tips and tricks. This produces a perfect blend between theory and practice, illustrated
by the right amount of source code in appropriate places.

Basically the book just oozes with experience. Christer doesn’t forget all the alternative topics that,
despite not directly related to collision detection, can ruin your implementation if you don't include them
in your design. The chapters on robustness and optimization are priceless in this respect. Its carefully
crafted compact kd-tree implementation beautifully concludes a unique book full of luminous gems.

—Pierre Terdiman,
Principal Software Engineer, NovodeX AG
(author of the OPCODE collision detection library)
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cographically) from left to right. Middle left: during construction of the upper
chain. Middle right: the completed upper chain. Lower left: the lower chain.
Lower right: the two chains together forming the convex hull. 65

First steps of the Quickhull algorithm. Top left: the four extreme points (on
the bounding box of the point set) are located. Top right: all points inside
the region formed by those points are deleted, as they cannot be on the hull.
Bottom left: for each edge of the region, the point farthest away from the edge
is located. Bottom right: all points inside the triangular regions so formed are
deleted, and at this point the algorithm proceeds recursively by locating the
points farthest from the edges of these triangle regions, and so on. 67

A triangle divides its supporting plane into seven Voronoi feature regions:
one face region (F), three edge regions (E;, Ep, E3), and three vertex regions
V1, Vo, V3). 69

The three types of Voronoi feature regions of a 3D cube. (a) An edge region.
(b) A vertex region. (c) A face region. 70

The Minkowski sum of a triangle A and a square B. 71

Because rectangle A and triangle B intersect, the origin must be contained in
their Minkowski difference. 72

The bounding volumes of A and B do not overlap, and thus A and B cannot be
intersecting. Intersection between C and D cannot be ruled out because their
bounding volumes overlap. 76

Types of bounding volumes: sphere, axis-aligned bounding box (AABB),
oriented bounding box (OBB), eight-direction discrete orientation polytope
(8-DOP), and convex hull. 77

The three common AABB representations: (a) min-max, (b) min-widths, and
(c) center-radius. 78

(a) AABBs A and B in world space. (b) The AABBs in the local space A. (c) The
AABBs in the local space of B. 81

AABB of the bounding sphere that fully contains object A under an arbitrary
orientation. 83

When computing a tight AABB, only the highlighted vertices that lie on the
convex hull of the object must be considered. 84

(a) The extreme vertex E in direction d. (b) After object rotates counterclock-
wise, the new extreme vertex E' in direction d can be obtained by hill climbing
along the vertex path highlighted in gray. 85

The same point cloud projected onto two different axes. In (a) the spread on
the axis is small. In (b) the spread is much larger. A bounding sphere can be
determined from the axis for which the projected point set has the maximum
spread. 92
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When the angle at A is obtuse, P may lie in the Voronoi region of edge CA
even though P lies outside AB and not in the vertexVoronoi regions of either
AorB. 138

The point Q on the tetrahedron ABCD closest to P 143

The vector v(s, t) connecting the two closest points of two lines, L;(s) and L,
(#), is always perpendicular to both lines. 146
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(a) Two convex objects, A and B, separated by a hyperplane P (one of many
possible hyperplanes). Stated equivalently, A and B are nonoverlapping in
their projection onto the separating axis L (which is perpendicular to P). (b) The
same convex objects in an intersecting situation and therefore not separable
by any hyperplane. 157

Two objects are separated if the sum of the radius (halfwidth) of their
projections is less than the distance between their center projections. 157
[lustrating the three sphere-plane tests. (a) Spheres intersecting the plane.
(b) Spheres fully behind the plane. (c) Spheres intersecting the negative
halfspace of the plane. Spheres testing true are shown in gray. 160

Testing intersection of an OBB against a plane. 163

Mlustrating the variables involved in the intersection test of a cone against a
plane or halfspace. 165

A sphere that does not lie fully outside any face plane of an AABB but
nevertheless does not intersect the AABB. 167

In the general case, two triangles intersect (a) when two edges of one triangle
pierce the interior of the other or (b) when one edge from each pierces the
interior of the other. 173

Intersecting the segment AB against a plane. 176

Different cases of ray-sphere intersection: (a) ray intersects sphere (twice) with
t >0, (b) false intersection with t < 0, (c) ray intersects sphere tangentially,
(d) ray starts inside sphere, and (e) no intersection. 178

Ray R; does not intersect the box because its intersections with the x slab
and the y slab do not overlap. Ray R, does intersect the box because the slab
intersections overlap. 180

Testing intersection between a segment and an AABB using a separating-axis
test. 182

Intersecting the line through P and Q against the triangle ABC. 185

The “edge planes” of triangle ABC perpendicular to the plane of ABC and
passing through ABC’s edges. 193

The line, ray, or segment specified by points A and B is intersected against the
cylinder given by points P and Q and the radius . 195

The intersection of a ray (or segment) against a convex polyhedron (defined
as the intersection of a set of halfspaces) is the logical intersection of the ray
clipped against all halfspaces. (Illustration after [Haines91b].) 200

A binary search over the vertices of the convex polygon allows the containment
test for P to be performed in O(logn) time (here using four sidedness tests, A
through D). 202

Shooting rays from four different query points. An odd number of boundary
crossings indicates that the query point is inside the polygon. 203

The intersection of two planes. 208
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The five essentially different intersection configurations of three
planes. 211

Dynamic collision tests. (a) Testing only at the start point and endpoint of
an object’s movement suffers from tunneling. (b) A swept test finds the exact
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tunneling in the region indicated by the black triangle. 215

A few steps of determining the collision of a moving sphere against a stationary
object using an interval-halving method. 216

Intersecting the moving sphere specified by center C, radius r, and movement
vector v against the plane n - X = d is equivalent to intersecting the segment
S(t) = C + tv against the plane displaced by r along n (here positive r, in that
C lies in front of the plane). 220

Recasting the moving sphere-sphere test as a ray intersection test. (a) The
original problem of intersecting a moving sphere against a moving sphere.
(b) Transforming problem into a moving sphere versus a stationary sphere.
(c) Reduced to a ray test against a stationary sphere of larger radius. 225

Mustrating Nettle’s method for intersecting a moving sphere against a
triangle. 226

A 2D illustration of how the test of a moving sphere against an AABB is
transformed into a test of a line segment against the volume resulting after
sweeping the AABB with the sphere (forming the Minkowski sum of the
sphere and the AABB). 228

[Mustrating the distances the projection of box B travels to reach first and
last contact with the projection of the stationary box A when B is moving
toward A. 231

A bounding volume hierarchy of five simple objects. Here the bounding
volumes used are AABBs. 236

A small tree of four objects built using (a) top-down, (b) bottom-up and (c)
insertion construction. 239

(a) Splitting at the object median. (b) Splitting at the object mean. (c) Splitting
at the spatial median. 245

(a) Breadth-first search, (b) depth-first search, and (c) one possible best-first
search ordering. 254

Merging spheres Sg and S;. 268

A binary tree (top) stored using a pointerless array representation (bottom).
Children of node at array position i can be found at positions 2i 4+ 1 and
2i + 2. Note wasted memory (shown in gray). 271
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Same tree as in Figure 6.6 but with nodes output in preorder traversal order.
Nodes now need a pointer to the right child (shown as an arrow). They also
need a bit to indicate if the node has a left child (which when present always
immediately follows the parent node). Here, this bit is indicated by a gray
triangle. 272

(@) A four-level binary tree. (b) The corresponding two-level tri-node
tree. 274

(a) The hierarchy for one object. (b) The hierarchy for another object. (c) The
collision tree formed by an alternating traversal. The shaded area indicates a
front in which the objects are (hypothetically) found noncolliding. 283

Issues related to cell size. (a) A grid that is too fine. (b) A grid that is too coarse
(with respect to object size). (c) A grid that is too coarse (with respect to object
complexity). (d) A grid that is both too fine and too coarse. 286

A (potentially infinite) 2D grid is mapped via a hash function into a small
number of hash buckets. 289

(a) A grid storing static data as lists. (b) The same grid with the static data
stored into an array. 291

A 4 x 5 grid implicitly defined as the intersection of 9 (4 + 5) linked lists. Five
objects have been inserted into the lists and their implied positions in the grid
are indicated. 292

A 4 x 5 grid implicitly defined as the intersection of 9 (4 + 5) bit arrays. Five
objects have been inserted into the grid. The bit position numbers of the bits
set in a bit array indicate that the corresponding object is present in that row
or column of the grid. 292

Objects A and B are assigned to a cell based on the location of their top
left-hand corners. In this case, overlap may occur in a third cell. Thus, to
detect intersection between objects cells must be tested against their NE or
SW neighbor cells. 298

(a) In a regular grid, grid cell A has eight neighbors. (b) In a hexagonal-type
grid, grid cell B has just six neighbors. 300

A small 1D hierarchical grid. Six objects, A through F, have each been inserted
in the cell containing the object center point, on the appropriate grid level.
The shaded cells are those that must be tested when performing a collision
check for object C. 301

In Mirtich’s (first) scheme, objects are inserted in all cells overlapped at the
insertion level. As in Figure 7.8, the shaded cells indicate which cells must be
tested when performing a collision check for object C. 306

Numbering of the eight child nodes of the root of an octree. 308
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A quadtree node with the first level of subdivision shown in black dotted lines,
and the following level of subdivision in gray dashed lines. Dark gray objects
overlap the first-level dividing planes and become stuck at the current level.
Medium gray objects propagate one level down before becoming stuck. Here,
only the white objects descend two levels. 310

The cells of a 4 x 4 grid given in Morton order. 314

(a) The cross section of a regular octree, shown as a quadtree. (b) Expanding
the nodes of the octree, here by half the node width in all directions, turns
the tree into a loose octree. (The loose nodes are offset and shown in different
shades of gray to better show their boundaries. The original octree nodes are
shown as dashed lines.) 318

A 2D k-d tree. (a) The spatial decomposition. (b) The k-d tree layout. 320

(a) A grid of trees, each grid cell containing a separate tree. (b) A grid indexing
into a single tree hierarchy, each grid cell pointing into the tree at which point
traversal should start. 322

Cell connectivity for a 2D line. (a) An 8-connected line. (b) A 4-connected
line. In 3D, the corresponding lines would be 26-connected and 6-connected,
respectively. 324

Mustrating the values of tx, ty, Atx, and Aty. (a) Atxis the distance between two
vertical boundaries. (b) Aty is the distance between two horizontal bound-
aries. (c) For cell (i, j), the distance tx to the next horizontal boundary is less
than the distance ty to the next horizontal boundary, and thus the next cell to
visitis (i +1,7). 325

Computing the initial value of tx (done analogously for ty) (a) for a ray directed
to the left and (b) for a ray directed to the right. 326

Projected AABB intervals on the x axis. 329

Objects clustered on the y axis (caused, for example, by falling objects settling
on the ground). Even small object movements can now cause large positional
changes in the list for the clustered axis. 330

A simple portalized world with five cells (numbered) and five portals (dashed).
The shaded region indicates what can be seen from a given viewpoint. Thus,
here only cells 2, 3, and 5 must be rendered. 339

There are no objects in the cells overlapped by A, and thus object A does not
need to test against any objects. Objects B and C must be tested against each
other, as C crosses the portal between cells 3 and 5 and thus lies partly in the
same cell as B. 340

Using time stamping avoids having to intersect the ray against object A twice,
in both cells 1 and 2, as the ray is traced through the uniform grid. By storing
the computed intersection with object B into a mailbox, the intersection can
be reused in cell 3 without having to be recomputed. 343
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The successive division of a square into four convex subspaces and the corre-
sponding BSP tree. (a) The initial split. (b) The first second-level split. (c) The
second second-level split. 350

The recursive division of space in half can be used as (a) a spatial partitioning
over a number of objects. It can also be used as (b) a volume or boundary
representation of an object. 351

(a) The original 12-polygon input geometry. (b) The initial dividing plane is
selected to pass through face A (and face G). (c) For the next ply of the tree
dividing planes are selected to pass through faces Band H. 353

First steps of the construction of a leaf-storing BSP tree, using the same
geometry as before. 354

A solid figure cut by a number of dividing planes and the resulting solid-leaf
BSP tree. 355

(a) A configuration of 12 faces wherein all possible autopartitioned dividing
planes end up splitting four faces. (b) Using arbitrary splits can allow the
configuration to be partitioned in such a way that the problem disappears or
is reduced. 359

(a) An autopartitioned BSP tree for a polygonal sphere has worst-case O(n)
height. (b) Allowing arbitrary cuts across the sphere, tree height is reduced
to O(log n). (c) Naylor’s hybrid approach of alternating autopartitioning
and general cuts also allows a boundary representation of the sphere to have
O(log n) height, additionally providing early outs. 359

Part of a city grid split to minimize straddling polygons (A), balance the number
of polygons on either side of the dividing plane (B), and compromise between
minimizing straddling and balancing of polygons (C). 361

(a) A balancing split. (b) A split to minimize expected query cost. 363

Triangle ABC lies behind the plane and triangle DEF lies in front of the plane.
Triangle GHI straddles the plane and triangle JKL lies on the plane. 365

If T is not split by first dividing plane, T straddles the second dividing plane
and a copy ends up in the leaf for C, which otherwise would have remained
empty. 367

Clipping the polygon ABDE illustrates the four cases of the Sutherland-
Hodgman polygon-clipping algorithm. The points of the output polygon
BCFA are shown in gray in the cases in which they are output. 368

A potential problem with the modified clipping algorithm is that the resulting
pieces (shown in dark gray) may overlap. 369

Two different polygons clipped to a thickened plane using the modified robust
clipping algorithm. Resulting polygon pieces are shown in dark gray (slightly
inset). 371
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(a) Original geometry of two triangles intersecting a plane. (b) Inconsistent
handling of the shared edge results in two different intersection points, which
introduces cracking. (c) The correct result when the shared edge is handled
consistently. 372

The four cases encountered when intersecting the active section of the ray
against a plane (the plane shown in gray). 378

(a) An AABB query against the original intersection volume. (b) To allow
the AABB query to be replaced by a point query, the planes of the halfspace
intersection volume are offset outward by the radius of the AABB (as projected
onto their plane normals) to form an expanded volume. However, this alone
does not form the proper Minkowski sum, as the offset shape extends too far
at the corners, causing false collisions in these regions. 380

(a) To form the Minkowski sum of the intersection volume and the AABB,
additional beveling planes must be added to the BSP tree. (b) The planes after
offsetting correspond to the shape formed by sweeping the AABB around the
boundary of the intersection volume. 380

(a) The unbeveled tree for a triangle. (b) Beveling planes inserted between the
solid leaf and its parent node. 381

(a) For two convex objects a local minimum distance between two points is
always a global minimum. (b) For two concave objects the local minimum
distance between two points (in gray) is not necessarily a global minimum (in
black). 384

Two nonintersecting 2D polyhedra A and B. Indicated is the vertex-face feature
pair Vand F, constituting the closest pair of features and containing the closest
pair of points, P4 and Pp, between the objects. 386

Feature pair transition chart in which solid arrows indicate strict decrease of
interfeature distance and dashed arrows indicate no change. 387

Two objects in a configuration for which theV-Clip algorithm becomes trapped
in a local minimum (after [Mirtich98]). 388

The Dobkin—Kirkpatrick hierarchy of the convex polygon P = Py. 390

The supporting plane H, for (a) P, and (b) P;, through the point on the
polyhedron closest to a query point S. 390

The two triangles A = (1, 0), (5, —1), (4, 3) and B = (0, 0), (4, 1), (1, 4) defined
as the intersection of three halfspaces each. 393

(@) v;_1. is contained in H;, and thus v; = v;_1. (b) v;_1. violates H;, and
thus v; must lie somewhere on the bounding hyperplane of H;, specifically as
indicated. 397

At top left, the six halfspaces from Figure 9.7. Remaining illustrations show
Seidel’s algorithm applied to these six halfspaces. The feasible region is shown
in light gray and the current halfspace is shown in thick black. Arrows indicate
the 1D constraints in the recursive call. 398
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The distance between A and B is equivalent to the distance between their
Minkowski difference and the origin. 400

GJK finding the point on a polygon closest to the origin. 402

(a) Hill climbing from V to the most extreme vertex E (in direction d) using
adjacent vertices only. (b) Accelerated hill climbing using additional (artificial
adjacency) information. 406

(a) The vertex A is in a local minimum because hill climbing to either of its
neighbors B and C does not move closer to the extreme vertex E. (b) Adding
an artificial neighbor (here, D) not coplanar with the other neighbors avoids
becoming stuck in the local minimum. 407

For a convex polyhedron under a translational movement t, the convex hull
of the vertices V; at the start and the vertices V; + t at the end of motion
correspond to the swept hull for the polyhedron. 409

(@) When d - t < 0, the supporting vertex is found among the original ver-
tices V; and the vertices V; 4+ t do not have to be tested. (b) Similarly, when
d - t > 0 only the vertices V; + t have to be considered. 409

(a) The firstiteration of the CW algorithm for polygons Pand Q. (b) A separating
vector is found in the second iteration. 411

The presence of one or more white pixels on an otherwise black background
remains detectable after (at most) four bilinear downsampling passes of an
image. Numbers designate the RGB value of the nonblack pixel. Black pixels
have RGB value of (0,0,0). 415

The nine cases in which a ray may intersect two convex objects, A
and B. 417

Occlusion queries can be used to determine if (convex) objects A and B are
intersecting. 418

Drawing the edges of B and then testing these against the faces of A using the
described algorithm corresponds to performing a point-in-polyhedron query
for all pixels rasterized by the edges of B, testing if any ray from a pixel toward
the viewer intersects object A an odd number of times. 420

Two AABBs in a configuration in which the algorithm fails to detect
intersection, assuming orthographic projection. (a) Side view. (b) Front
view. 423

Objects, shown in gray, are those considered fully visible in (a) the first and
(b) the second pass. (c) Objects B, G, and H are fully visible in both passes and
can be pruned from the PCS. 425

Fixed-point numbers are equally spaced on the number line. 430
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Floating-point numbers are not evenly spaced on the number line. They are
denser around zero (except for a normalization gap immediately surrounding
zero) and become more and more sparse the farther from zero they are. The
spacing between successive representable numbers doubles for each increase
in the exponent. 431

The IEEE-754 single-precision (top) and double-precision (bottom) floating-
point formats. 432

Denormalized (or subnormal) floating-point numbers fill in the gap immedi-
ately surrounding zero. 434

The intersection point P between two segments AB and CD is rarely exactly
representable using floating-point numbers. It is approximated by snapping
to a nearby machine-representable point Q. 444

(a) After accounting for errors and rounding to machine-representable num-
bers, the computed intersection point of the segment AB and the plane P is
unlikely to lie on either line or plane. Instead, the point could lie in, say, any
of the indicated positions. (b) By treating the plane as having a thickness,
defined by a radius r, the point is guaranteed to be on the plane as long as r
> e, where e is the maximum distance by which the intersection point can be
shown to deviate from P. 445

(a) Let AB be a segment nearly perpendicular to a plane P. When ABis displaced
by a small distance d, the error distance e between the two intersection points
is small. (b) As the segment becomes more parallel to the plane, the error
distance e grows larger for the same displacement d. 445

The line L is intersected against triangles ABC and ADB. Because L is passing
through the edge AB common to both triangles, the intersection test is sus-
ceptible to inaccuracies due to floating-point errors. A poorly implemented
test may fail to detect intersection with both triangles. 446

Floating-point inaccuracies may have (a) the intersection point Py, between
L and plane 1, lie outside triangle ABC and (b) the intersection point P,
between L and m, lie outside triangle ADB. Thus, any test based on first
computing the intersection point with the plane of a triangle and then testing
the point for containment in the triangle is inherently nonrobust. 447

(a) Asseenin Section 11.3.3, floating-point errors can have line L pass between
triangles ABC and ADB without intersecting either. (b) By testing using fat
objects, such as a capsule, even outright gaps in the geometry can be accom-
modated as long as the radius r of the fat object is greater than e/2, where e is
the width of the widest gap. 449

(a) Reducing the amount of precision needed for a point-in-triangle begins
with testing the point P against the AABB of triangle T. (b) If P passes the test,
P and T are tested for intersection in a new coordinate system centered on the
AABBofT. 456

Intersecting segment AB against planes Py and P, (scale exaggerated). 462
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The key steps in turning a polygon soup into a well-formed robust mesh: vertex
welding, t-junction removal, merging of co-planar faces, and decomposition
into convex pieces. 467

The welding tolerance must be set appropriately. (a) Too small, and some
vertices that should be included in the welding operation could be missed. (b)
Too large, and vertices that should not be part of the welding operation could
be erroneously included. Arrows indicate vertices incorrectly handled during
the respective welding operations. 468

Different outcomes from alternative methods for welding a set of points
mutually within the welding tolerance distance. 468

Only the grid cells intersected by the tolerance neighborhood of a vertex
(here shown in gray) must be tested against during vertex welding. For ver-
tex A this results in just one cell tested. For vertex B, two cells must be
examined. 470

The face and vertex tables for a simple mesh. 474

Adjacency information associated with each vertex, edge, and face facilitates
instantaneous access to their adjacent vertices, edges, and faces. 475

Data associated with (a) the winged-edge E, (b) the half-edge H, and (c) the
winged-triangle T. 476

(a) A mesh with an intentional hole. (b) A mesh with an unintentional hole
— a crack (exaggerated). 484

(@) A (nonhole) crack. (b) A gap. (c) A t-junction (and its corresponding t-
vertex). 485

12.10 Three alternative methods for resolving a t-junction. (a) Collapsing the t-vertex
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with a neighboring vertex on the opposing edge. (b) Cracking the opposing
edge in two, connecting the two new edge endpoints to the t-vertex. (c) Snap-
ping the vertex onto the opposing edge and inserting it, by edge cracking, into
the edge. 486

(a) A face meeting another face edge-on, forming a gap. (b) The gap resolved
by face cracking. 487

If two (or more) faces are only considered for merging when the resulting face
is convex, no merging can be done for this spiral-like mesh. If concave faces are
allowed during merging, this mesh can be merged into a single (quadrilateral)
face. 488

(a) The normal n hits cell ¢ (dashed) on the top face of the cube inscribed
in the unit sphere. (b) The perturbed normal n + e hits cells ¢; and c,. The
contents of these cells must be tested for co-planarity with the polygon having
the normal n. 489
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Testing the angle between the normals of the planes of two polygons is
a relative measurement of their co-planarity, unaffected by scaling up the
polygons. Testing the thickness required for the best-fit plane to contain
all polygon vertices is an absolute measurement of the co-planarity of the
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Preface

Together with a friend, I wrote my first computer game as a preteen, in 1978—the
same year as Space Invaders was released. Written in BASIC, our game was a quiz
game where you were asked questions about African animals. Compared to Space
Invaders, our text-based game was primitive and not very exciting. Still, we were
hooked, and it was not long until we were writing copies on our home computers,
not only of Space Invaders but also of many other arcade games of that period, not to
mention creating an endless number of original games of our own design. My then-
hobby of writing games has today become my day job and games have evolved into a
multi-billion dollar industry, which—for better or worse—virtually single-handedly
drives the development of graphics hardware and fuels the need for increasingly more
powerful CPUs.

Back then, one of the main challenges to writing an action game was dealing with
collision detection: the problem of determining if an object had intersected another
object or overlapped relevant background scenery. Since games were (primarily) 2D,
collision detection involved determining overlap in screen space in efficient ways.
Interestingly, even though computers today are over 1000 times faster, collision detec-
tion remains a key challenge. Today, game worlds are predominantly in 3D. They are
of incredible complexity, containing tens if not hundreds of millions of polygons. Col-
lision detection solutions now require sophisticated data structures and algorithms
to deal with such large data sets, all of this taking place in real-time. Of course, games
are not the only applications having to solve complex collision detection problems in
real-time; other applications, such as CAD/CAM systems and 3D modeling programs
must also address these problems.

The goal of this book is to provide efficient solutions for games and all other real-
time applications to address their collision detection problems. To make this possible,
this book provides an extensive coverage of the data structures and algorithms related
to collision detection systems. Implementing collision detection systems also requires
a good understanding of various mathematical concepts, which this book also focuses
on. Special care has been taken to discuss only practical solutions, and code and
pseudocode is provided to aid the implementation of the methods discussed in the
book.

Overall, collision detection is a very large topic. Every chapter in this book could
easily form the basis of a book each. As such, the coverage has been restricted to the
most important areas and that provide a solid foundation for further exploration into
this rich field.

XXXVii
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Chapter 1

Introduction

This book is concerned with the subject of collision detection, a broad topic dealing
with a seemingly simple problem: detecting if two (or more) objects are intersect-
ing. More specifically, collision detection concerns the problems of determining if,
when, and where two objects come into contact. “If” involves establishing a Boolean
result, answering the question whether or not the objects intersect. “When” must
additionally determine at what time during a movement collision occurred. “Where”
establishes how the objects are coming into contact. Roughly, these three types of
queries become increasingly more complex to answer in the order given.

Gathering information about when and where (in addition to the Boolean collision
detection result) is sometimes labeled collision determination. The terms intersection
detection and interference detection are sometimes used synonymously with collision
detection.

Collision detection is fundamental to many varied applications, including com-
puter games, physically based simulations (such as computer animation), robotics,
virtual prototyping, and engineering simulations (to name a few).

In computer games, collision detection ensures that the illusion of a solid world is
maintained. It keeps player characters from walking through walls or falling through
floors; it provides for line-of-sight queries, telling enemies if they can see the player
and therefore can attack; and it keeps a skateboarder attached to an invisible guide
surface, ensuring that the player safely makes it back down into a halfpipe after having
gone airborne up it.

In computer animation, collision detection is used, for example, to constrain the
physical simulation of cloth, ensuring clothing behaves in a lifelike manner and
does not slide off a character as the character moves. Collision detection is used
for path planning in robotics applications, helping robots steer away from obstacles.
In virtual prototyping, collision detection assists in computing clearances, and overall
allows prototypes to be refined without the production of physical models. Collision
detection is used in crash tests and other engineering simulations.
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Some applications, such as path planning and animation rendering, do not
require real-time performance of their collision systems. Others applications, com-
puter games in particular, have extraordinary demands on the real-time efficiency
of collision detection systems. Computer- and console-based action games involve
simulations requiring that a large number of queries be performed at frame rates of
about 30 to 60 frames per second (fps). With such tight time constraints and with
collision detection an integral part of game and physics engines, collision detection
can account for a large percentage of the time it takes to complete a game frame.
In computer games, a poorly designed collision system can easily become a key
bottleneck.

This book is not just on collision detection in general, but specifically on the effi-
cient implementation of data structures and algorithms to solve collision detection
problems in real-time applications. While the games domain is often used for exam-
ples, several nongame applications have performance requirements similar to (or
even greater than) those of games, including haptic (force feedback) systems, particle
simulations, surgical simulators, and other virtual reality simulations. The methods
described here apply equally well to these applications.

Many of the methods discussed herein are applicable to areas other than collision
detection. For instance, the methods discussed in Chapters 6 through 8 can be used to
accelerate ray tracing and ray casting (for, say, computing scene lighting), and in regard
to geographic information systems (GIS) to answer queries on large geographical
databases. Some problems from the field of computer graphics can be solved as
collision detection problems. For example, view frustum culling can be addressed
using the methods described in Chapters 6 and 7.

Content Overview

The following sections provide a brief outline of the chapters of this book.

Chapter 2: Collision Detection Design Issues

This chapter talks about issues that must be considered when constructing a collision
detection system and what factors affect the design. Such factors include how objects
are represented, how many of them there are, how they move, and what types of
collision queries the user wants to pose. Chapter 2 also introduces terminology used
throughout the rest of the book.

Chapter 3: A Math and Geometry Primer

Any nontrivial collision detection system requires a large portion of geometry-
oriented mathematics to work out the if, when, and where of collision queries.
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Chapter 3 introduces the mathematical and geometrical concepts necessary to
understand the material explored in the remaining chapters.

Chapter 4: Bounding Volumes

To accelerate collision queries, simple geometrical objects such as spheres and boxes
are initially used to represent objects of more complex nature. Only if the “simple”
bounding volumes (which are large enough to encapsulate complex objects) collide
are tests performed on the complex geometry. Chapter 4 describes several bounding
volume types, how to perform intersection tests on them, and how to fit a bounding
volume to a complex object.

Chapter 5: Basic Primitive Tests

Having introduced some intersection tests in the previous chapter, Chapter 5
describes, in detail, a large number of tests for determining intersection status and
distance between pairs of objects of varying types, including lines, rays, segments,
planes, triangles, polygons, spheres, boxes, cylinders, and polyhedra. Both static and
moving objects are considered in these tests.

Chapter 6: Bounding Volume Hierarchies

For large objects and for collections of objects, performance benefits can be had by
constructing hierarchies of bounding volumes over the object(s). Such hierarchies
provide quick identification of objects or parts of an object that cannot possibly par-
ticipate in a collision, allowing queries to restrict testing to a small number of objects
or object parts. Chapter 6 talks about desired characteristics of bounding volume hier-
archies and ways in which to construct and perform queries over them. The chapter
also explores efficient ways of representing these hierarchies.

Chapter 7: Spatial Partitioning

When a large number of objects are considered for collision, the objects must be
partitioned into small disjoint subgroups to facilitate fast tests (by avoiding the worst-
case quadratic behavior of testing all objects against all other objects). The bounding
volume hierarchies discussed in Chapter 6 represent one way of performing such
partitioning. Chapter 7 examines other partitioning approaches, based on grids, trees,
and object sorting.



4 Chapter 1 Introduction

1.1.7

1.1.10

1.1.11

Chapter 8: BSP Tree Hierarchies

One of the most versatile tree structures for representing collision detection data is
the binary space partitioning (BSP) tree. BSP trees can be used to partition space
independently from the objects in the space. They can also be used to partition the
boundary of an object from the space it is in, thereby effectively forming a volume
representation of the object. Chapter 8 talks about robustly constructing BSP trees
and how to perform tests on the resulting trees.

Chapter 9: Convexity-based Methods

Chapter 9 looks at a number of more advanced methods for performing collision
queries on convex objects, exploiting the special properties of convex objects. Pre-
sented are hierarchical representations, the V-Clip closest feature algorithm, the
mathematical optimization methods of linear and quadratic programming, the effi-
cient Gilbert-Johnson—Keerthi algorithm, and a separating vector algorithm due to
Chung and Wang.

Chapter 10: GPU-assisted Collision Detection

PC commodity graphics cards have advanced to a point at which they incorporate
more computational power than the main PC CPU. This change has triggered an
interest in outsourcing computations to the graphics card. Chapter 10 takes a brief
look at how to perform collision detection tests using graphics hardware.

Chapter 11: Numerical Robustness

Even the smallest errors in a collision detection system can lead to catastrophic fail-
ures, such as objects failing to collide with world geometry and thus falling out of the
world. This chapter discusses the robustness problems associated with working with
floating-point arithmetic and suggests approaches to dealing with these problems.

Chapter 12: Geometrical Robustness

Whereas Chapter 11 looked at how to perform calculations robustly, Chapter 12
considers the problem of taking an arbitrary set of polygons and turning it into well-
formed geometry, suitable for input into a collision detection system. Presented are
methods for welding of vertices, removal of gaps and cracks, merging of coplanar
faces, and decomposition of objects into convex (or triangular) pieces.
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Chapter 13: Optimization

The last chapter of the book talks about how to take the efficient data structures
and algorithms presented throughout the book and make them even more efficient
by targeting and tuning them for a particular hardware platform. Large performance
gains can be had by optimizing code to take advantage of memory hierarchies (caches)
and of code and data parallelism. Chapter 13 presents detailed descriptions on how
to perform such optimizations.

About the Code

As part of the hands-on nature of this book, many of the presented ideas are sup-
plemented by code examples. Whereas many books rely exclusively on high-level
pseudocode to convey the broad ideas of an algorithm, here the majority of the code
is given in C++. There are two reasons for presenting code in this detail. First, it
provides the minutiae often vital to the understanding (and implementation) of an
algorithm. Second, understanding can now additionally be had from running the
code and inspecting variable values during execution. The latter is particularly impor-
tant for a reader who may not be fully versed in the mathematics required for a
particular algorithm implementation. Only in a few places in the book is the given
code expressed in pseudocode, primarily where it would not be practical to provide
a full implementation.

Although C++ is used for the code in the book, it should be stressed that the
focus of the book is not on C++. C++ is only used as a means to present detailed
executable descriptions of the described concepts. Any computer language would
serve this purpose, but C++ was chosen for a few reasons, including its popularity
and its ability to abstract, in a succinct way, the low-level manipulation of geometrical
entities such as points and vectors using classes and (overloaded) infix operators. To
make the presented code accessible to as many programmers as possible (for example,
those only familiar with C or Java), certain features of C++ such as templates and STL
(Standard Template Library) were deliberately avoided where possible. C++ purists
may want to take a few deep breaths at the start of each chapter!

Similarly, this is not a book on software engineering. To get the basic ideas to come
across as best as possible, the code is kept short and to the point. Concessions were
made so as not to clutter up the text with verbose C++ syntax. For example, class
definitions are deliberately minimalistic (or nonexistent), global variables sometimes
substitute for proper member variables, pointers are not declared const (or restrict),
and arrays are often declared of fixed size instead of being dynamically allocated of
an appropriate size. Variable names have also been limited in length to make code
lines better fit on a typeset page.

To turn the presented code into real production code, some additions may be
necessary. For example, tests for division by zero are not always performed to avoid
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going into details that would hamper the understanding of the overall approach.
Similarly, some code tests may require tolerance values to be added for full robustness.
The intent is for the discussion of robustness in Chapter 11 to make it clear what
changes (if any) are necessary to turn the presented code into robust production code.

To help make it clear which function arguments are inputs and which are outputs,
input variables are often passed by value and output variables are passed by reference.
In some cases, it would be more efficient to pass input variables by reference. This is
left as an exercise for the reader.

Comments are set in cursive, whereas the code is set in boldface. Names of func-
tions, classes, structs, and user-defined types begin with an uppercase letter. Variables
begin with a lowercase letter. Where possible, variable names have been chosen to
follow the notation used in the accompanying text. In some cases, these rules conflict.
For example, points are denoted using uppercase characters in the text, whereas in
the code they are lowercase.

The code presented in the book is available on the companion CD-ROM. However,
the reader may want to visit the book’s companion web site for the latest version
of the code, incorporating corrections, changes, and additions.



Chapter

2.1

Collision Detection
Design Issues

Designing an efficient collision detection system is a bit like putting a puzzle together:
a lot of pieces must be connected before the big picture starts to appear. In a similar
fashion, the majority of this book is concerned with examining the individual pieces
that go into different approaches to collision detection. The big picture will become
clear over the course of the book. This chapter provides a quick overview of a number
of issues that must be considered in selecting among approaches, and how the com-
ponents of these approaches relate. This chapter also introduces a number of terms,
defined and explained further in following chapters. More in-depth coverage of the
items touched upon here is provided throughout remaining chapters of the book.

Collision Algorithm Design Factors

There are several factors affecting the choices made in designing a collision detection
system. These factors will be broken down into the following categories:

1. Application domain representation. The geometrical representations used for the
scene and its objects have a direct bearing on the algorithms used. With
fewer restrictions put on these representations, more general collision detection
solutions have to be used, with possible performance repercussions.

2. Different types of queries. Generally, the more detailed query types and results are,
the more computational effort required to obtain them. Additional data struc-
tures may be required to support certain queries. Not all object representations
support all query types.

3. Environment simulation parameters. The simulation itself contains several param-
eters having a direct impact on a collision detection system. These include how

7
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2.2

2.2.1

many objects there are, their relative sizes and positions, if and how they move, if
they are allowed to interpenetrate, and whether they are rigid or flexible.

4. Performance. Real-time collision detection systems operate under strict time and
size restrictions. With time and space always being a trade-off, several features are
usually balanced to meet stated performance requirements.

5. Robustness. Not all applications require the same level of physical simulation. For
example, stacking of bricks on top of each other requires much more sophistication
from a collision detection system than does having a basketball bouncing on a
basketball court. The ball bouncing slightly too early or at a somewhat larger
angle will go unnoticed, but even the slightest errors in computing contact points
of stacked bricks is likely to result in their slowly starting to interpenetrate or slide
off each other.

6. Ease of implementation and use. Most projects are on a time frame. Scheduling
features of a collision detection system means nothing if the system cannot
be completed and put in use on time. Decisions regarding implementational
simplicity therefore play a large role in what approach is taken.

These issues are covered in further detail in the remainder of the chapter.

Application Domain Representation

To select appropriate collision detection algorithms, it is important to consider the
types of geometrical representations that will be used for the scene and its objects. This
section talks briefly about various object representations, how simplified geometry
can be used instead of modeling geometry, and how application-specific knowledge
can allow specialized solutions to be used over more generic solutions.

Object Representations

Most current hardware uses triangles as the fundamental rendering primitive.
Consequently, a polygonal representation is a natural choice for scenes and scene
objects, as well as for their corresponding collision geometry. The most generic polyg-
onal representation is the polygon soup: an unordered collection of polygons with no
connectivity information specifying how one polygon relates to another. With no
inherent constraints, the polygon soup is an attractive representation for artists and
level designers. Algorithms operating on polygon soups apply to any collection of
polygons but tend to be less efficient and less robust than those relying on additional
information. For example, a polygon soup contains no information regarding the
“inside” of an object, so there is no easy way of finding out if an object has somehow
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Figure 2.1 Geometrical models, like the one pictured, are commonly built from a collection
of polygon meshes.

erroneously ended up inside another object. The additional information mentioned
could include which edges connect to what vertices and what faces connect to a
given face, whether the object forms a closed solid, and whether the object is convex
or concave.

Polygons may be connected to one another at their edges to form a larger polygonal
surface called a polygon mesh. Building objects from a collection of polygon meshes is
one of the most common methods for authoring geometrical models (Figure 2.1).

Polygonal objects are defined in terms of their vertices, edges, and faces. When
constructed in this way, objects are said to have an explicit representation. Implicit
objects refer to spheres, cones, cylinders, ellipsoids, tori, and other geometric prim-
itives that are not explicitly defined in such a manner but implicitly through a
mathematical expression. Implicit objects are often described as a function mapping
from 3D space to real numbers, f : R® — R, where the points given by f(x, y,z) < 0
constitute the interior, f (x, y, z) = 0 the boundary, and f (x, y, z) > 0 the exterior of the
object (Figure 2.2). An object boundary defined by an implicit function is called an
implicit surface. Implicit objects can be used as rough approximations of scene objects
for quick rejection culling. The implicit form may allow for fast intersection tests,
especially with lines and rays — a fact utilized in ray tracing applications. Several
examples of implicit tests are provided in Chapter 5.

Convex polygonal objects can also be described as the intersection of a number
of halfspaces. For example, a cube can be expressed as the intersection of six half-
spaces, each halfspace“trimming away”the portion of space that lies outside a face of
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Figure 2.2 An implicitly defined sphere (where the sphere is defined as the boundary plus
the interior).

(a)

Figure 2.3 (a) A cube with a cylindrical hole through it. (b) The CSG construction tree for
the left-hand object, where a cylinder is subtracted from the cube.

the cube. Halfspaces and halfspace intersection volumes are described in more detail
in Chapter 3.

Geometric primitives such as spheres, boxes, and cylinders are also the building
blocks of objects constructed via the constructive solid geometry (CSG) framework.
CSG objects are recursively formed through applying set-theoretic operations (such
as union, intersection, or difference) on basic geometric shapes or other CSG objects,
allowing arbitrarily complex objects to be constructed. Thus, a CSG object is repre-
sented as a (binary) tree, with set-theoretic operations given in the internal nodes
and geometry primitives in the leaves (Figure 2.3). CSG objects are implicit in that
vertices, edges, and faces are not directly available.

A strength of CSG modeling is that the resulting objects are always valid — without
cracks and other problems that plague polygonal representations. CSG is also a
volume representation, making it easy to determine if, for example, a query point lies
inside the CSG object. CSG on polyhedral objects can be implemented through the
processes described in, for example, [Laidlaw86] and [Thibault87]. However, it can
be difficult to achieve robust implementations due to numerical imprecision in the
calculations involved.
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2.2.2 Collision Versus Rendering Geometry

Although it is possible to pass rendering geometry directly into a collision system,
there are several reasons it is better to have separate geometry with which collision
detection is performed.

1. Graphics platforms have advanced to the point where rendering geometry is
becoming too complex to be used to perform collision detection or physics. In
addition, thereis a usually a limit as to how accurate collisions must be. Thus, rather
than using the same geometry used for rendering, a simplified proxy geometry can
be substituted in its place for collision detection. For games, for example, it is com-
mon to rely on simple geometric shapes such as spheres and boxes to represent the
game object, regardless of object complexity. If the proxy objects collide, the actual
objects are assumed to collide as well. These simple geometric shapes, or bound-
ing volumes, are frequently used to accelerate collision queries regardless of what
geometry representation is used. Bounding volumes are typically made to encap-
sulate the geometry fully. Bounding volumes are discussed in detail in Chapter 4.

2. For modern hardware, geometry tends to be given in very specific formats (such as
triangle strips and indexed vertex buffers), which lend themselves to fast rendering
but not to collision detection. Rather than decoding these structures on the fly
(even though the decoded data can be cached for reuse), it is usually more efficient
to provide special collision geometry. In addition, graphics hardware often enforces
triangle-only formats. For collision geometry, efficiency sometimes can be had by
supporting other, nontriangle, primitives.

3. The required data and data organization of rendering geometry and collision
geometry are likely to vary drastically. Whereas static rendering data might be
sorted by material, collision data are generally organized spatially. Rendering
geometry requires embedded data such as material information, vertex colors,
and texture coordinates, whereas collision geometry needs associated surface
properties. Separating the two and keeping all collision-relevant information
together makes the collision data smaller. Smaller data, in turn, leads to efficiency
improvements due to better data cache coherency.

4. Sometimes the collision geometry differs from the rendered geometry by design.
For example, the knee-deep powder snow in a snowboarding game can be mod-
eled by a collision surface two feet below the rendered representation of the snow
surface. Walking in ankle-deep swaying grass or wading in waist-deep murky
water can be handled similarly. Even if rendering geometry is used as collision
geometry, there must be provisions for excluding some rendering geometry from
(and for including additional nonrendering geometry in) the collision geometry
data set.

5. For simulation purposes, collision data must be kept around even when rendering
data can be thrown out as not visible. With the collision geometry being smaller
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than the corresponding rendering geometry, the permanent memory footprint is
therefore reduced.

6. The original geometry might be given as a polygon soup or mesh, whereas the
simulation requires a solid-object representation. In this case, it is much easier to
compute solid proxy geometry than to attempt to somehow solidify the original
geometrical representation.

However, there are some potential drawbacks to using separate collision geometry.

1. Data duplication (primarily of vertices) causes additional memory to be used. This
problem may be alleviated by creating some or all of the collision geometry from
the rendering geometry on the fly through linearization caching (as described in
Section 13.5 and onward).

2. Extra work may be required to produce and maintain two sets of similar geometry.
Building the proxy geometry by hand will impair the schedule of the designer
creating it. If it is built by a tool, that tool must be written before the collision
system becomes usable. In addition, if there is a need to manually modify the tool
output, the changes must somehow be communicated back into the tool and the
original data set.

3. If built and maintained separately, the rendering and collision geometries may
mismatch in places. When the collision geometry does not fill the same volume
as the render geometry, objects may partially disappear into or float above the
surface of other objects.

4. Versioning and other logistics problems can show up for the two geometries. Was
the collision geometry really rebuilt when the rendering geometry changed? If
created manually, which comes first: collision geometry or rendering geometry?
And how do you update one when the other changes?

For games, using proxy geometry that is close to (but may not exactly match)
actual visuals works quite well. Perceptually, humans are not very good at detecting
whether exact collisions are taking place. The more objects involved and the faster
they move, the less likely the player is to spot any discrepancies. Humans are also bad
at predicting what the outcome of a collision should be, which allows liberties to be
taken with the collision response as well. In games, collision detection and response
can effectively be governed by “if it looks right, it is right.” Other applications have
stricter accuracy requirements.

Collision Algorithm Specialization

Rather than having one all-encompassing collision detection system, it is often wise
to provide specialized collision systems for specific scenarios. An example of where



2.3

2.3 Types of Queries 13

specialization is relevant is particle collisions. Rather than sending particles one by
one through the normal collision system, they are better handled and submitted
for collision as groups of particles, where the groups may form and reform based
on context. Particles may even be excluded from collision, in cases where the lack of
collision is not noticeable.

Another example is the use of separate algorithms for detecting collision between
an object and other objects and between the object and the scene. Object-object
collisions might even be further specialized so that a player character and fast-moving
projectiles are handled differently from other objects. For example, a case where all
objects always collide against the player character is better handled as a hard-coded
test rather than inserting the player character into the general collision system.

Consider also the simulation of large worlds. For small worlds, collision data can
be held in memory at all times. For the large, seamless world, however, collision data
must be loaded and unloaded as the world is traversed. In the latter case, having
objects separate from the world structure is again an attractive choice, so the objects
are not affected by changes to the world structure. A possible drawback of having
separate structures for holding, say, objects and world, is that querying now entails
traversing two data structures as opposed to just one.

Types of Queries

The most straightforward collision query is the interference detection or intersection
testing problem: answering the Boolean question of whether two (static) objects, A
and B, are overlapping at their given positions and orientations. Boolean intersec-
tion queries are both fast and easy to implement and are therefore commonly used.
However, sometimes a Boolean result is not enough and the parts intersecting must
be found. The problem of intersection finding is a more difficult one, involving finding
one or more points of contact.

For some applications, finding any one point in common between the objects
might be sufficient. In others, such as in rigid-body simulations, the set of contact-
ing points (the contact manifold) may need to be determined. Robustly computing
the contact manifold is a difficult problem. Overall, approximate queries — where the
answers are only required to be accurate up to a given tolerance — are much easier to
deal with than exact queries. Approximate queries are commonplace in games. Addi-
tionally, in games, collision queries are generally required to report specific collision
properties assigned to the objects and their boundaries. For example, such properties
may include slipperiness of a road surface or climbability of a wall surface.

If objects penetrate, some applications require finding the penetration depth. The
penetration depth is usually defined in terms of the minimum translational distance: the
length of the shortest movement vector that would separate the objects. Computing
this movement vector is a difficult problem, in general. The separation distance between
two disjoint objects A and B is defined as the minimum of the distances between points
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in A and points in B. When the distance is zero, the objects are intersecting. Having
a distance measure between two objects is useful in that it allows for prediction of
the next time of collision. A more general problem is that of finding the closest points
of A and B: a point in A and a point in B giving the separation distance between
the objects. Note that the closest points are not necessarily unique; there may be
an infinite number of closest points. For dynamic objects, computing the next time
of collision is known as the estimated time of arrival (ETA) or time of impact (TOI)
computation. The ETA value can be used to, for instance, control the time step in a
rigid-body simulation. Type of motion is one of the simulation parameters discussed
further in the next section.

Environment Simulation Parameters

As mentioned earlier in the chapter, several parameters of a simulation directly affect
what are appropriate choices for a collision detection system. To illustrate some of the
issues they may cause, the following sections look specifically at how the number of
objects and how the objects move relate to collision processing.

Number of Objects

Because any one object can potentially collide with any other object, a simulation
with 7 objects requires (n — 1) + (n —2) +- - - +1 = n(n — 1)/2 = O(n?) pairwise tests,
worst case. Due to the quadratic time complexity, naively testing every object pair
for collision quickly becomes too expensive even for moderate values of n. Reducing
the cost associated with the pairwise test will only linearly affect runtime. To really
speed up the process, the number of pairs tested must be reduced. This reduction is
performed by separating the collision handling of multiple objects into two phases:
the broad phase and the narrow phase.

The broad phase identifies smaller groups of objects that may be colliding and
quickly excludes those that definitely are not. The narrow phase constitutes the pair-
wise tests within subgroups. It is responsible for determining the exact collisions, if
any. The broad and narrow phases are sometimes called n-body processing and pair
processing, respectively.

Figure 2.4 illustrates how broad-phase processing reduces the workload through a
divide-and-conquer strategy. For the 11 objects (illustrated by boxes), an all-pairs test
would require 55 individual pair tests. After broad-phase processing has produced 5
disjoint subgroups (indicated by the shaded areas), only 10 individual pair tests would
have to be performed in the narrow phase. Methods for broad-phase processing are
discussed in Chapters 6 through 8. Narrow-phase processing is covered in Chapters
4,5, and 9.

In addition to the number of objects, the relative size of the objects also affects how
many tests have to be performed. With both small and large objects present in a scene,
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Figure 2.4 The broad phase identifies disjoint groups of possibly intersecting objects.

the broad-phase system generally must work harder (or be more sophisticated) to
identify groups than it would for a set of homogeneously sized objects. How object
size affects broad-phase methods is discussed further in Chapter 7.

Sequential Versus Simultaneous Motion

In real life, objects are moving simultaneously during a given movement time step,
with any eventual collisions resolved within the time step. For an accurate computer
simulation of the real-life event, the earliest time of contact between any two of the
moving objects would somehow have to be determined. The simulation can then
be advanced to this point in time, moving all objects to the position they would
be in when the first collision occurs. The collision is then resolved, and the process
continues determining the next collision, repeating until the entire movement time
step has been used up.

Executing a simulation by repeatedly advancing it to the next earliest time of contact
becomes quite expensive. For example, as one or more objects come to rest against a
surface, the next time of collision follows almost immediately after the current time
of collision. The simulation is therefore only advanced by a small fraction, and it can
take virtually “forever” to resolve the full movement time step. One solution to this
problem is to use the broad phase to identify groups of objects that may interact
within the group, but not with objects of other groups during the time step. The
simulation of each group can therefore proceed at different rates, helping to alleviate
the problem in general.

An alternative option is to move objects simultaneously, but setting a fixed (small)
time step for the movement. Simultaneous movement can result in objects interpen-
etrating, which typically must be dealt with somehow, for example, by backing up the
simulation to an earlier state. In both cases, simultaneous updates remain expensive
and are therefore often reserved for accurate rigid-body simulations. However, many
games, as well as other applications, are not rigid-body simulations and it would be
overkill and wasted effort to try to simulate motion with high accuracy. For these,
an alternative option is to resolve motion sequentially. That is, objects are moved
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Figure 2.5 (a) Top: If both objects move simultaneously, there is no collision. Bottom: If the
circle object moves before the triangle, the objects collide. In (b), again there is no collision
for simultaneous movement, but for sequential movement the objects collide. (c) The objects
collide under simultaneous movement, but not under sequential movement.

one object at a time and any collisions are detected and resolved before the process
continues with the next object.

Clearly, sequential movement is not a physically accurate movement model. Some
objects may collide with objects that have not yet moved in this frame but that would
have moved out of the way were the two objects moving simultaneously (Figure 2.5a).
Other objects may collide with objects that moved before they did and are now in
their path (Figure 2.5b). In some cases, where two simultaneously moving objects
would have collided halfway through their motion, collisions will now be missed as
one object is moved past the other (Figure 2.5¢). For games, for example, the problems
introduced by a sequential movement model can often be ignored. The high frame
rate of games often makes the movement step so small that the overlap is also small
and not really noticeable.

One of the benefits of the sequential movement model is that an object nonpen-
etration invariant is very easy to uphold. If there is a collision during the movement
of an object, the movement can simply be undone (for example). Only having to
undo the movement of a single object should be contrasted with the simultaneous
movement model using a fixed time step, where the movement of all simultaneously
moved objects would have to be undone.

Discrete Versus Continuous Motion
Something that can greatly affect both the computational effort needed to deter-

mine a collision result and the accuracy of the result itself is if the two objects
involved in a pairwise test are moving at the time of testing. Static collision detection
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involves detecting intersection between the objects, at discrete points in time, dur-
ing their motion. At each such point in time the objects are treated as if they were
stationary at their current positions with zero velocities. In contrast, dynamic colli-
sion detection considers the full continuous motion of the objects over the given time
interval. Dynamic collision tests can usually report the exact time of collision and
the point(s) of first contact. Static tests are (much) cheaper than dynamic tests, but
the time steps between tests must be short so that the movement of the objects is
less than the spatial extents of the objects. Otherwise, the objects may simply pass
each other from one time step to the next without a collision being detected. This
phenomenon is referred to as tunneling.

The volume covered by an object in continuous motion over a given time interval is
called the swept volume. If the swept volumes of two moving objects do not intersect,
there is no intersection between the objects. Even if the swept volumes intersect,
the objects still may not intersect during movement. Thus, intersection of the swept
volumes is a sufficient, but not necessary, condition for object collision. For complex
motions, the swept volume is both difficult to compute and to work with. Fortunately,
perfect accuracy is rarely necessary. Dynamic collision testing of complex tumbling
motions can usually be simplified by assuming a piecewise linear motion; that is,
a linear translation over the range of movement, with an instantaneous rotation
at the end (or start) of the motion. Somewhere between these two alternatives is
replacement of the unrestricted motion with a screw motion (that is, a fixed rotational
and translational motion).

When working with moving objects it is virtually always preferable to consider
the relative motion of the objects by subtracting the motion of the one object off the
other object, thus effectively leaving one object static. Assuming linear translational
motion for the objects makes this operation a simple vector subtraction. A key benefit
of considering only the relative motion is that for testing one moving object against
a stationary object a swept volume test is now an exact intersection test. In games,
the entire swept volume is sometimes just replaced by a speedbox: an elongated box
covering the object for its full range of motion (or some similarly simple proxy object,
not necessarily a box).

Performance

Taking game consoles as an example, for the best possible visuals games must run
at 60 fps (in countries with NTSC TV format; 50 fps in PAL territory). This frame
rate leaves 16.7 ms to prepare each game frame. Depending on the type of game,
collision detection may account for, say, 10 to 30% of a frame, in turn leaving 2 to
5 ms for collision detection. For an action platform game that may have dozens of
collision-dependent objects active at a given time there may be only about 50 to
250 ps available to handle the collision for each object — not a lot of time. Clearly, it
is very important to reduce the average running time of collision queries. However,
as large sudden drops in frame rate are very noticeable in games (in a bad way) it is
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also important to make sure the worst case for the selected algorithms is not taking
a magnitude longer than the average case.

A number of things can be done to speed up collision processing, which in large
partis what this book is about. Some general ideas of what optimizations are relevant
for collision detection are discussed in the next section.

Optimization Overview

The first tenet of optimization is that nothing is faster than not having to perform a
task in the first place. Thus, some of the more successful speed optimizations revolve
around pruning the work as quickly as possible down to the minimum possible. As
such, one of the most important optimizations for a collision detection system is
the broad-phase processing mentioned in Section 2.4.1: the exploitation of objects’
spatial locality. Because objects can only hit things that are close to them, tests against
distant objects can be avoided by breaking things up spatially. Tests are then only made
against the regions immediately nearby the object, ignoring those that are too far away
to intersect the object. There are strong similarities between this spatial partitioning
and what is done for view frustum culling to limit the number of graphical objects
drawn.

Spatial partitioning can be performed using a flat structure, such as by dividing
space into a grid of cells of a uniform size. It also can be implemented in terms of a
hierarchy, where space is recursively divided in half until some termination goal is
met. Objects are then inserted into the grid or the hierarchy. Grids and hierarchical
partitioning are also useful for the pair tests of the narrow phase, especially when
the objects have high complexity. Rather than having to test an entire object against
another, they allow collision tests to be limited to the parts of two objects nearest
each other. Object and spatial partitioning are discussed in Chapters 6 and 7.

Doing inexpensive bounding volume tests before performing more expensive geo-
metric tests is also a good way of reducing the amount of work needed to determine
a collision. Say encompassing bounding spheres have been added to all objects, then
a simple sphere-sphere intersection test will now show — when the spheres do not
overlap — that no further testing of the complex contained geometry is necessary.
Bounding volumes are covered in Chapter 4.

The insight that objects tend to take small local steps from frame to frame — if
moving at all — leads to a third valuable optimization: to exploit this femporal (or
frame-to-frame) coherency. For example, only objects that have moved since the last
frame need to be tested; the collision status remains the same for the other objects.
Temporal coherency may also allow data and calculations to be cached and reused over
one or more future frames, thus speeding up tests. Assumptions based on movement
coherency are obviously invalidated if objects are allowed to “teleport” to arbitrary
locations. Coherence is further discussed in Chapter 9.

Last, architecture-specific optimizations are also very important. Many platforms
support some type of code or data parallelism that when fully exploited can provide
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large speedups. Due to big differences between the speed at which CPUs operate
and the speeds at which main memory can provide data for it to operate on (with the
speed advantage for the CPU), how collision geometry and other data are stored in
memory can also have a huge speed impact on a collision system. These issues are
covered in detail in Chapter 13.

Robustness

Collision detection is one of a number of geometrical applications where robustness
is very important. In this book, robustness is used simply to refer to a program’s
capability of dealing with numerical computations and geometrical configurations
that in some way are difficult to handle. When faced with such problematic inputs,
a robust program provides the expected results. A nonrobust program may in the
same situations crash or get into infinite loops. Robustness problems can be broadly
categorized into two classes: those due to lack of numerical robustness and those due
to lack of geometrical robustness.

Numerical robustness problems arise from the use of variables of finite precision
during computations. For example, when intermediate calculations become larger
than can be represented by a floating-point or an integer variable the intermediate
result will be invalid. If such problems are not detected, the final result of the com-
putation is also likely to be incorrect. Robust implementations must guarantee such
problems cannot happen, or if they do that adjusted valid results are returned in their
stead.

Geometrical robustness entails ensuring topological correctness and overall geo-
metrical consistency. Problems often involve impossible or degenerate geometries,
which may be the result of a bad numerical calculation. Most algorithms, at some
level, expect well-formed inputs. When given bad input geometry, such as triangles
degenerating to a point or polygons whose vertices do not all lie in the plane, anything
could happen if these cases are not caught and dealt with.

The distinction between numerical and geometrical robustness is sometimes diffi-
cult to make, in that one can give rise to the other. To avoid obscure and difficult-to-fix
runtime errors, robustness should be considered throughout both design and devel-
opment of a collision detection system. Chapters 11 and 12 discuss robustness in
more depth.

Ease of Implementation and Use

In the case of a collision detection system implemented from scratch, the issue of
expected development time might be as important as the desired feature set. For
example, games are often on tight budgets and time frames, and the delay of any
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critical component could be costly. In evaluating the ease of implementation it is of
interest to look at not just the overall algorithm complexity but how many and what
type of special cases are involved, how many tweaking variables are involved (such as
numerical tolerances), and other limitations that might affect the development time.

Several additional issues relate to the use of the collision detection system. For
example, how general is the system? Can it handle objects of largely varying sizes?
Can it also answer range queries? How much time is required in the build process
to construct the collision-related data structures? For the latter question, while the
time spent in preprocessing is irrelevant for runtime performance it is still impor-
tant in the design and production phase. Model changes are frequent throughout
development, and long preprocessing times both lessen productivity and hinder
experimentation. Some of these problems can be alleviated by allowing for a faster,
less optimized data structure construction during development and a slower but more
optimal construction for non-debug builds.

Debugging a Collision Detection System

Just like all code, collision detection systems are susceptible to errors. Finding these
errors can sometimes be both difficult and time consuming. Steps can be taken during
development to make this debugging process less painful. Some good ideas include:

e Keep a cyclic buffer of the arguments to the n last collision queries, correspond-
ing to up to a few seconds’ worth of data (or more). Then, when something
goes visually wrong, the program can be paused and the data can be out-
put for further analysis, such as stepping through the calls with the saved
arguments. The logged data may also provide useful information when asserts
trigger.

e Provide means to visualize the collision geometry. For example, you might visu-
alize tested faces, their collision attributes, and any hierarchies and groupings
of the faces. Additionally, visualize the collision queries themselves, prefer-
ably with the history provided by the cyclic buffer mentioned earlier. This
visualization provides a context that makes it easy to spot bad collision queries.

e Implement a simple reference algorithm (such as a brute-force algorithm that
tests all objects or all polygons against each other) and run the reference algo-
rithm in parallel with the more sophisticated algorithm. If the results differ,
there is a problem (in all likelihood with the more advanced algorithm).

e Maintain a test suite of queries, and run the collision code against the test
suite when the code changes. Code of geometric nature tends to have many
special cases, and having a set of comprehensive tests helps in trapping prob-
lems early. Whenever a bug is found, add test cases to detect if it is ever
reintroduced.
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Of course, all general debugging strategies such as liberal use of assert() calls
apply as well. A good discussion of such strategies is found in [McConnell93,
Chapter 26].

Summary

This chapter has outlined the many factors that must be considered when designing
and implementing a collision detection system. It talked about possible collision
geometry representations, and whether to use rendering geometry or specialized
geometry to perform collision tests. Collision processing was defined as taking place
in two phases, the narrow and broad phase. The broad phase is concerned with
coarsely identifying small subgroups of potentially colliding objects, whereas the
narrow phase performs the detailed pairwise collision tests between objects. Narrow-
phase testing is the primary topic of Chapters 4 and 5, where many different query
types on a wide variety of geometrical object representations are discussed. Narrow-
phase testing is also discussed in Chapter 9. Broad-phase methods are discussed in
Chapters 6 through 8. The importance of robustness was stressed. This book devotes
two full chapters to the topic of robustness, Chapters 11 and 12. Because this book
is about collision detection for real-time applications, performance was also stressed
as an important system consideration. In some respect, the majority of the book
is about performance in that efficient algorithms and data structures are discussed
throughout. The book concludes with discussion of optimization, in Chapter 13.
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Chapter 3

3.1

A Math and Geometry
Primer

Collision detection is an area of a very geometric nature. For example, in a world sim-
ulation both world and objects of that world are represented as geometrical entities
such as polygons, spheres, and boxes. To implement efficient intersection tests for
these entities, a thorough grasp of vectors, matrices, and linear algebra in general is
required. Although this book assumes the reader already has some experience with
these topics, the coverage in this chapter is provided for convenience, serving as a
quick review of relevant concepts, definitions, and identities used throughout the
book. The presentation is intended as an informal review, rather than a thorough for-
mal treatment. Those readers interested in a more formal and encompassing coverage
of vector spaces, and linear algebra and geometry in general, may want to consult
texts such as [Hausner98] or [Anton00].

This chapter also presents some concepts from computational geometry (for exam-
ple, Voronoi regions and convex hulls) and from the theory of convex sets (separating
planes, support mappings, and Minkowski sums and differences). These concepts
are important to many of the algorithms presented in this book.

Matrices

A matrix A is an m x n rectangular array of numbers, with m rows and # columns:

aip  dip -t A
dp1 Q2 -+ g

A=| . . .| =lagl
Aml  Am2 s O

23
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The matrix entry a;; is located in the i-th row and j-th column of the array. An m x n
matrix is said to be of order m x n (“m by n”). If m = n, A is said to be a square matrix
(of order n). A matrix of a single row is called a row matrix. Similarly, a matrix of a
single column is called a column matrix:

A matrix is often viewed as consisting of a number of row or column matrices. Row
matrices and column matrices are also often referred to as row vectors and column vec-
tors, respectively. For a square matrix, entries for which i = j (that is, a11, az, . . ., aum)
are called the main diagonal entries of the matrix. If a;; = 0 for all i # j the matrix is

called diagonal:
a1 0 0
0 ano 0
A= )
0 0 SR -

A square diagonal matrix with entries of 1 on the main diagonal and 0 for all other
entries is called an identity matrix, denoted by I. A square matrix L with all entries
above the main diagonal equal to zero is called a lower triangular matrix. If instead
all entries below the main diagonal of a matrix U are equal to zero, the matrix is an
upper triangular matrix. For example:

1 0 0 2 0 O 1 5 4
I=(0 1 0, L=| 1 -2 0|, U=|(0 2 1}.
0 01 -5 0 -1 0 0 3

The transpose of a matrix A, written A7, is obtained by exchanging rows for columns,
and vice versa. That is, the transpose B of a matrix A is given by b;; = a;;:

5 2
A=|-3 -1, B=AT=B :i _2}.
0 —4
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A matrix is symmetric if AT = A; that is, if a; = aj; for all i and j. If AT = —A the
matrix is said to be skew symmetric (or antisymmetric).

Matrix Arithmetic

Given two m x n matrices A = [a;]] and B = [b;;], matrix addition (C = [c;] = A+ B)
is defined as the pairwise addition of elements from each matrix at corresponding

positions, ¢;j = a;; + bjj, or

aip  diz o Qi biu b - by
ay1 Ay -+ Oy b1 by - by
C=A+B=| . ) . |+

| Am1 Am2 - Omn byt b -+ bum
[apn+b11 anp+bi -+ ap+ b

an +ba  an+bn - ay+ by

= : : . : = lajj + byl.

_aml + bml A2 + me o O + bmn

Matrix subtraction is defined analogously. Multiplication of matrices comes in two
forms. If c is a scalar, then the scalar multiplication B = c A is given by [b;;] = [ca;].
For example:

2 0 11 [-8 o0 4
B=4A=4[ 5 -3 —1]2[20 12 -4

-2 0 1
], where A = |: i|

5 =3 -1

If A is an m x n matrix and B an n x p matrix, then matrix multiplication (C = AB)
is defined as:

n
Cij = Z ik bkj.
k=1

For example:

3 -1
3 0 -5 -1 7
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In terms of vectors (as defined in Section 3.3), ¢;; is the dot product of the i-th row
of A and the j-th column of B. Matrix multiplication is not commutative; that is, in
general, AB # BA. Division is not defined for matrices, but some square matrices A
have an inverse, denoted inv(A) or A=, with the property that AATT=ATTA=1L
Matrices that do not have an inverse are called singular (or noninvertible).

3.1.2 Algebraic Identities Involving Matrices

Given scalars r and s and matrices A, B, and C (of the appropriate sizes required
to perform the operations), the following identities hold for matrix addition, matrix
subtraction, and scalar multiplication:

A+B=B+A
A+B+C=(A+B)+C
A-B=A+(-B)
—(-A)=A
s(A+B) =sA +sB
(r+s)A=rA=+sA
r(sA) =s(rA) = (rs) A

For matrix multiplication, the following identities hold:

AI=TA=A
A(BC) = (AB)C
AB+C) =AB+AC
(A+B)C=AC+BC
(sA)B =s(AB) = A(sB)

Finally, for matrix transpose the following identities hold:

(A+B) =AT + BT
sA)T =sAT
(AB)T = BTAT
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3.1.3 Determinants

The determinant of a matrix A is a number associated with A, denoted det(A) or
|A|. It is often used in determining the solvability of systems of linear equations,
as discussed in the next section. In this book the focus is on 2 x 2 and 3 x 3
determinants. For matrices up to a dimension of 3 x 3, determinants are calculated as
follows:

|Al = lu1] = u,

U U
|A| = ! 2 = U103 — U201, and

01 D2

U Ux Us
Al = |v1 v2  v3| = U1 (Vw3 — V3W2) + Uz (VW1 — V1W3)

w1 w2 wWs

+ uz (V1w —vowr) =u- (VX W).

(The symbols - and x are the dot product and cross product, as described in Sections
3.3.3 and 3.3.5, respectively.) Determinants are geometrically related to (oriented)
hypervolumes: a generalized concept of volumes in n-dimensional space forann x n
determinant, where length, area, and volume are the 1D, 2D, and 3D volume mea-
surements. For a 1 x 1 matrix, A = [u1], |A| corresponds to the signed length of a
line segment from the origin to u;. For a 2 x 2 matrix,

)
U1 02
|A| corresponds to the signed area of the parallelogram determined by the points
(1, u2), (v1,v2), and (0, 0), the last point being the origin. If the parallelogram is swept
counterclockwise from the first point to the second, the determinant is positive, else
negative. For a 3 x 3 matrix, A = [uvw] (where u, v, and w are column vectors),
|A| corresponds to the signed volume of the parallelepiped determined by the three
vectors. In general, for an n-dimensional matrix the determinant corresponds to the
signed hypervolume of the n-dimensional hyper-parallelepiped determined by its
column vectors.
Entire books have been written about the identities of determinants. Here, only
the following important identities are noted:

® The determinant of a matrix remains unchanged if the matrix is transposed,

A| = |AT].
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e IfBisobtained by interchanging two rows or two columns of A, then |B| = — |A]
(swapping two rows or columns changes how the hypervolume is swept out and
therefore changes the sign of the determinant).

e If B is derived from A by adding a multiple of one row (or column) to another
row (or column), then |B| = |A| (this addition skews the hypervolume parallel
to one of its faces, thus leaving the volume unchanged).

® The determinant of the product of two n x n matrices A and B is equal to the
product of their respective determinants, |AB| = |A| |B|.

e If B is obtained by multiplying a row (or column) of A by a constant k, then
IBl = kAl

e If one row of A is a multiple of another row, then |A| = 0. The same is true
when a column of A is a multiple of another column.

e For a determinant with a row or column of zeroes, |A| = 0.

An effective way of evaluating determinants is to use row and column operations on
the matrix to reduce it to a triangular matrix (where all elements below or above the
main diagonal are zero). The determinant is then the product of the main diagonal
entries. For example, the determinant of A,

4 -2 6
A=| 2 5 01,
-2 1 -4

can be evaluated as follows:

4 -2 6 .
_ Adding the second row
det(A)=1 2 5 0 to the third row ...

-2 1 -4
_ g _é 8 Adding —1 times the first

0 6 —a [rowto the second row ...

426 Adding —1 times the second
=0 6 -3 .

0 6 —a| [roWto the third row ...
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_ 3 _é _g Now triangular so determinant is
B 0 0 -1 product of main diagonal entries

= —24.

An example application of determinants is Cramer’s rule for solving small systems of
linear equations, described in the next section.

Determinants can also be evaluated through a process known as expansion by
cofactors. First define the minor to be the determinant m;; of the matrix obtained by
deleting row i and column j from matrix A. The cofactor c;; is then given by

Cij = (_1)i+jmij~

The determinant of A can now be expressed as

n n
|A| = Z ArjCrj = Z aikCik,
=1 i—1

where r and k correspond to an arbitrary row or column index. For example, given
the same matrix A as before, |A| can now be evaluated as, say,

Al=| 2 5 0|=4
2 1 -4

4 -2 6
‘ =—-80—-16+72=-24.

5 0 2 0 |25
1 —4‘_(_2)‘—2 —4‘+6'—2 1‘

Solving Small Systems of Linear Equation Using
Cramer’s Rule

Consider a system of two linear equations in the two unknowns x and y:

ax + by =e, and
o +dy =f.
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Multiplying the first equation by d and the second by b gives

adx + bdy = de, and
bex + bdy = bf.

Subtracting the second equation from first gives adx — bex = de — bf, from which x can
be solved for asx = (de — bf)/(ad — bc). A similar process gives y = (af —ce)/(ad — bc).

The solution to this system corresponds to finding the intersection point of two
straight lines, and thus three types of solution are possible: the lines intersect in a
single point, the lines are parallel and nonintersecting, or the lines are parallel and
coinciding. A unique solution exists only in the first case, signified by the denominator
ad — bc being nonzero. Note that this 2 x 2 system can also be written as the matrix
equation AX = B, where

a=fedf x=L} e =[]

A is called the coefficient matrix, X the solution vector, and B the constant vector. A
system of linear equations has a unique solution if and only if the determinant of the
coefficient matrix is nonzero, |A| # 0. In this case, the solution is given by X = A-1B.

Upon examining the previous solution in x and y it becomes clear it can be
expressed in terms of ratios of determinants:

e b a e

_ d _cf
SN PR “la b’

c d c d

Here, the denominator is the determinant of the coefficient matrix. The x numerator
is the determinant of the coefficient matrix where the first column has been replaced
by the constant vector. Similarly, the y numerator is the determinant of the coefficient
matrix where the second column has been replaced by the constant vector.

Called Cramer’s rule, this procedure extends to larger systems in the same manner,
allowing a given variable to be computed by dividing the determinant of the coef-
ficient matrix (where the variable column is replaced by the constant vector) by the
determinant of the original coefficient matrix. For example, for the 3 x 3 system

mx+byy+cz=d,
ax + boy + ¢z = dp, and
azx +bzy + c3z = ds
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Cramer’s rule gives the solution

di b1 a di a b dy
d b o a d o a by d
d3 bz ¢ az d3 3 az by d
X = 7 , Y= 3 , zZ= d ,  where
a b g
d= [25) b2 Cof.
az bz o3

Solving systems of linear equations using Cramer’s rule is not recommended for
systems with more than three or perhaps four equations, in that the amount of work
involved increases drastically. For larger systems, a better solution is to use a Gaussian
elimination algorithm. However, for small systems Cramer’s rule works well and is
easy to apply. It also has the benefit of being able to compute the value of just a single
variable. All systems of linear equations encountered in this text are small.

Matrix Inverses for 2 x 2 and 3 x 3 Matrices

Determinants are also involved in the expressions for matrix inverses. The full details
on how to compute matrix inverses is outside the range of topics for this book. For
purposes here, it is sufficient to note that the inverses for 2 x 2 and 3 x 3 matrices
can be written as

1 u —u
Al — 22 12 and
det(A) [ —u21 U1
1 UppU33 — U3U32 U13U3zp — U12U33 U1pUz3 — U13U22

-1
U13lo1 — U11U23

Uq1lUpp — U12U21

U11U33 — U13U31
U1pU3z1 — U11U32

= T A | Y233l — U21Us3

det(A) Up1lUzp — UxU31
From these expressions, it is clear that if the determinant of a matrix A is zero, inv(A)
does not exist, as it would result in a division by zero (this property holds for square
matrices of arbitrary size, not just 2 x 2 and 3 x 3 matrices). The inverse of a 3 x 3
matrix A can also be expressed in a more geometrical form. Let A consist of the three
column vectors u, v, and w:

A=[u v w].
The inverse of A is then given as

A'l=[a b C]T,
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where a, b, and c¢ are the column vectors
a=(vxw/(u-(vxw)),
b=(wxuw/(u-(vxw)), and

c=(uxv)/(u-(vxw)).

In general, whenever the inverse of A, inv(A), exists, it can always be factored as

where M is called the adjoint matrix of A, denoted adj(A).

Determinant Predicates

Determinants are also useful in concisely expressing geometrical tests. Many, if not
most, geometrical tests can be cast into determinant form. If a determinant can be
robustly and efficiently evaluated, so can the geometrical test. Therefore, the evalua-
tion of determinants has been well studied. In particular, the sign of a determinant
plays a special role in many geometrical tests, often used as topological predicates to
test the orientation, sidedness, and inclusion of points. Note that direct evaluation
of determinant predicates (without, for example, applying common subexpression
elimination) does not, in general, result in the most efficient or robust expressions.
Also note that determinant predicates implemented using floating-point arithmetic
are very sensitive to rounding errors and algorithms relying on a correct sign in degen-
erate configurations are likely not to work as intended. For more on robustness errors
and how to handle them, see Chapters 11 and 12. With that caveat, as an application
of determinants, the next few sections illustrate some of the more useful of these
topological predicates.

3.1.6.1 ORIENT2D(A, B, C)

Let A = (ay,a,), B = (by, b)), and C = (¢, ¢,) be three 2D points, and let
ORIENT2D(A, B, C) be defined as

ay ay 1
ORIENT2D(A, B,C) = [by by 1| =
o ¢ 1

Ay —Cy Gy —Cy
by —c by—¢y
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If ORIENT2D(A, B,C) > 0, C lies to the left of the directed line AB. Equivalently,
the triangle ABC is oriented counterclockwise. When ORIENT2D(A, B,C) < 0, C
lies to the right of the directed line AB, and the triangle ABC is oriented clock-
wise. When ORIENT2D(A, B, C) = 0, the three points are collinear. The actual value
returned by ORIENT2D(A, B, C) corresponds to twice the signed area of the trian-
gle ABC (positive if ABC is counterclockwise, otherwise negative). Alternatively, this
determinant can be seen as the implicit equation of the 2D line L(x, y) = 0 through
the points A = (ay, a,) and B = (by, by) by defining L(x, y) as

ay ay 1
L(x,y) = |bxy b, 1].
x oy 1

3.1.6.2 ORIENT3D(A, B, C, D)

Given four 3D points A = (ay,a,,a;), B = (by, by, b,), C = (&, ¢y,¢), and D =
(dy, dy, d;), define ORIENT3D(A, B, C, D) as

a, a, a, 1
b by b1 ay—dy ay—d, a,—d,
ORIENT3D(A,B,C,D)=| ' = |=|bx—dy by—d, b.—d
7 27 7 - Cx Cy CZ 1 —_ X X y y Z Z
d dy dp 1 o—dy cy—dy c—d,

=(A-D)-((B—D) x (C—D)).

When ORIENT3D(A, B,C,D) < 0, D lies above the supporting plane of trian-
gle ABC, in the sense that ABC appears in counterclockwise order when viewed
from D. If ORIENT3D(A, B, C, D) > 0, D instead lies below the plane of ABC. When
ORIENT3D(A, B,C, D) = 0, the four points are coplanar. The value returned by
ORIENT3D(A, B, C, D) corresponds to six times the signed volume of the tetrahe-
dron formed by the four points. Alternatively, the determinant can be seen as the
implicit equation of the 3D plane P(x,y,z) = 0 through the points A = (a,, ay, a),
B = (by, by, b,), and C = (¢, ¢y, c;) by defining P(x, y, z) as

a ay a; 1
by b, b, 1
Py =" )
x vy z 1
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3.1.6.3 INCIRCLE2D(A, B, C, D)

Given four 2D points A = (ay, a,), B = (by, b)), C = (cy, ¢), and D = (dy, d,), define
INCIRCLE2D(A, B, C, D) as

ay ay a;+a; 1
b b, B4b2 1
o o Gtg 1
do d, E+d 1

INCIRCLE2D(A, B, C, D) =

ay —dy ay—dy  (ar - )7+ (ay — dy)z
= by —dx by - dy (by — dx)2 + (bV - dy)z )
a—dv cy—dy (o —d)+(cy — dy)

Let the triangle ABC appear in counterclockwise order, as indicated by
ORIENT2D(A, B, C) > 0.Then, when INCIRCLE2D(A, B, C, D) > 0, D lies inside the
circle through the three points A, B, and C. If instead INCIRCLE2D(A, B, C, D) < 0,
D lies outside the circle. When INCIRCLE2D(A, B, C, D) = 0, the four points are
cocircular. If ORIENT2D(A, B, C) < 0, the result is reversed.

3.1.6.4 INSPHERE(A, B, C, D, E)

Given five 3D points A = (ay, ay, a.), B = (by, by, b,), C = (¢, ¢y, ), D = (dy, dy, d2),
and E = (e, ey, e;), define INSPHERE(A, B, C, D, E) as

a, a, a; a>+dl+a
be by b, D24bI+D
INSPHERE(A, B, C,D,E) = ¢ ¢, ¢ G+ +C
do dy d; d?+d+d2
e e € e§+€§+822

e S S G G

Ay —e ay—ey a;—e (ax—e)? + (ay —e)’ + (a: —e)?
_ by —ex by — €&y b:—e. (by—e)* + (by - ey)2 + (b: — e)?
e —e Cy—¢€ C—6 (r —e)? + (Cy - ey)z + (@ —e)?|

dy — ey dy — €&y d:—e; (dy—e)* + (dy - ey)z + (d: —e)?

Let the four points A, B, C, and D be oriented such that ORIENT3D(A, B, C, D) > 0.
Then, when INSPHERE(A, B, C,D,E) > 0, E lies inside the sphere through A, B,
C, and D. If instead INSPHERE(A, B, C, D, E) < 0, E lies outside the sphere. When
INSPHERE(A, B, C, D, E) = 0, the five points are cospherical.
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3.2 Coordinate Systems and Points

3.3

A point is a position in space, the location of which is described in terms of a coordinate
system, given by a reference point, called the origin, and a number of coordinate axes.
Points in an n-dimensional coordinate system are each specified by an n-tuple of real
numbers (x1, Xy, ..., %,). The n-tuple is called the coordinate of the point. The point
described by the n-tuple is the one reached by starting at the origin and moving x;
units along the first coordinate axis, x, units along the second coordinate axis, and so
on for all given numbers. The origin is the point with all zero components, (0, 0, .. ., 0).
A coordinate system may be given relative to a parent coordinate system, in which
case the origin of the subordinate coordinate system may correspond to any point in
the parent coordinate system.

Of primary interest is the Cartesian (or rectangular) coordinate system, where the
coordinate axes are perpendicular to each other. For a 2D space, the two coordinate
axes are conventionally denoted the x axis and the y axis. In a 3D space, the third
coordinate axis is called the z axis.

The coordinate space is the set of points the coordinate system can specify. The
coordinate system is said to span this space. A given set of coordinate axes spanning
a space is called the frame of reference, or basis, for the space. There are infinitely many
frames of reference for a given coordinate space.

In this book, points are denoted by uppercase letters set in italics (for example, P,
Q, and R). Points are closely related to vectors, as discussed in the next section.

Vectors

Abstractly, vectors are defined as members of vector spaces. A vector space is defined in
terms of a set of elements (the vectors) that support the operations of vector addition
and scalar multiplication, elements and operations all obeying a number of axioms.
In this abstract sense, m x n matrices of real numbers may, for example, be elements
(vectors) of a vector space. However, for the practical purposes of this book vectors
typically belong to the vector space R”, whose elements are n-tuples of numbers from
the domain of real numbers. A vector v is thus given as

v =(01,02,...,0p).

The number terms v1, v, ..., v, are called the components of v. In fact, in this book
vectors are predominantly restricted to the special cases R? and R® of R", thus being
given as tuples of two and three real numbers, respectively.

Informally, vectors are often described as entities having both direction and magni-
tude. They are therefore usually represented graphically by an arrow, or geometrically
as a directed line segment, pointing in a given direction and of a given length. Vectors
are denoted by boldface lowercase letters (for example, u, v, and w).
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(a) (b)

Figure 3.1 (a) The (free) vector v is not anchored to a specific point and may therefore
describe a displacement from any point, specifically from point A to point B, or from point C
to point D. (b) A position vector is a vector bound to the origin. Here, position vectors p and
q specify the positions of points P and Q, respectively.

A vector v can be interpreted as the displacement from the origin to a specific
point P, effectively describing the position of P. In this interpretation v is, in a sense,
bound to the origin O. A vector describing the location of a point is called a position
vector, or bound vector. A vector v can also be interpreted as the displacement from
an initial point P to an endpoint Q, Q = P + v. In this sense, v is free to be applied at
any point P. A vector representing an arbitrary displacement is called a free vector (or
just vector). If the origin is changed, bound vectors change, but free vectors stay the
same. Two free vectors are equal if they have the same direction and magnitude; that
is, if they are componentwise equal. However, two bound vectors are not equal —
even if the vectors are componentwise equal — if they are bound to different origins.
Although most arithmetic operations on free and bound vectors are the same, there
are some that differ. For example, a free vector — such as the normal vector of a
plane — transforms differently from a bound vector.

The existence of position vectors means there is a one-to-one relationship between
points and vectors. Frequently, a fixed origin is assumed to exist and the terms point
and vector are therefore used interchangeably.

As an example, in Figure 3.1a, the free vector v may describe a displacement from
any point, specifically from A to B, or from C to D. In Figure 3.1b, the two bound
vectors p and q specify the positions of the points P and Q, respectively, and only
those positions. N

The vector v from point A to point B is written v = AB (which is equivalent to

v=0B- (ﬁ). Sometimes the arrow is omitted and v is written simply as v = AB.
A special case is the vector from a point P to P itself. This vector is called the zero
vector, and is denoted by 0.

In the context of working with vectors, real numbers are usually referred to as
scalars. Scalars are here denoted by lowercase letters set in italics (for example a4,
b, and ¢).
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(a) (b)

Figure 3.2 (a) The result of adding two vectors u and v is obtained geometrically by placing
the vectors tail to head and forming the vector from the tail of the first vector to the head
of the second. (b) Alternatively, by the parallelogram law, the vector sum can be seen as the
diagonal of the parallelogram formed by the two vectors.

Vector Arithmetic

The sum w of two vectors u and v, w = u + v, is formed by pairwise adding the
components of u and v:

W=u+v=_=Ul,...  u)+ ©1,00...,0,) = W +01,U+0,..., U, +0).

Geometrically, the vector sum can be seen as placing the arrow for v at the tip of
u and defining their sum as the arrow pointing from the start of u to the tip of v.
This geometric view of the vector sum is often referred to as the parallelogram law
of vector addition, as the vector forming the sum corresponds to the diagonal of the
parallelogram formed by the two given vectors, as illustrated in Figure 3.2.

The subtraction of vectors, w = u — v, is defined in terms of the addition of u
and the negation of v; that is, w = u + (—v). The negation —v of a vector v is a
vector of equal magnitude but of opposite direction. It is obtained by negating each
component of the vector:

—v=—(01,02,...,0s) = (=01, =02, ..., —Vy).
Componentwise, the subtraction of two vectors is therefore given by
W=u-—vVv= (1/[1,”2,...,”") - (01102/'--1011) = (1/[1 _271,142 _’02/-"/1411 _Un)-

Vectors can also be scaled through the multiplication of the vector by a constant
(Figure 3.3). The resulting vector w, w = kv, from a scalar multiplication by k is
given by

W=kv=k(0,0o,...,0,) = (kvi, kvo,..., ko).
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3.3.2

2v

(a) (b) (©)
Figure 3.3 (a) The vector v. (b) The negation of vector v. (c) The vector v scaled by a

factor of 2.

When the scalar k is negative, w has a direction opposite that of v. The length of a
vector v is denoted by ||v|| and is defined in terms of its components as

vl = /@ + 03+ +2).

The length of a vector is also called its norm or magnitude. A vector with a magnitude
of 1 is called a unit vector. A nonzero vector v can be made unit, or be normalized, by
multiplying it with the scalar 1/ ||v]|.

For any n-dimensional vector space (specifically R") there exists a basis consisting
of exactly n linearly independent vectors ey, ey, .. ., e,. Any vector v in the space can
be written as a linear combination of these base vectors; thus,

VvV =aie; +ae, +---+a,e, where ay,a,...,a,arescalars.

Given a set of vectors, the vectors are linearly independent if no vector of the set can
be expressed as a linear combination of the other vectors. For example, given two
linearly independent vectors e; and e,, any vector v in the plane spanned by these
two vectors can be expressed linearly in terms of the vectors as v = aie; + ase; for
some constants a; and aj.

Most bases used are orthonormal. That is, the vectors are pairwise orthogonal and
are unit vectors. The standard basis in R® is orthonormal, consisting of the vectors
(1,0,0), (0,1,0), and (0, 0, 1), usually denoted, respectively, by i, j, and k.

Algebraic Identities Involving Vectors

Given vectors u, v, and w, the following identities hold for vector addition and
subtraction:

ut+v=v-+u

(u+v)+w=u+(v+w)
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u—v=u+(-v)
—(—v)=v

v+ (—v)=0
v+0=0+Vv=v

Additionally, given the scalars r and s, the following identities hold for scalar
multiplication:

r(sv) = (rs) v

(r+s)v=rv+sv
su+v)=su+sv

lv=v

3.3.3 The Dot Product

The dot product (or scalar product) of two vectors u and v is defined as the sum of the
products of their corresponding vector components and is denoted by u - v. Thus,

u-v=(uy,uy, ... U (©1,0...,0,) = U101 + U0 + - - - + UyVy.

Note that the dot product is a scalar, not a vector. The dot product of a vector and
itself is the squared length of the vector:

V-v=0]+05+---+02 = |v]*.
It is possible to show that the smallest angle 6 between u and v satisfies the equation
w-v = |ul |v]lcosé,

and thus 0 can be obtained as

u-v
0 =cos”! ——.
lall (v

As a result, for two nonzero vectors the dot product is positive when 6 is acute,
negative when 6 is obtuse, and zero when the vectors are perpendicular (Figure 3.4).
Being able to tell whether the angle between two vectors is acute, obtuse, or at a right
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v obtuse right angle acute

uv<o0 uv=_0 u-v>0

> U

(a) (b) (c)

Figure 3.4 The sign of the dot product of two vectors tells whether the angle between the
vectors is (a) obtuse, (b) at a right angle, or (c) acute.

angle is an extremely useful property of the dot product, which is frequently used in
various geometric tests.

Geometrically, the dot product can be seen as the projection of v onto u, returning
the signed distance d of v along u in units of |lull:

u-v

lall

This projection is illustrated in Figure 3.5a. Given vectors u and v, v can there-
fore be decomposed into a vector p parallel to u and a vector q perpendicular to u,
suchthatv=p+q:

u-v u u-v u-v
pz——z—zuz—u,and
lall flal  [jul u-u
u-v
=vVv—-p=v——u
q P —

Figure 3.5b shows how v is decomposed into p and q.
Note that because the dot product is commutative the same holds true for seeing
it as the projection of u onto v, returning the distance of u along v in units of ||v/|.

Algebraic Identities Involving Dot Products

Given scalars r and s and vectors u and v, the following identities hold for the dot
product:

u-v=1u01+ uvp +---+ u,o,
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v "V

a= u-u
6
: - u u
I u.v | p=- u-v u p
ld| :W: [[vllcos & u-u

(a) (b)

Figure 3.5 (a) The distance of v along u and (b) the decomposition of v into a vector p
parallel and a vector q perpendicular to u.

u-v=|u ||v]cosf
2
u-u=|uf
u-v=v-u
u-(vtw)=u-vtu-w

ru-sv=rs(u-v)

3.3.5 The Cross Product

The cross product (or vector product) of two 3D vectors u = (uy, up, u3) and v =
(v1, v2, v3) is denoted by u x v and is defined in terms of vector components as

u x V= (Up03 — U302, —(U103 — U301), U102 — Us01).

The result is a vector perpendicular to u and v. Its magnitude is equal to the product
of the lengths of u and v and the sine of the smallest angle 6 between them. That is,

uxv=n|u| ||v|sinég,

where n is a unit vector perpendicular to the plane of u and v. When forming the
cross product w = u x v, there is a choice of two possible directions for w. Here, and
by convention, the direction of w is chosen so that it, together with u and v, forms
a right-handed coordinate system. The right-hand rule is a mnemonic for remembering
what a right-handed coordinate system looks like. It says that if the right hand is
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A'A u+v
n M
u
Figure 3.6 Given two vectors u and v in the plane, the cross product w (w = u x v) is a

vector perpendicular to both vectors, according to the right-hand rule. The magnitude of w
is equal to the area of the parallelogram spanned by u and v (shaded in dark gray).

curved about the w vector such that the fingers go from u to v, the direction of w
coincides with the direction of the extended thumb.

The magnitude of u x v equals the area of the parallelogram spanned by u and v,
with base |lul| and height [|v] sin @ (Figure 3.6). The magnitude is largest when the
vectors are perpendicular.

Those familiar with determinants might find it easier to remember the expression
for the cross product as the pseudo-determinant:

i k U U U u U u
uxv=lu u uzl=|2 Sli—[t 3 L™,
Uy U3 U1 U3 (%%
U1 U2 U3

where i = (1,0,0), j = (0,1,0), and k = (0,0,1) are unit vectors parallel to the
coordinate axes. The cross product can also be expressed in matrix form as the product
of a (skew-symmetric) matrix and a vector:

0 —Us Up U1
uxyv= Us 0 —Uq U
—U> 51 0 U3

It is interesting to note that the cross product can actually be computed using only
five multiplications, instead of the six multiplications indicated earlier, by express-
ing it as

u x v = (0t — uz) — ts, U301 — t3, ts — tr(v1 — 1)),
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""u =C-A

Figure 3.7 Given a quadrilateral ABCD, the magnitude of the cross product of the two
diagonals AC and BD equals twice the area of ABCD. Here, this property is illustrated by the
fact that the four gray areas of the quadrilateral are pairwise identical to the white areas, and
all areas together add up to the area of the parallelogram spanned by AC and BD.

where
t1=uy —upy, th=0v403 1{3=1Uuvs, and ty = titp — t3.

Because this formulation increases the total number of operations from 9 (6 multiplies,
3 additions) to 13 (5 multiplies, 8 additions), any eventual practical performance
benefit of such a rewrite is hardware dependent.

Given a triangle ABC, the magnitude of the cross product of two of its edges equals
twice the area of ABC. For an arbitrary non self-intersecting quadrilateral ABCD, the
magnitude |le|| of the cross product of the two diagonals, e = (C — A) x (D — B),
equals twice the area of ABCD. This property is illustrated in Figure 3.7.

There is no direct equivalent of the cross product in two dimensions, as a third
vector perpendicular to two vectors in the plane must leave the plane and the 2D
space. The closest 2D analog is the 2D pseudo cross product, defined as

ut v,

where ut = (—uy, 11) is the counterclockwise vector perpendicular to u. The term ut
is read “u-perp.” For this reason, the pseudo cross product is sometimes referred to
as the perp-dot product. The 2D pseudo cross product is a scalar, the value of which —
similar to the magnitude of the cross product — corresponds to the signed area of
the parallelogram determined by u and v. It is positive if v is counterclockwise from
u, negative if v is clockwise from u, and otherwise zero.

Again, given the (3D) triangle ABC, note that each component of the cross product
vector d = (B—A) x (C — A) consists of a 2D pseudo cross product (with the middle
component being negated). Therefore, each component of d holds twice the signed
area of the projection of ABC onto the yz, zx, and xy planes, respectively. A single cross
product operation is therefore sufficient for determining the result of a 2D point-in-
triangle test, which can be useful if a cross product operation is directly supported in
hardware.
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3.3.6

3.3.7

Algebraic Identities Involving Cross Products

Given scalars r and s and vectors u, v, w, and x, the following cross product identities
hold:

uxv=—(vxu)

uxu=0

ux0=0xu=0

u-(uxv)=v-(uxv)=0 (thatis, u x vis perpendicular to both u and v)
u-(vxw)=uxv) - w

ux (vw)=uxvtuxw

(Uxv)xw=uxwtvxw

(uxv)xw=wx (vxu) = (u-w)v—(v-w)u (a vector in the plane of u and v)
ux (vxw)=(wxv)xu=(u-w)v— (u-v)w (avector in the plane of v and w)
luxv| = [lu] [[v]sin®

(uxv)-(wxx)=(u-w)(v-x)— (v-w)(u-x) (Lagrange’s identity)
ruxsv=rs(uxv)

u X (Vvxw)+vx(wxu)+wx (uxv)=0 (Jacobi’s identity)

The Lagrange identity is particularly useful for reducing the number of operations
required for various geometric tests. Several examples of such reductions are found
in Chapter 5.

The Scalar Triple Product

The expression (u x v) - w occurs frequently enough that it has been given a name
of its own: scalar triple product (also referred to as the triple scalar product or box
product). Geometrically, the value of the scalar triple product corresponds to the
(signed) volume of a parallelepiped formed by the three independent vectors u, v,
and w. Equivalently, it is six times the volume of the tetrahedron spanned by u, v,
and w. The relationship between the scalar triple product and the parallelepiped is
illustrated in Figure 3.8.

The cross and dot product can be interchanged in the triple product without
affecting the result:

(uxv)-w=u-(vxw).
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uxv v=b-h=uxv) - w
W ..
b= vl
hew 2 XV v 5
fux] { e
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Figure 3.8 The scalar triple product (u x v) - w is equivalent to the (signed) volume of the
parallelepiped formed by the three vectors u, v, and w.

The scalar triple product also remains constant under the cyclic permutation of its
three arguments:

(uxv) - w=WVxw)  -u=(Wxu)-v.

Because of these identities, the special notation [u v w] is often used to denote a triple
product. It is defined as

[uvw]=(uxv)-w=u-(vxw).

This notation abstracts away the ordering of the dot and cross products and makes it
easy to remember the correct sign for triple product identities. If the vectors read uvw
from left to right (starting at the u and allowing wraparound), the product identity is
positive, otherwise negative:

[uvw]=[vwu] =[wuv]=—[uwv]=—[vuw] = —[wvu].

The scalar triple product can also be expressed as the determinant of the 3 x 3 matrix,
where the rows (or columns) are the components of the vectors:

[Z5% Un Us
[uvw]=|v1 v v3|=1
w1 w2 Ws

(%]

S =u-(vxw).

01 U3
+ U3
w1 w3

wy W3

Three vectors u, v, and w lie in the same plane if and only if [u vw] = 0.
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3.3.8 Algebraic Identities Involving Scalar Triple Products

Given vectors u, v, w, x, y, and z, the following identities hold for scalar triple
products:

[uvw]=[vwu] =[wuv]=—[uwv] =—[vuw] = — [wvu]
[uuv]=[vuv]=0

[uvw]? = [(u x v) (v x W) (W x u)]

ufvwx] —viwxu]+w[xuv] —x[uvw] =0

(uxv)x (Wxx)=v[uwx] —u[vwx]
[(uxv)(Wwxx)(yx2z)]=[vyz][uwx] — [uyz][vwXx]
[(u+v)(v+w)(W+u]=2[uvw]

[uvw] [xyz] =

u-x u'y u-z
V-X Vy V-Z
W-X W-y W-Z

[(U—x)(v—x)(W—x)]=[uvw] — [uvx] — [uxw] — [x vW]

= [(u—x)vw] — [(v - w)xu]

3.4 Barycentric Coordinates

A concept useful in several different intersection tests is that of barycentric coordinates.
Barycentric coordinates parameterize the space that can be formed as a weighted
combination of a set of reference points. As a simple example of barycentric coor-
dinates, consider two points, A and B. A point P on the line between them can be
expressed as P = A+ t(B — A) = (1 — t)A + tB or simply as P = uA + vB, where
u+v = 1. Pis on the segment ABif and onlyif 0 < u <1and 0 < v < 1. Written in
the latter way, (14, v) are the barycentric coordinates of P with respect to A and B. The
barycentric coordinates of A are (1, 0), and for B they are (0, 1).

The prefix bary comes from Greek, meaning weight, and its use as a prefix is
explained by considering u and v as weights placed at the endpoints A and B of the
segment AB, respectively. Then, the point Q dividing the segment in the ratio v:u
is the centroid or barycenter: the center of gravity of the weighted segment and the
position at which it must be supported to be balanced.

A typical application of barycentric coordinates is to parameterize triangles (or
the planes of the triangles). Consider a triangle ABC specified by three noncollinear
points A, B, and C. Any point P in the plane of the points can then be uniquely
expressed as P = uA + vB + wC for some constants u, v, and w, where u +v+w = 1.
The triplet (1, v, w) corresponds to the barycentric coordinates of the point. For the
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triangle ABC, the barycentric coordinates of the vertices A, B, and C are (1,0, 0),
(0,1,0), and (0,0, 1), respectively. In general, a point with barycentric coordinates
(1, v, w) is inside (or on) the triangle if and only if 0 < u,v,w < 1, or alternatively
ifandonlyif 0 <v < 1,0 <w <1, and v + w < 1. That barycentric coordinates
actually parameterize the plane follows from P = uA + vB + wC really just being a
reformulation of P = A + v(B — A) + w(C — A), with v and w arbitrary, as

P=A+0B—-A) +wC—A) =(1-v—wA+0B+wC.

In the latter formulation, the two independent direction vectors AB and AC form a
coordinate system with origin A, allowing any point P in the plane to be parame-
terized in terms of v and w alone. Clearly, barycentric coordinates is a redundant
representation in that the third component can be expressed in terms of the first two.
It is kept for reasons of symmetry.

To solve for the barycentric coordinates, the expression P = A + v(B — A) +
w(C — A) — or equivalently v(B — A) + w(C — A) = P — A — can be written as
vvog+wvy = vy, wherevg =B—A,vi=C—A,andv, =P —-A. Now,a2 x 2
system of linear equations can be formed by taking the dot product of both sides
with both vy and vy:

(vvg+wvy) - vy = vy - vy, and

@vg+wvy) - vy =V - Vq.
Because the dot product is a linear operator, these expressions are equivalent to

v (Vo - Vo) +w (Vi -Vy) = Vo -V, and

0 (Vg-Vvy)+w (V] V1) =Vy-Vq.

This system is easily solved with Cramer’s rule. The following code is an implemen-
tation computing the barycentric coordinates using this method.

// Compute barycentric coordinates (u, v, w) for
// point p with respect to triangle (a, b, c)
void Barycentric(Point a, Point b, Point c, Point p, float &u, float &v, float &w)

{

Vector vO = b - a, vl =c - a, v2 = p - a;
float d00 = Dot(v0, vO0);
float d01 = Dot(v0, vl1);
float d11 = Dot(vl, vl);
float d20 = Dot(v2, v0);
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float d21 = Dot(v2, vl);

float denom = d00 * d11 - d01 * dO1;
v = (d11 * d20 - d01 * d21) / denom;
w = (d00 * d21 - d01 * d20) / denom;
u=10f -v - w;

If several points are tested against the same triangle, the terms d00, d01, d11, and
denom only have to be computed once, as they are fixed for a given triangle.

The barycentric coordinates can be computed for a point with respect to a simplex
(Section 3.8) of any dimension. For instance, given a tetrahedron specified by the
vertices A, B, C, and D, the barycentric coordinates (u, v, w, x) specify a point P in 3D
space, P = uA+vB+wC+xDwithu+v+w+x=1.1f0 <u,v,w,x <1, thenPis
inside the tetrahedron.

Given the points specified as A = (ay,ay,a.), B = (by, by, b,), C = (cr, ¢y, C2),
D = (dy, dy, d;), and P = (px, py, p.), the barycentric coordinates can be solved for by
setting up a system of linear equations:

au + b + cqw + dx = py
au + bpo + cqw + dx = p,
au + by + cqw + dx = p;

u + v+ W+ x = 1

Alternatively, by subtracting A from both sides of P = uA + vB + wC + xD — giving
P—A=vB-A) +w(C-A) +x(D—-A)

— it follows that three of the four barycentric coordinate components can be obtained
by solving

(by —a)v + (6x — a) W+ (dy — @) X = Py — Ay,
(by — ay)v+ (¢) —ay)w+ (dy — ay) x = p, — ay, and
(b, —a)v+ (. —a)w+(d;, —a)x =p, —a,

(with the fourth component given by u = 1 —v —w —x). Either system is easily solved
using Cramer’s rule or Gaussian elimination. For example, in the former system the
coordinates are given by Cramer’s rule as the ratios

u = dppcp/dagcp,
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v = dapcp/dascp,
w = dagpp/dapcp, and

x:dABCP/dABCD =l—-u—-v—w

of the following determinants:

px by o dy ay px C dy ar by pr di
J _ py by ¢ dy d _ ay py ¢ dy d _ ay by py dy
PBCD pz bz c, dz ’ APCD a, pz . dz 7 "ABPD a bz pz dz 7

1 1 1 1 1 1 1 1 1 1 1 1

ay by o py a, by ¢ dy

lay by o py _lay by ¢ dy

dapcp = @ b oo pf and dapcp= 0 b oo 4l

1 1 1 1 1 1 1 1

These determinants correspond to the signed volumes of the tetrahedra PBCD, APCD,
ABPD, ABCP, and ABCD (strictly 1/6 of each signed volume). As shown further ahead,
the ratios simplify to being the normalized relative heights of the point over the
opposing planes.

Returning to triangles, just as the barycentric coordinates with respect to a tetrahe-
dron can be computed as ratios of volumes the barycentric coordinates with respect
to a triangle can be computed as ratios of areas. Specifically, the barycentric coor-
dinates of a given point P can be computed as the ratios of the triangle areas of
PBC, PCA, and PAB with respect to the area of the entire triangle ABC. For this reason
barycentric coordinates are also called areal coordinates. By using signed triangle areas,
these expressions are valid for points outside the triangle as well. The barycentric
coordinates (#, v, w) are thus given by

SignedArea (PBC) /SignedArea (ABC) ,
SignedArea(PCA) /SignedArea (ABC), and
SignedArea (PAB) /SignedArea(ABC) = 1 - u — v.

= < c
1

Because constant factors cancel out, any function proportional to the triangle area
can be used in computing these ratios. In particular, the magnitude of the cross
product of two triangle edges can be used. The correct sign is maintained by taking
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Tv=1

Figure 3.9 Triangle ABC with marked “height lines” foru=0,u=1,v=0,v=1,w=0,
andw=1.

the dot product of this cross product with the normal of ABC. For instance, the signed
area for the triangle PBC would be computed as

SignedArea (PBC) = Dot(Cross(B-P, C-P), Normalize(Cross(B-A, C-A))).

Because the area of a triangle can be written as base - height/2, and because for
each of the previous ratios the triangles involved share the same base, the previ-
ous expressions simplify to ratios of heights. Another way of looking at barycentric
coordinates is therefore as the components u#, v, and w corresponding to the nor-
malized height of the point P over each of the edges BC, AC, and AB relative to the
height of the edge’s opposing vertex. Because the triangle ABC is the intersection
of the three 2D slabs — each slab defined by the infinite space between two par-
allel lines (or planes) at height 0 and height 1 of a given triangle edge — it also
directly follows why 0 < u, v, w < 1 is required for a point to be inside the triangle
(Figure 3.9).

The lines coinciding with the edges of a triangle can also be seen as dividing
the triangle plane in seven barycentric regions based on the signs of the barycentric
coordinate components: three edge regions, three vertex regions, and the triangle
interior (Figure 3.10). These regions are relevant to both mesh traversal and various
containment algorithms.

An important property of barycentric coordinates is that they remain invariant
under projection. This property allows for a potentially more efficient way of com-
puting the coordinates than given earlier. Instead of computing the areas from the
3D coordinates of the vertices, the calculations can be simplified by projecting all
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Figure 3.10 Barycentric coordinates divide the plane of the triangle ABC into seven regions
based on the sign of the coordinate components.

vertices to the xy, xz, or yz plane. To avoid degeneracies, the projection is made to
the plane where the projected areas are the greatest. The largest absolute component
value of the triangle normal indicates which component should be dropped during
projection.

inline float TriArea2D(float x1, float yl, float x2, float y2, float x3, float y3)

{
}

return (x1-x2)*(y2-y3) - (x2-x3)*(yl-y2);

// Compute barycentric coordinates (u, v, w) for
// point p with respect to triangle (a, b, c)
void Barycentric(Point a, Point b, Point c, Point p, float &u, float &v, float &w)

{

// Unnormalized triangle normal

Vector m = Cross(b - a, ¢ - a);

// Nominators and one-over-denominator for u and v ratios
float nu, nv, ood;

// Absolute components for determining projection plane
float x = Abs(m.x), y = Abs(m.y), z = Abs(m.z);

// Compute areas in plane of largest projection
if (x >=y & x >= z) {
/] x is largest, project to the yz plane
nu = TriArea2D(p.y, p.z, b.y, b.z, c.y, c.z); // Area of PBC in yz plane
nv = TriArea2D(p.y, p.z, c.y, €.z, a.y, a.z); // Area of PCA in yz plane
ood = 1.0f / m.x; // 1/(2*area of ABC in yz plane)
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} else if (y >= x 8 y >= z) {
// y is largest, project to the xz plane
nu = TriArea2D(p.x, p.z, b.x, b.z, c.x, c.z);
nv = TriArea2D(p.x, p.z, €.X, €.Z, a.X, a.z);
ood = 1.0f / -m.y;

} else {
// z is largest, project to the xy plane
nu = TriArea2D(p.x, p.y, b.x, b.y, c.x, c.y);
nv = TriArea2D(p.x, p.y, C.X, C.Y, a.X, a.y);
ood = 1.0f / m.z;

nu * ood;
= nv * ood;
=1.0f - u - v;

= < =
n

Barycentric coordinates have many uses. Because they are invariant under projec-
tion, they can be used to map points between different coordinate systems. They can
be used for point-in-triangle testing. Given a vertex-lit triangle, they can also find
the corresponding RGB of a specific point within the triangle, which could be used
to adjust the ambient color of an object at that position on the triangle. For triangle
clipping, they can be used to interpolate any quantity, including colors (Gouraud
shading), normals (Phong shading), and texture coordinates (texture mapping). The
following code illustrates how barycentric coordinates can be used to test containment
of a point P in a triangle ABC.

// Test if point p is contained in triangle (a, b, c)
int TestPointTriangle(Point p, Point a, Point b, Point c)

{

float u, v, w;

Barycentric(a, b, c, p, u, v, w);

return v >= 0.0f & w >= 0.0f && (v + w) <= 1.0f;
}

A generalized form of barycentric coordinates for irregular n-sided convex polygons
is given in [Meyer02]. For n = 3, it reduces to the traditional formula for barycentric
coordinates. See also [Floater04].

When the barycentric coordinates of a point P (P = agPy + a1P1 + - - - +a,Py, a0 +
ai+---a, = 1) with respect to the points Py, Py, . .., P, also satisfies ag, a1, ..., a, > 0,
P is said to be a convex combination of Py, Py, ..., P,,.
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3.5 Lines, Rays, and Segments

A line L can be defined as the set of points expressible as the linear combination of
two arbitrary but distinct points A and B:

L(t) = (1 — DA + tB.

Here, t ranges over all real numbers, —oo < t < oco. The line segment (or just segment)
connecting A and B is a finite portion of the line through A and B, given by limiting ¢
to lie in the range 0 < t < 1. A line segment is directed if the endpoints A and B are
given with a definite order in mind. A ray is a half-infinite line similarly defined, but
limited only by t > 0. Figure 3.11 illustrates the difference among a line, a ray, and a
line segment.

By rearranging the terms in the parametric equation of the line, the equivalent
expression

L) =A+tv (wherev =B — A)

is obtained. Rays, in particular, are usually defined in this form. Both forms are referred
to as the parametric equation of the line. In 3D, a line L can also be defined implicitly
as the set of points X satisfying

H(X—A) va =0,

where A is a point on L and v is a vector parallel to L. This identity follows, because
if and only if X — A is parallel to v does the cross product give a zero vector result
(in which case X lies on L, and otherwise it does not). In fact, when v is a unit vector

B

L(t),—co< t <00 L(1),0<t L(1),0<t<1

(@ ®) ©

Figure 3.11 (a) A line. (b) A ray. (c) A line segment.
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3.6

the distance of a point P from L is given by | (P — A) x v|. This expression relates to
the test for collinearity of points, where three or more points are said to be collinear
when they all lie on a line. The three points A, B, and C are collinear if and only if
the area of the triangle ABC is zero. Letting m = (B — A) x (C — A), collinearity
can be tested by checking if [|[m|| = 0, or to avoid a square root if m - m is zero.
Alternatively, if (11, m,, m;) are the components of m the points are collinear if and
only if |my| + |my| + |m,| is zero.

Planes and Halfspaces

A plane in 3D space can be thought of as a flat surface extending indefinitely in all
directions. It can be described in several different ways. For example by:

e Three points not on a straight line (forming a triangle on the plane)
e A normal and a point on the plane

e A normal and a distance from the origin

In the first case, the three points A, B, and C allow the parametric representation
of the plane P to be given as

P(u,0) = A+u(B —A) +0v(C—A).

For the other two cases, the plane normal is a nonzero vector perpendicular to any
vector in the plane. For a given plane, there are two possible choices of normal,
pointing in opposite directions. When viewing a plane specified by a triangle ABC so
that the three points are ordered counterclockwise, the convention is to define the
plane normal as the one pointing toward the viewer. In this case, the plane normal n
is computed as the cross product n = (B — A) x (C — A). Points on the same side of
the plane as the normal pointing out of the plane are said to be in front of the plane.
The points on the other side are said to be behind the plane.

Given a normal n and a point P on the plane, all points X on the plane can be
categorized by the vector X — P being perpendicular to n, indicated by the dot product
of the two vectors being zero. This perpendicularity gives rise to an implicit equation
for the plane, the point-normal form of the plane:

n-(X—P)=0.

The dot product is a linear operator, which allows it to be distributed across a sub-
traction or addition. This expression can therefore be written as n - X = d, where
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d = n - P, which is the constant-normal form of the plane. When n is unit, |d| equals
the distance of the plane from the origin. If n is not unit, |d| is still the distance, but
now in units of the length of n. When not taking the absolute value, d is interpreted
as a signed distance.

The constant-normal form of the plane equation is also often written component-
wise as ax + by +cz —d = 0, where n = (a,b,¢) and X = (x,y,2). In this text, the
ax~+by+cz —d = 0 form is preferred over its common alternative, ax+by+cz+d = 0,
as the former tends to remove a superfluous negation (for example, when computing
intersections with the plane).

When a plane is precomputed, it is often useful to have the plane normal be a
unit vector. The plane normal is made unit by dividing n (and d, if it has already
been computed) by [n|| = +a? + b?> + ¢?. Having a unit plane normal simplifies
most operations involving the plane. In these cases, the plane equation is said to be
normalized. When a normalized plane equation is evaluated for a given point, the
obtained result is the signed distance of the point from the plane (negative if the
point is behind the plane, otherwise positive).

A plane is computed from three noncollinear points as follows:

struct Plane {
Vector n; // Plane normal. Points x on the plane satisfy Dot(n,x) = d
float d; // d = dot(n,p) for a given point p on the plane

}s

// Given three noncollinear points (ordered ccw), compute plane equation
Plane ComputePlane(Point a, Point b, Point c)

{
Plane p;
p.n = Normalize(Cross(b - a, c - a));
p.d = Dot(p.n, a);
return p;
}

A plane can also be given in a parameterized form as

P(s,t)y=A+su+tv,

where u and v are two independent vectors in the plane and A is a point on the
plane.

When two planes are not parallel to each other, they intersect in a line. Similarly,
three planes — no two parallel to each other — intersect in a single point. The angle
between two intersecting planes is referred to as the dihedral angle.



56 Chapter 3 A Math and Geometry Primer

3.7

-8x + 6y =-16

/ (8,8)

-8x + 6y > -16

-8x + 6y <-16

/

/ @,0)

Figure3.12 The 2D hyperplane —8x + 6y = —16 (a line) divides the plane into two halfspaces.

Planes in arbitrary dimensions are referred to as hyperplanes: planes with one less
dimension than the space they are in. In 2D, hyperplanes correspond to a line; in 3D,
to a plane. Any hyperplane divides the space it is in into two infinite sets of points on
either side of the plane. These two sets are referred to as halfspaces (Figure 3.12). If the
points on the dividing plane are considered included in the halfspace, the halfspace
is closed (otherwise, it is called open). The positive halfspace lies on the side in which
the plane normal points, and the negative halfspace on the opposite side of the plane.
A 2D halfspace is also called a halfplane.

Polygons

A polygon is a closed figure with # sides, defined by an ordered set of three or more
points in the plane in such a way that each point is connected to the next (and the
last to the first) with a line segment. For a set of n points, the resulting polygon is also
called an n-sided polygon or just n-gon. The line segments that make up the polygon
boundary are referred to as the polygon sides or edges, and the points themselves are
called the polygon vertices (singular, vertex). Two vertices are adjacent if they are joined
by an edge. Figure 3.13 illustrates the components of a polygon.

A polygon is simple if no two nonconsecutive edges have a point in common. A
simple polygon partitions the plane into two disjoint parts: the interior (the bounded
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Figure 3.13 The components of a polygon. Polygon (a) is simple, whereas polygon (b) is
nonsimple due to self-intersection.

area covered by the polygon) and the exterior (the unbounded area outside the poly-
gon). Usually the term polygon refers to both the polygon boundary and the interior.
A polygon diagonal is a line segment that joins two polygon vertices and lies fully
inside the polygon. A vertex is a convex vertex if the interior angle (the angle between
the sides connected to the vertex, measured on the inside of the polygon) is less than
or equal to 180 degrees (Figure 3.14a). If the angle is larger than 180 degrees, it is
instead called a concave (or reflex) vertex (Figure 3.14b).

A polygon P is a convex polygon if all line segments between any two points of P lie
fully inside P. A polygon that is not convex is called a concave polygon. A polygon with

Convex
Concave

/ : vertex i E
vertex
(a) (b)

Figure 3.14 (a) For a convex polygon, the line segment connecting any two points of the
polygon must lie entirely inside the polygon. (b) If two points can be found such that the
segment is partially outside the polygon, the polygon is concave.
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Figure 3.15 Convex hull of a concave polygon. A good metaphor for the convex hull is a
large rubber band tightening around the polygonal object.

one or more concave vertices is necessarily concave, but a polygon with only convex
vertices is not always convex (see the next section). The triangle is the only n-sided
polygon always guaranteed to be convex. Convex polygons can be seen as a subset
of the concept of convex point sets in the plane. A convex point set S is a set of points
wherein the line segment between any two points in S is also in S. Given a point set
S, the convex hull of S, denoted CH (S), is the smallest convex point set fully containing
S (Figure 3.15). CH(S) can also be described as the intersection of all convex point
sets containing S.

Related to the convex hull is the affine hull, AH(S). The affine hull is the lowest
dimensional hyperplane that contains all points of S. That is, if S contains just one
point, AH(S) is the point; if S contains two points, AH(S) is the line through them; if
S contains three noncollinear points, AH(S) is the plane determined by them; and if
S contains four (or more) non co-planar points, AH(S) is all of R3.

In addition to the explicit vertex representation, convex polygons can also be
described as the intersection of a finite number of halfspaces. This representation
is convenient for, for example, point containment tests. For the implicit polygon rep-
resentation, a point lies inside the polygon if it lies inside all halfspaces. Figure 3.16
illustrates a triangle expressed as the intersection of three halfspaces. An alternative
definition for point set convexity is therefore that a point set S is convex if and only if
S is equal to the intersection of all halfspaces that fully contain S. For polygons (and
polyhedra), this is an operative definition in the sense that it can be directly used to
implement a convexity test.

Two or more polygons can be joined at their edges to form a polygon mesh. In a
polygon mesh, the degree of a vertex corresponds to the number of edges connected
to the vertex. In this text, a mesh will be considered closed if all polygons have been
joined such that each edge is part of exactly two polygons.
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3x-2y2>-1

4x +2y<36

(9,0)

x+4y29 v

Figure 3.16 A convex polygon can be described as the intersection of a set of (closed) half-
spaces. Here, the triangle (1, 2), (9, 0), (5, 8) is defined as the intersection of the halfspaces
X+4y>9,4x+ 2y <36,and 3x — 2y > —1.

Testing Polygonal Convexity

Most intersection tests and other operations performed on polygons in a collision
detection system are faster when applied to convex rather than concave polygons, in
that simplifying assumptions can be made in the former case. Triangles are nice in
this respect, as they are the only type of polygon guaranteed to be convex. However, it
may be more efficient to perform an intersection against a single convex n-gon rather
than against multiple triangles covering the same area. To guarantee no concave faces
are present in the collision geometry database — which would not work with a faster
test, specially written for convex faces — all faces should be verified as convex, either
at tool time or during runtime (perhaps in a debug build).

Frequently, quadrilaterals (or quads, for short) are the only primitives supported
in addition to triangles. In such situations, rather than applying a generic convexity
test for arbitrary polygons, a simpler convexity test that applies specifically to quads
can be used. Assuming all vertices of the quad ABCD lie in the same plane, the quad
is convex if and only if its two diagonals lie fully in the interior of the quad (Figure
3.17a through c). This test is equivalent to testing if the two line segments AC and BD,
corresponding to the diagonals, intersect each other. If they do, the quad is convex.
If they do not, the quad is concave or self-intersecting. If the segments are parallel
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Figure 3.17 Different types of quads. (a) A convex quad. (b) A concave quad (dart). (c) A self-
intersecting quad (bowtie). (d) A degenerate quad. The dashed segments illustrate the two
diagonals of the quad. The quad is convex if and only if the diagonals transversely intersect.

and overlapping, the quad is degenerate (into a line), as illustrated in Figure 3.17d. To
avoid considering a quad with three collinear vertices convex, the segments should
only be considered intersecting if they overlap on their interior (and not on their
endpoints).

It can be shown that the intersection of the segments is equivalent to the points A
and C lying on opposite sides of the line through BD, as well as to the points B and
D lying on opposite sides of the line through AC. In turn, this test is equivalent to
the triangle BDA having opposite winding to BDC, as well as ACD having opposite
winding to ACB. The opposite winding can be detected by computing (using the cross
products) the normals of the triangles and examining the sign of the dot product
between the normals of the triangles to be compared. If the dot product is negative,
the normals point in opposing directions, and the triangles therefore wind in opposite
order. To summarize, the quad is therefore convex if

(BD x BA) - (BD x BC) < 0 and
(AC x AD) - (AC x AB) < 0.

A straightforward implementation results in the following code:

// Test if quadrilateral (a, b, c, d) is convex
int IsConvexQuad(Point a, Point b, Point c, Point d)
{
// Quad is nonconvex if Dot (Cross(bd, ba), Cross(bd, bc)) >= 0
Vector bda = Cross(d - b, a - b);
Vector bdc = Cross(d - b, ¢ - b);
if (Dot(bda, bdc) >= 0.0f) return 0;
// Quad is now convex iff Dot(Cross(ac, ad), Cross(ac, ab)) < 0
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Figure 3.18 Some inputs likely to be problematic for a convexity test. (a) A line segment.
(b) A quad with two vertices coincident. (c) A pentagram. (d) A quadrilateral with two extra
vertices collinear with the top edge. (e) Thousands of cocircular points.

Vector acd = Cross(c - a, d - a);
Vector acb = Cross(c - a, b - a);
return Dot(acd, acb) < 0.0f;

Testing two line segments in the plane for intersection is discussed in more detail
in Section 5.1.9.1.

For general n-gons, not just quads, a straightforward solution is to, for each poly-
gon edge, test to see if all other vertices lie (strictly) on the same side of that edge. If the
test is true for all edges, the polygon is convex, and otherwise it is concave. A separate
check for coincident vertices is required to make the test robust. However, although
easy to implement, this test is expensive for large polygons, with an O(n?) complexity
in the number of vertices. Polygons involved in collision detection systems are rarely
so large that the O(1n?) complexity becomes a problem. It is easy to come up with
tests that are faster. However, many of them correctly classify only a subset of convex
polygons and incorrectly classify some nonconvex polygons (Figure 3.18). For exam-
ple, a strictly convex polygon has interior angles that are all less than 180 degrees.
However, although this test is a necessary criterion for convexity it is not a sufficient
one. Testing the interior angles alone would thus incorrectly conclude that a penta-
gram is a convex polygon (Figure 3.18c). This test only works if the polygon is known,
a priori, not to be self-intersecting.

Another basis for a convexity test is that there are only two changes in direction
along any given axis when moving from vertex to vertex of a convex polygon, account-
ing for wraparound from the first to the last vertex. To detect the zigzag case illustrated
in Figure 3.18d, a test for change of direction would have to be performed for two
different directions, such as along both the x axis and the y axis. Although seemingly
robust, this test fails (for example) when all vertices of an originally convex polygon
have been projected onto a single line. It turns out that applying both of these two
alternative tests at the same time makes for a rather robust combined test, with the
two approaches “covering” for each other (so to speak). An implementation of the
combined test is described in [Schorn94].
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Figure 3.19 (a) A convex polyhedron. (b) A concave polyhedron. A face, an edge, and a
vertex have been indicated.

Polyhedra

A polyhedron is the 3D counterpart of a polygon. It is a bounded and connected region
of space in the shape of a multifaceted solid. The polyhedron boundary consists of
a number of (flat) polygonal faces connected so that each polygon edge is part of
exactly two faces (Figure 3.19). Some other definitions of a polyhedron allow it to be
unbounded; that is, extending indefinitely in some directions.

As for polygons, the polyhedron boundary divides space into two disjoint regions:
the interior and the exterior. A polyhedron is convex if the point set determined by its
interior and boundary is convex. A (bounded) convex polyhedron is also referred to
as a polytope. Like polygons, polytopes can also be described as the intersection of a
finite number of halfspaces.

A d-simplexis the convex hull of d 41 affinely independent points in 4-dimensional
space. A simplex (plural simplices) is a d-simplex for some given d. For example, the
0-simplex is a point, the 1-simplex is a line segment, the 2-simplex is a triangle, and
the 3-simplexis a tetrahedron (Figure 3.20). A simplex has the property that removing
a point from its defining set reduces the dimensionality of the simplex by one.

For a general convex set C (thus, not necessarily a polytope), a point from the
set most distant along a given direction is called a supporting point of C. More
specifically, P is a supporting point of C if for a given direction d it holds that
d-P=max{d-V :V e C}; thatis, Pis a point for which d - P is maximal. Figure 3.21
illustrates the supporting points for two different convex sets. Supporting points are
sometimes called extreme points. They are not necessarily unique. For a polytope, one
of its vertices can always be selected as a supporting point for a given direction.



3.8 Polyhedra 63

) /
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Figure 3.20 Simplices of dimension 0 through 3: a point, a line segment, a triangle, and a
tetrahedron.

When a support point is a vertex, the point is commonly called a supporting
vertex.

A support mapping (or support function) is a function, Sc(d), associated with a convex
set C that maps the direction d into a supporting point of C. For simple convex
shapes — such as spheres, boxes, cones, and cylinders — support mappings can be
given in closed form. For example, for a sphere C centered at O and with a radius
of r, the support mapping is given by Sc(d) = O + rd/ |d| (Figure 3.21b). Convex
shapes of higher complexity require the support mapping function to determine a
supporting point using numerical methods.

For a polytope of n vertices, a supporting vertex is trivially found in O(n) time
by searching over all vertices. Assuming a data structure listing all adjacent vertex
neighbors for each vertex, an extreme vertex can be found through a simple hill-
climbing algorithm, greedily visiting vertices more and more extreme until no vertex
more extreme can be found. This approach is very efficient, as it explores only a
small corridor of vertices as it moves toward the extreme vertex. For larger polyhedra,
the hill climbing can be sped up by adding one or more artificial neighbors to the
adjacency list for a vertex. Through precomputation of a hierarchical representation
of the vertices, it is possible to locate a supporting point in O(logn) time. These

d/'

» P=5.)
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Figure 3.21 (a) A supporting vertex P of polygon C with respect to the direction d. (b) A
supporting point P of circle C with respect to the direction d. In both cases, P is given by the
support mapping function Sc(d).
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ideas of accelerating the search for supporting vertices are further elaborated on in
Chapter 9.

A supporting plane is a plane through a supporting point with the given direction
as the plane normal. A plane is supporting for a polytope if all polytope vertices lie
on the same side of the plane as the polytope centroid. The centroid of a polytope
defined by the vertexset {P, Py, ..., P,} is the arithmetic mean of the vertex positions:
(Py+Py+---+Py)in.

A separating plane of two convex sets is a plane such that one set is fully in the
positive (open) halfspace and the other fully in the negative (open) halfspace. An axis
orthogonal to a separating plane (parallel to its normal) is referred to as a separating
axis. For two nonintersecting convex sets, it can be shown that a separating axis
(or plane) always exists. The same is not necessarily true for concave sets, however.
Separating axes are revisited in more detail in Chapter 5.

The surface of a polyhedron is often referred to as a 2-manifold. This topological
term implies that the neighborhood of each point of the surface is topologically
equivalent (or homeomorphic) to a disk. A polyhedron surface being 2-manifold implies
that an edge of the polyhedron must connect to exactly two faces (or the neighborhood
of a point on the edge would not be disk-like).

The number of vertices (V), faces (F), and edges (E) of a polyhedron relate accord-
ing to the Euler formula V 4+ F — E = 2. It is possible to generalize the Euler formula
to hold for polyhedra with holes. The Euler formula is revisited in Chapter 12.

Testing Polyhedral Convexity

Similar to the convexity test for a polygon, a polyhedron P is convex if and only if for
all faces of P all vertices of P lie (strictly) on the same side of that face. A separate
test for coincident vertices and collinear edges of the polyhedron faces is required to
make the test robust, usually with some tolerance added for determining coincidency
and collinearity. The complexity of this test is O(1?).

A faster O(n) approach is to compute for each face F of P the centroid C of F,
and for all neighboring faces G of F test if C lies behind the supporting plane of
G. If some C fails to lie behind the supporting plane of one or more neighboring
faces, P is concave, and is otherwise assumed convex. However, note that just as the
corresponding polygonal convexity test may fail for a pentagram this test may fail for,
for example, a pentagram extruded out of its plane and capped at the ends.

Computing Convex Hulls

Among other uses, convex hulls can serve as tight bounding volumes for collision
geometry. Many different algorithms for computing convex hulls have been proposed.
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Figure 3.22 Andrew’s algorithm. Top left: the point set. Top right: the points sorted (lexi-
cographically) from left to right. Middle left: during construction of the upper chain. Middle
right: the completed upper chain. Lower left: the lower chain. Lower right: the two chains
together forming the convex hull.

Two of them are briefly described in the next two sections: Andrew’s algorithm and
the Quickhull algorithm.

Andrew’s Algorithm

One of the most robust and easy to implement 2D convex hull algorithms is Andrew’s
algorithm [Andrew?79]. In its first pass, it starts by sorting all points in the given point
set from left to right. In subsequent second and third passes, chains of edges from
the leftmost to the rightmost point are formed, corresponding to the upper and lower
half of the convex hull, respectively. With the chains created, the hull is obtained by
simply connecting the two chains end to end. The process is illustrated in Figure 3.22.
The main step lies in the creation of the chains of hull edges. To see how one of the
chains is formed, consider the partially constructed upper chain of points, as shown
in the middle left-hand illustration. To simplify the presentation, it is assumed there
are not multiple points of the same x coordinate (this assumption is lifted further on).

Initially, the two leftmost points, A and B, are taken to form the first edge of the
chain. The remaining points are now processed in order, considered one by one for
addition to the hull chain. If the next point for consideration lies to the right of the
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current last edge of the chain, the point is tentatively assumed part of the hull and is
added to the chain. However, if the next point lies to the left of the current last edge
of the chain, this point clearly lies outside the hull and the hull chain must be in error.
The last point added to the chain is therefore removed, and the test is applied again.
The removal of points from the chain is repeated until the next point lies to the right
of the last edge of the chain, after which the next point is appended to the hull chain.

The next point in the example is point C. C lies to the left of edge AB, and thus
the tentative hull must be in error and B is removed from the chain. Because there
are no more points to delete (A must lie on the hull, being the leftmost point), C is
added to the chain, making the hull chain A — C. Next is point D, which lies to the
right of edge AC, and is therefore added to the chain. The next point is E, which lies
to the right of CD, and thus E is also added to the chain, as is the next point, F. Point
G lies to the left of edge EF, and thus again the tentative hull chain must be in error
and F is removed from the chain. Next, G is found to lie to the left of DE as well, and
thus E is also removed from the chain. Finally, G now lies to the right of the last edge
on the chain, CD, and G is added to the chain, which at this pointisA — C — D — G.
Proceeding to the remaining points, the final upper chain ends up as shown in the
middle right-hand illustration. An analogous process is applied to form the lower
hull chain. Remaining then is to handle the case of multiple points sharing the same
x coordinate. The straightforward solution is to consider only the topmost point for
addition to the upper chain, and only the bottommost point for addition to the lower
chain.

It is easy to write an in-situ version of Andrew’s algorithm. Thus, it can with benefit
be used on point sets represented as arrays.

The Quickhull Algorithm

Although Andrew’s algorithm works very well in 2D, it is not immediately clear how
to extend it to work in 3D. An alternative method that works in both 2D and 3D is
the Quickhull algorithm. The basic idea of the Quickhull algorithm is very simple, and
is illustrated in Figure 3.23 for the 2D case.

In a first step, the bounding box of the point set is obtained, and in the general case
the four extreme points of the set (lying on each of the four sides of the bounding
box) are located. Because these points are extreme, they must lie on the convex hull,
and thus form a quadrilateral “first approximation”of the convex hull (Figure 3.23, top
left). As such, any points lying inside this quadrilateral clearly cannot lie on the convex
hull of the point set and can be removed from further consideration (Figure 3.23, top
right). Some of the points lying outside the quadrilateral must, however, lie on the
hull, and thus the approximation is now refined. For each edge of the quadrilateral,
the point outside the edge farthest away from the edge (if any) is located. Because
each such point is extreme in the direction perpendicularly away from the edge, it
must lie on the hull. Therefore, these points are inserted into the hull, between the two
points of the edge they were outside of (Figure 3.23, bottom left). Together with the
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Figure 3.23 First steps of the Quickhull algorithm. Top left: the four extreme points (on the
bounding box of the point set) are located. Top right: all points inside the region formed by
those points are deleted, as they cannot be on the hull. Bottom left: for each edge of the
region, the point farthest away from the edge is located. Bottom right: all points inside the
triangular regions so formed are deleted, and at this point the algorithm proceeds recursively
by locating the points farthest from the edges of these triangle regions, and so on.

endpoints of the edge, these new points form a triangular region. Just as before, any
points located inside this region cannot be on the hull and can be discarded (Figure
3.23, bottom right). The procedure now recursively repeats the same procedure for
each new edge that was added to the hull, terminating the recursion when no points
lie outside the edges.

Although the preceding paragraph completes the overall algorithm description,
two minor complications must be addressed in a robust implementation. The first
complication is that the initial hull approximation may not always be a quadrilateral.
If an extreme point lies, say, in the bottom left-hand corner, the initial shape may
instead be a triangle. If another extreme point lies in the top right-hand corner,
it may be a degenerate hull, consisting of only two points. To avoid problems, an
implementation must be written to handle an initial hull approximation of a variable
number of edges. The second complication is that there might not be a single unique
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point on the edge of the initial bounding box, or a single unique point farthest away
from an edge. There might be several points on a given bounding box edge, or several
points equally far away from an edge. In both cases, one of the two points that lie
closest to the edge endpoints must be chosen as the extreme point. Any points that
lie between these two points are generally not considered vertices of the convex hull,
as they would lie on an edge, collinear with the edge’s end vertices.

Given an edge specified by two points A and B, the point of a point set P farthest
from the edge can be found by projecting the points onto a perpendicular to the edge.
The point projecting farthest along the perpendicular is the sought point. To break ties
between two points equally far along the perpendicular, the one projecting farthest
along AB is selected as the farthest point. This procedure is illustrated through the
following code:

// Return index i of point p[i] farthest from the edge ab, to the left of the edge
int PointFarthestFromEdge (Point2D a, Point2D b, Point2D p[], int n)

{

// Create edge vector and vector (counterclockwise) perpendicular to it
Vector2D e = b — a, eperp = Vector2D(-e.y, e.x);

// Track index, 'distance' and 'rightmostness' of currently best point
int bestIndex = -1;

float maxVal = -FLT_MAX, rightMostVal = -FLT_MAX;

// Test all points to find the one farthest from edge ab on the left side

for (int i

}

1; i <n; i++) {
float d = Dot2D(p[i] — a, eperp); // d is proportional to distance along eperp
float r = Dot2D(p[i] — a, e); // r is proportional to distance along e
if (d > maxval || (d == maxVal & r > rightMostval)) {
bestIndex = i;
maxVal = d;
rightMostVal = r;

return bestIndex;

The Quickhull algorithm can also be made to work in three dimensions (and
higher) [Barber96]. In 3D, the initial approximation starts from the (up to) six extreme
points that lie on the axis-aligned box that bounds the point set. Now, instead of
finding points that are farthest from the edges of a polygon, points farthest from the
faces of a polyhedron are located. Instead of breaking the polygon edges up as a
new point is inserted into the hull, the polyhedron faces are broken up into two or
more faces.
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Figure 3.24 A triangle divides its supporting plane into seven Voronoi feature regions: one
face region (F), three edge regions (E4, E, E3), and three vertex regions (V4, V3, V3).

A solid implementation of the Quickhull algorithm, Qhull by Brad Barber, is avail-
able for download on the Internet. Convex hull algorithms in general are described
in some detail in [O’Rourke98].

Voronoi Regions

A concept important to the design of many intersection tests is that of Voronoi
regions. Given a set S of points in the plane, the Voronoi region of a point P in S
is defined as the set of points in the plane closer to (or as close to) P than to any other
pointsin S. Voronoi regions and the closely related Voronoi diagrams (describing the set
of points equally close to two or more points in S) come from the field of computational
geometry, in which they are used for nearest neighbor queries, among other uses.

Extending the concept of Voronoi regions slightly, it also becomes quite useful
for collision detection applications. Given a polyhedron P, let a feature of P be one of
its vertices, edges, or faces. The Voronoi region of a feature F of P is then the set of
points in space closer to (or as close to) F than to any other feature of P. Figure 3.24
illustrates the Voronoi regions determined by the features of a triangle. Three types of
Voronoi feature regions of a cube are illustrated in Figure 3.25. The terms Voronoi region
and Voronoi feature region are used interchangeably in this book. It is important not
to confuse the Voronoi regions with the barycentric regions discussed in Section 3.4.
The boundary planes of a Voronoi region are referred to as Voronoi planes.

Given a convex polyhedron P, all points in space exterior to P can be classified as
lying in a Voronoi feature region of a vertex, edge, or face of P, with the boundary
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Figure 3.25 The three types of Voronoi feature regions of a 3D cube. (a) An edge region.
(b) A vertex region. (c) A face region.

between two neighboring Voronoi feature regions considered to belong to only one
of the regions. Because the Voronoi regions create a partitioning of the space exterior
to a polyhedron, they can be used, for instance, to determine the closest point on a
convex polyhedral object to some point Q in space. This determination is done by
walking from region to region until Q is found to be inside the region. The closest
point on the object to Q is then the projection of Q onto the feature with which the
given region is associated. For repeated queries, it is possible to exploit coherence by
remembering from frame to frame which region the closest point was in and start the
new search from there. The concept of Voronoi regions is used in several intersection
tests, described in Chapter 5. Voronoi regions are also discussed in Chapter 9, in the
context of intersection of convex polyhedra.

Minkowski Sum and Difference

Two important operations on point sets will be referred to throughout parts of this
book. These operations are the Minkowski sum and the Minkowski difference of point
sets. Let A and B be two point sets, and let a and b be the position vectors corre-
sponding to pairs of points in A and B. The Minkowski sum, A @ B, is then defined
as the set

A®B={a+b:acAbeB},

where a+ b is the vector sum of the position vectors a and b. Visually, the Minkowski
sum can be seen as the region swept by A translated to every point in B (or vice versa).
An illustration of the Minkowski sum is provided in Figure 3.26.
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Figure 3.26 The Minkowski sum of a triangle A and a square B.

The Minkowski difference of two point sets A and B is defined analogously to the
Minkowski sum:

AoB={a—b:acAbeB}.

Geometrically, the Minkowski difference is obtained by adding A to the reflection of
B about the origin; that is, A© B = A & (—B) (Figure 3.27). For this reason, both
terms are often simply referred to as the Minkowski sum. For two convex polygons, P
and Q, the Minkowski sum R = P @ Q has the properties that R is a convex polygon
and the vertices of R are sums of the vertices of P and Q. The Minkowski sum of two
convex polyhedra is a convex polyhedron, with corresponding properties.

Minkowski sums both directly and indirectly apply to collision detection. Con-
sider the problem of having a complex object move past a number of other equally
complex obstacles. Instead of performing expensive tests on these complex objects,
the obstacles can be “grown” by the object at the same time the object is “shrunk,”
allowing the collision testing of the moving object to be treated as a moving point
against the grown obstacles. This idea is further explored in, for example, Chapter 8,
in regard to BSP trees.

The Minkowski difference is important from a collision detection perspective
because two point sets A and B collide (that is, have one or more points in com-
mon) if and only if their Minkowski difference C (C = A & B) contains the origin
(Figure 3.27). In fact, it is possible to establish an even stronger result: computing
the minimum distance between A and B is equivalent to computing the minimum
distance between C and the origin. This fact is utilized in the GJK algorithm presented
in Chapter 9. The result follows because

distance(A, B) = min {|a —b|| :a € A,b € B}
=min{|c|:ce Ao B}.



72 Chapter 3 A Math and Geometry Primer

3.12

A@(]—B)

Figure 3.27 Because rectangle A and triangle B intersect, the origin must be contained in
their Minkowski difference.

Note that the Minkowski difference of two convex sets is also a convex set, and thus
its point of minimum norm is unique.

There are algorithms for computing the Minkowski sum explicitly (for example,
[Bekker01]). In this book, however, the Minkowski sum is primarily used conceptually
to help recast a collision problem into an equivalent problem. Occasionally, such as
in the GJK algorithm, the Minkowski sum of two objects is computed implicitly.

The Minkowski difference of two objects is also sometimes referred to as the trans-
lational configuration space obstacle (or TCSO). Queries on the TCSO are said to be
performed in configuration space.

Summary

Working in the area of collision detection requires a solid grasp of geometry and linear
algebra, not to mention mathematics in general. This chapter has reviewed some
concepts from these fields, which permeate this book. In particular, it is important
to understand fully the properties of dot, cross, and scalar triple products because
these are used, for example, in the derivation of virtually all primitive intersection
tests (compare Chapter 5). Readers who do not feel comfortable with these math
concepts may want to consult linear algebra textbooks, such as those mentioned in
the chapter introduction.

This chapter also reviewed a number of geometrical concepts, including points,
lines, rays, segments, planes, halfspaces, polygons, and polyhedra. A delightful
introduction to these and other geometrical concepts is given in [Mortenson99].

Relevant concepts from computational geometry and from the theory of convex
sets were also reviewed. Voronoi regions are important in the computation of closest
points. The existence of separating planes and axes for nonintersecting convex objects
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allows for efficient tests for the separation of these objects, as further discussed in
Chapters 5 and 9. The Minkowski sum and difference operations allow certain col-
lision detection problems to be recast in a different form, which may be easier to
compute. Chapters 5 and 9 discuss such transformations as well.

A good introduction to the field of computational geometry is [O'Rourke98]. The
theory of convex sets (in the context of convex optimization) is discussed in [Boyd04].
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Chapter 4

Bounding Volumes

Directly testing the geometry of two objects for collision against each other is often
very expensive, especially when objects consist of hundreds or even thousands of
polygons. To minimize this cost, object bounding volumes are usually tested for
overlap before the geometry intersection test is performed.

A bounding volume (BV) is a single simple volume encapsulating one or more
objects of more complex nature. The idea is for the simpler volumes (such as boxes
and spheres) to have cheaper overlap tests than the complex objects they bound.
Using bounding volumes allows for fast overlap rejection tests because one need
only test against the complex bounded geometry when the initial overlap query for
the bounding volumes gives a positive result (Figure 4.1).

Of course, when the objects really do overlap, this additional test results in an
increase in computation time. However, in most situations few objects are typically
close enough for their bounding volumes to overlap. Therefore, the use of bounding
volumes generally results in a significant performance gain, and the elimination of
complex objects from further tests well justifies the small additional cost associated
with the bounding volume test.

For some applications, the bounding volume intersection test itself serves as a
sufficient proof of collision. Where it does not, it is still generally worthwhile pruning
the contained objects so as to limit further tests to the polygons contained in the
overlap of the bounding volumes. Testing the polygons of an object A against the
polygons of an object B typically has an O(n?) complexity. Therefore, if the number of
polygons to be tested can be, say, cut in half, the workload will be reduced by 75%.
Chapter 6, on bounding volume hierarchies, provides more detail on how to prune
object and polygon testing to a minimum. In this chapter, the discussion is limited
to tests of pairs of bounding volumes. Furthermore, the tests presented here are
primarily homogeneous in that bounding volumes of the same type are tested against
each other. It is not uncommon, however, to use several types of bounding volumes
at the same time. Several nonhomogeneous BV intersection tests are discussed in the
next chapter.

75
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Figure 4.1 The bounding volumes of A and B do not overlap, and thus A and B cannot
be intersecting. Intersection between C and D cannot be ruled out because their bounding
volumes overlap.

Many geometrical shapes have been suggested as bounding boxes. This chapter
concentrates on the shapes most commonly used; namely, spheres, boxes, and convex
hull-like volumes. Pointers to a few less common bounding volumes are provided in
Section 4.7.

Desirable BV Characteristics

Not all geometric objects serve as effective bounding volumes. Desirable properties
for bounding volumes include:

e Inexpensive intersection tests

Tight fitting
e Inexpensive to compute

e Easy to rotate and transform

Use little memory

The key idea behind bounding volumes is to precede expensive geometric tests
with less expensive tests that allow the test to exit early, a so-called “early out.” To
support inexpensive overlap tests, the bounding volume must have a simple geomet-
ric shape. At the same time, to make the early-out test as effective as possible the
bounding volume should also be as tight fitting as possible, resulting in a trade-off
between tightness and intersection test cost. The intersection test does not necessarily
just cover comparison against volumes of the same type, but might also test against
other types of bounding volumes. Additionally, testing may include queries such as
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BETTER BOUND, BETTER CULLING

FASTER TEST, LESS MEMORY

SPHERE AABB OBB 8-DOP CONVEX HULL

Figure 4.2 Types of bounding volumes: sphere, axis-aligned bounding box (AABB), oriented
bounding box (OBB), eight-direction discrete orientation polytope (8-DOP), and convex hull.

point inclusion, ray intersection with the volume, and intersection with planes and
polygons.

Bounding volumes are typically computed in a preprocessing step rather than at
runtime. Even so, it is important that their construction does not negatively affect
resource build times. Some bounding volumes, however, must be realigned at runtime
when their contained objects move. For these, if the bounding volume is expensive
to compute realigning the bounding volume is preferable (cheaper) to recomputing
it from scratch.

Because bounding volumes are stored in addition to the geometry, they should
ideally add little extra memory to the geometry. Simpler geometric shapes require less
memory space. As many of the desired properties are largely mutually exclusive, no
specific bounding volume is the best choice for all situations. Instead, the best option
is to test a few different bounding volumes to determine the one most appropriate
for a given application. Figure 4.2 illustrates some of the trade-offs among five of
the most common bounding volume types. The given ordering with respect to better
bounds, better culling, faster tests, and less memory should be seen as a rough, rather
than an absolute, guide. The first of the bounding volumes covered in this chapter is
the axis-aligned bounding box, described in the next section.

Axis-aligned Bounding Boxes (AABBs)

The axis-aligned bounding box (AABB) is one of the most common bounding volumes.
It is a rectangular six-sided box (in 3D, four-sided in 2D) categorized by having its
faces oriented in such a way that its face normals are at all times parallel with the
axes of the given coordinate system. The best feature of the AABB is its fast overlap
check, which simply involves direct comparison of individual coordinate values.
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(a) (b) ()

Figure 4.3 The three common AABB representations: (a) min-max, (b) min-widths, and
(c) center-radius.

There are three common representations for AABBs (Figure 4.3). One is by the
minimum and maximum coordinate values along each axis:

// region R = {(x, y, z) | min.x<=x<=max.x, min.y<=y<=max.y, min.z<=z<=max.z }
struct AABB {

Point min;

Point max;

}s

This representation specifies the BV region of space as that between the two oppos-
ing corner points: min and max. Another representation is as the minimum corner
point min and the width or diameter extents dx, dy, and dz from this corner:

// region R={(x, y, z) | min.x<=x<=min.x+dx, min.y<=y<=min.y+dy, min.z<=z<=min.z+dz}
struct AABB {

Point min;

float d[3]; // diameter or width extents (dx, dy, dz)

|5
The last representation specifies the AABB as a center point C and halfwidth
extents or radii rx, ry, and rz along its axes:
/] region R = {(x, y, z) | |c.x-x|<=rx, |c.y-y|<=ry, |c.z-z|<=rz }

struct AABB {

Point c; // center point of AABB

float r[3]; // radius or halfwidth extents (rx, ry, rz)
IH
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In terms of storage requirements, the center-radius representation is the most
efficient, as the halfwidth values can often be stored in fewer bits than the center
position values. The same is true of the width values of the min-width representation,
although to a slightly lesser degree. Worst is the min-max representation, in which
all six values have to be stored at the same precision. Reducing storage requires
representing the AABB using integers, and not floats, as used here. If the object
moves by translation only, updating the latter two representations is cheaper than
the min-max representation because only three of the six parameters have to be
updated. A useful feature of the center-radius representation is that it can be tested
as a bounding sphere as well.

AABB-AABB Intersection

Overlap tests between AABBs are straightforward, regardless of representation. Two
AABBs only overlap if they overlap on all three axes, where their extent along
each dimension is seen as an interval on the corresponding axis. For the min-max
representation, this interval overlap test becomes:

int TestAABBAABB(AABB a, AABB b)

{
// Exit with no intersection if separated along an axis
if (a.max[0] < b.min[0] || a.min[0] > b.max[0]) return O;
if (a.max[1] < b.min[1] || a.min[1] > b.max[1]) return 0;
if (a.max[2] < b.min[2] || a.min[2] > b.max[2]) return 0;
// Overlapping on all axes means AABBs are intersecting
return 1;

}

The min-width representation is the least appealing. Its overlap test, even when
written in an economical way, still does not compare with the first test in terms of
number of operations performed:

int TestAABBAABB(AABB a, AABB b)

{
float t;
if ((t = a.min[0] - b.min[0]) > b.d[0] || -t > a.d[0]) return 0;
if ((t = a.min[1] - b.min[1]) > b.d[1] || -t > a.d[1]) return 0;
if ((t = a.min[2] - b.min[2]) > b.d[2] || -t > a.d[2]) return O;
return 1;
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Finally, the center-radius representation results in the following overlap test:

int TestAABBAABB(AABB a, AABB b)

{
if (Abs(a.c[0] - b.c[0]) > (a.r[0] + b.r[0])) return O;
if (Abs(a.c[1] - b.c[1]) > (a.r[1] + b.r[1])) return 0;
if (Abs(a.c[2] - b.c[2]) > (a.r[2] + b.r[2])) return O;
return 1;

}

On modern architectures, the Abs() call typically translates into just a single
instruction. If not, the function can be effectively implemented by simply stripping
the sign bit of the binary representation of the floating-point value. When the AABB
fields are declared as integers instead of floats, an alternative test for the center-
radius representation can be performed as follows. With integers, overlap between
two ranges [A, B] and [C, D] can be determined by the expression

overlap = (unsigned int)(B - C) <= (B - A) + (D - C);

By forcing an unsigned underflow in the case when C > B, the left-hand side
becomes an impossibly large value, rendering the expression false. The forced over-
flow effectively serves to replace the absolute value function call and allows the
center-radius representation test to be written as:

int TestAABBAABB(AABB a, AABB b)

{

int r;

r = a.r[0] + b.r[0]; if ((unsigned int)(a.c[0] - b.c[0] + r) > r + r) return 0;
r = a.r[1] + b.r[1]; if ((unsigned int)(a.c[1] - b.c[1] + r) > r + r) return 0;
r = a.r[2] + b.r[2]; if ((unsigned int)(a.c[2] - b.c[2] + r) > r + r) return 0;
return 1;

Workingin integers allows other implementational tricks, many of which are archi-
tecture dependent. SIMD instructions, if present, typically allow AABB tests to be
implemented in just a few instructions worth of code (examples of which are found
in Chapter 13). Finally, in a collision detection system that has to perform a mas-
sive number of overlap tests it may be worthwhile ordering the tests according to
the likelihood of their being taken. For instance, if operations largely take place in
an almost flat xz plane the y-coordinate test should be performed last, as it is least
discriminatory.



4.2.2

4.2 Axis-aligned Bounding Boxes (AABBs) 81

(a) (b) (c)

Figure 4.4 (a) AABBs A and B in world space. (b) The AABBs in the local space of A. (c) The
AABBs in the local space of B.

Computing and Updating AABBs

Bounding volumes are usually specified in the local model space of the objects they
bound (which may be world space). To perform an overlap query between two bound-
ing volumes, the volumes must be transformed into a common coordinate system.
The choice stands between transforming both bounding volumes into world space
and transforming one bounding volume into the local space of the other. One benefit
of transforming into local space is that it results in having to perform half the work
of transformation into world space. It also often results in a tighter bounding volume
than does transformation into world space. Figure 4.4 illustrates the concept. The
recalculated AABBs of objects A and B overlap in world space (Figure 4.4a). However,
in the space of object B, the objects are found to be separated (Figure 4.4c).
Accuracy is another compelling reason for transforming one bounding volume
into the local space of the other. A world space test may move both objects far away
from the origin. The act of adding in the translation during transformation of the local
near-origin coordinates of the bounding volume can force many (or even all) bits of
precision of the original values to be lost. For local space tests, the objects are kept
near the origin and accuracy is maintained in the calculations. Note, however, that by
adjusting the translations so that the transformed objects are centered on the origin
world space transformations can be made to maintain accuracy as well.
Transformation into world space becomes interesting when updated bounding
volumes can be temporarily cached for the duration of a time step. By caching a
bounding volume after transformation, any bounding volume has to be transformed
just once into any given space. As all bounding volumes are transformed into the
same space when transforming into world space, this becomes a win in situations
in which objects are being checked for overlap multiple times. In contrast, caching
updated bounding volumes does not help at all when transforming into the local
space of other bounding volumes, as all transformations involve either new objects
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4.2.3

4.2.4

or new target coordinate systems. Caching of updated bounding volumes has the
drawback of nearly doubling the required storage space, as most fields of a bounding
volume representation are changed during an update.

Some bounding volumes, such as spheres or convex hulls, naturally trans-
form into any coordinate system, as they are not restricted to specific orientations.
Consequently, they are called nonaligned or (freely) oriented bounding volumes.
In contrast, aligned bounding volumes (such as AABBs) are restricted in what ori-
entations they can assume. The aligned bounding volumes must be realigned as
they become unaligned due to object rotation during motion. For updating or
reconstructing the AABB, there are four common strategies:

Utilizing a fixed-size loose AABB that always encloses the object

Computing a tight dynamic reconstruction from the original point set

Computing a tight dynamic reconstruction using hill climbing

Computing an approximate dynamic reconstruction from the rotated AABB

The next four sections cover these approaches in more detail.

AABB from the Object Bounding Sphere

The first method completely circumvents the need to reshape the AABB by making it
large enough to contain the object at any orientation. This fixed-size encompassing
AABB is computed as the bounding box of the bounding sphere of the contained
object A. The bounding sphere, in turn, is centered in the pivot point P that A rotates
about. Its radius r is the distance to the farthest object vertex from this center (as
illustrated in Figure 4.5). By making sure the object pivot P lies in the center of the
object, the sphere radius is minimized.

The benefit of this representation is that during update this AABB simply need be
translated (by the same translation applied to the bounded object), and any object
rotation can be completely ignored. However, the bounding sphere itself (which has
a better sound than the AABB) would also have this property. Thus, bounding spheres
should be considered a potential better choice of bounding volume in this case.

AABB Reconstructed from Original Point Set

The update strategy described in this section (as well as the remaining two update
strategies to be described) dynamically resizes the AABB as it is being realigned with
the coordinate system axes. For a tightly fitted bounding box, the underlying geometry
of the bounded object is examined and the box bounds are established by finding
the extreme vertices in all six directions of the coordinate axes. The straightforward
approach loops through all vertices, keeping track of the vertex most distant along
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Figure 4.5 AABB of the bounding sphere that fully contains object A under an arbitrary
orientation.

the direction vector. This distance can be computed through the projection of the
vertex vector onto the direction vector. For comparison reasons, it is not necessary
to normalize the direction vector. This procedure is illustrated in the following code,
which finds both the least and most distant points along a direction vector:

// Returns indices imin and imax into pt[] array of the least and
// most, respectively, distant points along the direction dir
void ExtremePointsAlongDirection(Vector dir, Point pt[], int n, int *imin, int *imax)
{
float minproj = FLT_MAX, maxproj = -FLT_MAX;
for (int i = 0; i < n; i++) {
/] Project vector from origin to point onto direction vector
float proj = Dot(pt[i], dir);
/] Keep track of least distant point along direction vector
if (proj < minproj) {
minproj = proj;
*imin = i;
}
/! Keep track of most distant point along direction vector
if (proj > maxproj) {
maxproj = proj;
*imax = i;
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4.2.5

Figure 4.6 When computing a tight AABB, only the highlighted vertices that lie on the
convex hull of the object must be considered.

When # is large, this O(n) procedure can be expensive if performed at runtime.
Preprocessing of the vertex data can serve to speed up the process. One simple
approach that adds no extra data is based on the fact that only the vertices on the
convex hull of the object can contribute to determining the bounding volume shape
(Figure 4.6). In the preprocessing step, all k vertices on the convex hull of the object
would be stored so that they come before all remaining vertices. Then, a tight AABB
could be constructed by examining these k first vertices only. For general concave
volumes this would be a win, but a convex volume, which already has all of its
vertices on its convex hull, would see no improvement.

By use of additional, dedicated, precomputed search structures, locating extremal
vertices can be performed in O(logn) time. For instance, the Dobkin-Kirkpatrick
hierarchy (described in Chapter 9) can be used for this purpose. However, due to
the extra memory required by these structures, as well as the overhead in traversing
them, they have to be considered overkill in most circumstances. Certainly if tight
bounding volumes are that important, tighter bounding volumes than AABBs should
be considered.

AABB from Hill-climbing Vertices of the Object
Representation

Another way to speed up the AABB realignment process is to use an object rep-
resentation in which neighboring vertices of a vertex can be found quickly. Such a
representation allows the extreme vertices that define the new AABB to be located
through simple hill climbing (Figure 4.7).
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(a) (b)

Figure 4.7 (a) The extreme vertex E in direction d. (b) After object rotates counterclockwise,
the new extreme vertex £ in direction d can be obtained by hill climbing along the vertex path
highlighted in gray.

Instead of keeping track of the minimum and maximum extent values along each
axis, six vertex pointers are maintained. Corresponding to the same values as before,
these now actually point at the (up to six) extremal vertices of the object along each
axis direction. The hill-climbing step now proceeds by comparing the referenced
vertices against their neighbor vertices to see if they are still extremal in the same
direction as before. Those that are not are replaced with one of their more extreme
neighbors and the test is repeated until the extremal vertex in that direction is found.
So as not to get stuck in local minima, the hill-climbing process requires objects to
be convex. For this reason, hill climbing is performed on precalculated convex hulls
of nonconvex objects. Overall, this recalculation of the tight AABB is an expected
constant-time operation.

Only having to transform vertices when actually examined by the hill-climbing
process greatly reduces computational effort. However, this can be further improved
by the realization that only one of the x, y, or z components is used in finding the
extremal vertex along a given axis. For instance, when finding the extremal point
along the +x axis only the x components of the transformed vertices need to be
computed. Hence, the transformational cost is reduced by two-thirds.

Some care must be taken in order to write a robust implementation of this hill-
climbing method. Consider an extremal vertex along any axis surrounded by coplanar
vertices only. If the object now rotates 180 degrees about any of the remaining two
axes, the vertex becomes extremal along the opposite direction along the same axis.
However, as it is surrounded by co-planar vertices, the hill-climbing step cannot find
a better neighboring vertex and thus terminates with a vertex that is, in fact, the least
extremal in the sought direction! A robust implementation must special-case this
situation. Alternatively, coplanar vertices can be removed in a preprocessing step,
as described in Chapter 12. The problem of finding extremal vertices is revisited in
Section 9.5.4.
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4.2.6 AABB Recomputed from Rotated AABB

Last of the four realignment methods, the most common approach is to simply wrap
the rotated AABB itself in a new AABB. This produces an approximate rather than
a tight AABB. As the resulting AABB is larger than the one that was started with, it
is important that the approximate AABB is computed from a rotation of the original
local-space AABB. If not, repeated recomputing from the rotated AABB of the previous
time step would make the AABB grow indefinitely.

Consider an axis-aligned bounding box A affected by a rotation matrix M, resulting
in an oriented bounding box A" at some orientation. The three columns (or rows,
depending on what matrix convention is used) of the rotation matrix M give the
world-coordinate axes of A’ inits local coordinate frame. (If vectors are column vectors
and multiplied on the right of the matrix, then the columns of M are the axes. If instead
the vectors are multiplied on the left of the matrix as row vectors, then the rows of M
are the axes.)

Say A is given using min-max representation and M is a column matrix. The axis-
aligned bounding box B that bounds A’ is specified by the extent intervals formed by
the projection of the eight rotated vertices of A’ onto the world-coordinate axes. For,
say, the x extents of B, only the x components of the column vectors of M contribute.
Therefore, finding the extents corresponds to finding the vertices that produce the
minimal and maximal products with the rows of M. Each vertex of B is a combination
of three transformed min or max values from A. The minimum extent value is the
sum of the smaller terms, and the maximum extent is the sum of the larger terms.
Translation does not affect the size calculation of the new bounding box and can just
be added in. For instance, the maximum extent along the x axis can be computed as:

B.max[0]

max(m[0] [0] * A.min[0], m[0] [0] * A.max[0])
max(m[0] [1] * A.min[1], m[0] [1] * A.max[1])
max(m[0][2] * A.min[2], m[0][2] * A.max[2]) + t[0];

+ +

Computing an encompassing bounding box for a rotated AABB using the min-max
representation can therefore be implemented as follows:

// Transform AABB a by the matrix m and translation t,
// find maximum extents, and store result into AABB b.
void UpdateAABB(AABB a, float m[3][3], float t[3], AABB &b)
{
// For all three axes
for (int i = 0; i < 3; i++) {
// Start by adding in translation
b.min[i] = b.max[i] = t[il;
// Form extent by summing smaller and larger terms respectively
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for (int j = 05 j < 3; j++) {

float e = m[i][j] * a.min[j]:
float f = m[i][j] * a.max[j];
if (e < f) {

b.min[i] += e;

b.max[i] += f;
} else {

b.min[i] += f;

b.max[i] += e;

Correspondingly, the code for the center-radius AABB representation becomes
[Arvo90]:

// Transform AABB a by the matrix m and translation t,
// find maximum extents, and store result into AABB b.
void UpdateAABB(AABB a, float m[3][3], float t[3], AABB &b)
{
for (int i = 0; i < 3; i++) {
b.c[i] = t[i];
b.r[i] = 0.0f;
for (int j = 0; j < 3; j++) {
b.c[i] += m[i][i] * a.c[il;
b.r[i] += Abs(m[i][j]) * a.r[il;

Note that computing an AABB from a rotated AABB is equivalent to computing it
from a freely oriented bounding box. Oriented bounding boxes and their intersection
tests will be described in more detail ahead. However, classed between the methods
presented here and those to be presented would be the method of storing oriented
bounding boxes with the objects but still intersecting them as reconstructed AABBs
(as done here). Doing so would require extra memory for storing the orientation
matrix. It would also involve an extra matrix-matrix multiplication for combining the
rotation matrix of the oriented bounding box with the transformation matrix M. The
benefit of this solution is that the reconstructed axis-aligned box would be much
tighter, starting with an oriented box. The axis-aligned test is also much cheaper than
the full-blown test for oriented boxes.
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4.3 Spheres

4.3.1

The sphere is another very common bounding volume, rivaling the axis-aligned
bounding box in popularity. Like AABBs, spheres have an inexpensive intersection
test. Spheres also have the benefit of being rotationally invariant, which means that
they are trivial to transform: they simply have to be translated to their new position.
Spheres are defined in terms of a center position and a radius:

/] Region R = { (x, y, z) | (x-c.x)"2 + (y-c.y)"2 + (z-c.z)"2 <= r’2 }
struct Sphere {

Point c; // Sphere center

float r; // Sphere radius
IH

At just four components, the bounding sphere is the most memory-efficient
bounding volume. Often a preexisting object center or origin can be adjusted to
coincide with the sphere center, and only a single component, the radius, need be
stored. Computing an optimal bounding sphere is not as easy as computing an opti-
mal axis-aligned bounding box. Several methods of computing bounding spheres are
examined in the following sections, in order of increasing accuracy, concluding with
an algorithm for computing the minimum bounding sphere. The methods explored
for the nonoptimal approximation algorithms remain relevant in that they can be
applied to other bounding volumes.

Sphere-sphere Intersection

The overlap test between two spheres is very simple. The Euclidean distance between
the sphere centers is computed and compared against the sum of the sphere radii. To
avoid an often expensive square root operation, the squared distances are compared.
The test looks like this:

int TestSphereSphere(Sphere a, Sphere b)

{

// Calculate squared distance between centers

Vector d = a.c - b.c;

float dist2 = Dot(d, d);

// Spheres intersect if squared distance is less than squared sum of radii
float radiusSum = a.r + b.r;

return dist2 <= radiusSum * radiusSum;
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Although the sphere test has a few more arithmetic operations than the AABB
test, it also has fewer branches and requires fewer data to be fetched. In modern
architectures, the sphere test is probably barely faster than the AABB test. However,
the speed of these simple tests should not be a guiding factor in choosing between
the two. Tightness to the actual data is a far more important consideration.

Computing a Bounding Sphere

A simple approximative bounding sphere can be obtained by first computing the
AABB of all points. The midpoint of the AABB is then selected as the sphere center,
and the sphere radius is set to be the distance to the point farthest away from this
center point. Note that using the geometric center (the mean) of all points instead of
the midpoint of the AABB can give extremely bad bounding spheres for nonuniformly
distributed points (up to twice the needed radius). Although this is a fast method, its
fit is generally not very good compared to the optimal method.

An alternative approach to computing a simple approximative bounding sphere
is described in [Ritter90]. This algorithm tries to find a good initial almost-bounding
sphere and then in a few steps improve it until it does bound all points. The algorithm
progresses in two passes. In the first pass, six (not necessarily unique) extremal points
along the coordinate system axes are found. Out of these six points, the pair of points
farthest apart is selected. (Note that these two points do not necessarily correspond
to the points defining the longest edge of the AABB of the point set.) The sphere
center is now selected as the midpoint between these two points, and the radius is
set to be half the distance between them. The code for this first pass is given in the
functions MostSeparatedPointsOnAABB() and SphereFromDistantPoints() of the
following:

// Compute indices to the two most separated points of the (up to) six points
// defining the AABB encompassing the point set. Return these as min and max.
void MostSeparatedPointsOnAABB(int &min, int &max, Point pt[], int numPts)

{

// First find most extreme points along principal axes
int minx = 0, maxx = 0, miny = 0, maxy = 0, minz = 0, maxz = 0;
for (int i = 1; i < numPts; i++) {

if (pt[i]l.x < pt[minx].x) minx = i;
if (pt[i].x > pt[maxx].x) maxx = i;
if (pt[il.y < pt[miny].y) miny = i;
if (pt[il.y > pt[maxy].y) maxy = i;
if (pt[il.z < pt[minz].z) minz = i;
if (pt[i]l.z > pt[maxz].z) maxz = i;
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// Compute the squared distances for the three pairs of points
float dist2x = Dot(pt[maxx] - pt[minx], pt[maxx] - pt[minx]);
float dist2y = Dot(pt[maxy] - pt[miny], pt[maxy] - pt[miny]);
float dist2z = Dot(pt[maxz] - pt[minz], pt[maxz] - pt[minz]);
// Pick the pair (min,max) of points most distant

min = minx;

max = maxx;

if (dist2y > dist2x &% dist2y > dist2z) {
max = maxy;
min = miny;

}

if (dist2z > dist2x &% dist2z > dist2y) {
max = maxz;
min = minz;

}
}
void SphereFromDistantPoints(Sphere &s, Point pt[], int numPts)
{
// Find the most separated point pair defining the encompassing AABB
int min, max;
MostSeparatedPointsOnAABB(min, max, pt, numPts);
// Set up sphere to just encompass these two points
s.c = (pt[min] + pt[max]) * 0.5f;
s.r = Dot(pt[max] - s.c, pt[max] - s.c);
s.r = Sqrt(s.r);
}

In the second pass, all points are looped through again. For all points outside the
current sphere, the sphere is updated to be the sphere just encompassing the old
sphere and the outside point. In other words, the new sphere diameter spans from
the outside point to the point on the backside of the old sphere opposite the outside
point, with respect to the old sphere center.

// Given Sphere s and Point p, update s (if needed) to just encompass p
void Sphere0OfSphereAndPt(Sphere &s, Point &p)
{

// Compute squared distance between point and sphere center

Vector d = p - s.c;

float dist2 = Dot(d, d);

// Only update s if point p is outside it
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if (dist2 > s.r * s.r) {
float dist = Sqrt(dist2);
float newRadius = (s.r + dist) * 0.5f;
float k = (newRadius - s.r) / dist;
s.r = newRadius;
s.c +=d * k;

The full code for computing the approximate bounding sphere becomes:

void RitterSphere(Sphere &s, Point pt[], int numPts)

{
// Get sphere encompassing two approximately most distant points
SphereFromDistantPoints(s, pt, numPts);
// Grow sphere to include all points
for (int i = 0; i < numPts; i++)
Sphere0fSphereAndPt (s, pt[il):
}

By starting with a better approximation of the true bounding sphere, the resulting
sphere could be expected to be even tighter. Using a better starting approximation is
explored in the next section.

Bounding Sphere from Direction of Maximum Spread

Instead of finding a pair of distant points using an AABB, as in the previous section, a
suggested approach is to analyze the point cloud using statistical methods to find its
direction of maximum spread [Wu92]. Given this direction, the two points farthest
away from each other when projected onto this axis would be used to determine the
center and radius of the starting sphere. Figure 4.8 indicates the difference in spread
for two different axes for the same point cloud.

Just as the mean of a set of data values (that is, the sum of all values divided by
the number of values) is a measure of the central tendency of the values, variance
is a measure of their dispersion, or spread. The mean u and the variance o? are
given by

1 n
Uu=- § Xi,
n i=1
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The square root of the variance is known as the standard deviation. For values spread
along a single axis, the variance is easily computed as the average of the squared
deviation of the values from the mean:

// Compute variance of a set of 1D values
float Variance(float x[], int n)

{
float u = 0.0f;
for (int i = 0; i1 < n; i++)
u += x[il;
u /= n;
float s2 = 0.0f;
for (int i = 0; i < n; i++)
s2 += (x[i] - u) * (x[i] - u);
return s2 / n;
}

Usually there is no obvious direct interpretation of variance and standard devia-
tion. They are, however, important as comparative measures. For two variables, the
covariance measures their tendency to vary together. It is computed as the average of
products of deviation of the variable values from their means. For multiple variables,
the covariance of the data is conventionally computed and expressed as a matrix, the
covariance matrix (also referred to as the variance-covariance or dispersion matrix).

(a) (b)

Figure 4.8 The same point cloud projected onto two different axes. In (a) the spread on the
axis is small. In (b) the spread is much larger. A bounding sphere can be determined from
the axis for which the projected point set has the maximum spread.
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The covariance matrix C = [cl-j] for a collection of n points Py, Py, ..., P, is given by

1 n
G =2 ,; (Pei = wi) (Prj — ),

or equivalently by

1 n
Ci]' = E (Z Pk/iPk,j> — uiu]-.
k=1

The u; (and u;) term is the mean of the i-th coordinate value of the points, given by

1 n
u; = Z Zpk,j.
k=1

Informally, to see how covariance works, consider the first covariance formula. When
two variables tend to deviate in the same direction from their respective means, the
product,

(Pri = i) (Pej = 1),

will be positive more often than negative. If the variables tend to deviate in dif-
ferent directions, the product will be negative more often than positive. The sum
of these products identifies how the variables co-vary. When implemented using
single-precision floats, the former of the two covariance formulas tends to produce
results that are more accurate by retaining more bits of precision. Using double
precision, there is typically little or no difference in the results. The following code
implements the first formula:

void CovarianceMatrix(Matrix33 &cov, Point pt[], int numPts)
{

float oon = 1.0f / (float)numPts;

Point ¢ = Point(0.0f, 0.0f, 0.0f);

float e00, ell, e22, e01l, e02, el2;

// Compute the center of mass (centroid) of the points
for (int i = 0; i < numPts; i++)
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c += pt[il;
c *= oon;

// Compute covariance elements

e00 = ell = e22 = e0l = e02 = el2 = 0.0f;

for (int i = 0; i < numPts; i++) {
// Translate points so center of mass is at origin
Point p = pt[i] - c;
// Compute covariance of translated points

e00 += p.x * p.x;
ell += p.y * p.y;
e22 += p.z * p.z;
e0l += p.x * p.y;
e02 += p.x * p.z;
el2 += p.y * p.z;

}

// Fill in the covariance matrix elements
cov[0] [0] = e00 * oon;

cov[1][1] = ell * oon;

cov[2][2] = e22 * oon;

cov[0][1] = cov[1][0] = e01 * oon;
cov[0][2] = cov[2][0] = e02 * oon;
cov[1][2] = cov[2][1] = el2 * oon;

Once the covariance matrix has been computed, it can be decomposed in a manner
that reveals more about the principal directions of the variance. This decomposition is
performed by computing the eigenvalues and eigenvectors of the matrix. The relation-
ship between these is such that the eigenvector associated with the largest magnitude
eigenvalue corresponds to the axis along which the point data has the largest vari-
ance. Similarly, the eigenvector associated with the smallest magnitude eigenvalue is
the axis along which the data has the least variance. Robustly finding the eigenvalues
and eigenvectors of a matrix is a nontrivial task in general. Typically, they are found
using some (iterative) numerical technique (for which a good source is [Golub96]).

By definition, the covariance matrix is always symmetric. As a result, it decomposes
into real (rather than complex) eigenvalues and an orthonormal basis of eigenvec-
tors. For symmetric matrices, a simpler decomposition approach can be used. For
a moderate-size matrix, as here, the Jacobi method works quite well. The intricate
details of the Jacobi method are beyond the scope of this book. Briefly, however,
the algorithm performs a number of transformation steps to the given input matrix.
Each step consists of applying a rotation to the matrix, bringing the matrix closer and
closer to a diagonal matrix (all elements zero, except along the diagonal). When the
matrix is diagonal, the elements on the diagonal are the eigenvalues. While this is
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done, all rotations are also concatenated into another matrix. Upon exit, this matrix
will contain the eigenvectors. Ideally, this decomposition should be performed in
double-precision arithmetic to minimize numerical errors. The following code for the
Jacobi method is based on the presentation in [Golub96]. First is a subroutine for
assisting in computing the rotation matrix.

/] 2-by-2 Symmetric Schur decomposition. Given an n-by-n symmetric matrix
// and indices p, q such that 1 <= p < q <= n, computes a sine-cosine pair
// (s, c) that will serve to form a Jacobi rotation matrix.

//

// See Golub, Van Loan, Matrix Computations, 3rd ed, p428

void SymSchur2(Matrix33 8a, int p, int q, float &c, float &s)

{
if (Abs(alpl[q]) > 0.0001f) {
float r = (alqllq] - alpllp]) / (2.0f * a[p][ql);
float t;
if (r >= 0.0f)
t = 1.0f / (r + Sqrt(1.0f + r*r));
else
t = -1.0f / (-r + Sqrt(1.0f + r*r));
c = 1.0f / Sqrt(1.0f + t*t);
s=1t*c;
} else {
c = 1.0f;
s = 0.0f;
}
}

Given this support function, the full Jacobi method is now implemented as:

// Computes the eigenvectors and eigenvalues of the symmetric matrix A using
// the classic Jacobi method of iteratively updating A as A = J°T * A * J,
// where J = J(p, q, theta) is the Jacobi rotation matrix.
//
// On exit, v will contain the eigenvectors, and the diagonal elements
// of a are the corresponding eigenvalues.
//
// See Golub, Van Loan, Matrix Computations, 3rd ed, p428
void Jacobi (Matrix33 &a, Matrix33 &v)
{
int i, j, n, p, q;
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float prevoff, c, s;
Matrix33 J, b, t;

// Initialize v to identify matrix

for (i = 0; i <3; i++) {
v[il[o] = v[il[1] = v[il[2] = 0.0f;
v[i][i] = 1.0f;

// Repeat for some maximum number of iterations
const int MAX ITERATIONS = 50;
for (n = 0; n < MAX_ITERATIONS; n++) {
// Find largest off-diagonal absolute element a[p][q]
p=0;q=1;
for (i = 0; i < 3; i++) {
for (j = 05 j < 3; j++) {

if (i == j) continue;

if (Abs(a[i1[j]) > Abs(a[p][q])) {
p =i
q=3J;

}

// Compute the Jacobi rotation matrix J(p, q, theta)
// (This code can be optimized for the three different cases of rotation)
SymSchur2(a, p, q, ¢, s);
for (i = 0; i <3; i++) {
J[i1[0] = J[i][1] = J[il[2] = 0.0f;
J[i1[i] = 1.0f;

}
J[plIp]
J[q] [p]

c; J[plLq]
-s; J[ql[q]

S3
[H

// Cumulate rotations into what will contain the eigenvectors
v=v*]J;

// Make 'a' more diagonal, until just eigenvalues remain on diagonal
a = (J.Transpose() * a) * J;

// Compute "norm" of off-diagonal elements
float off = 0.0f;
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for (i = 0; i <3; i++) {
for (j = 05 j < 3; j++) {
if (i == j) continue;
off += a[i][j] * a[il[il;
}
}

/* off = sqrt(off); not needed for norm comparison */

// Stop when norm no longer decreasing
if (n > 2 && off >= prevoff)
return;

prevoff = off;

For the particular 3 x 3 matrix used here, instead of applying a general approach
such as the Jacobi method the eigenvalues could be directly computed from a simple
cubic equation. The eigenvectors could then easily be found through, for example,
Gaussian elimination. Such an approach is described in [Cromwell94]. Given the
previously defined functions, computing a sphere from the two most distant points
(according to spread) now looks like:

void EigenSphere(Sphere &eigSphere, Point pt[], int numPts)
{

Matrix33 m, v;

// Compute the covariance matrix m

CovarianceMatrix(m, pt, numPts);

// Decompose it into eigenvectors (in v) and eigenvalues (in m)
Jacobi(m, v);

// Find the component with largest magnitude eigenvalue (largest spread)
Vector e;

int maxc = 0;

float maxf, maxe = Abs(m[0] [0]):

if ((maxf = Abs(m[1][1])) > maxe) maxc = 1, maxe = maxf;

if ((maxf = Abs(m[2][2])) > maxe) maxc = 2, maxe = maxf;

e[0] = v[0] [maxc];

e[1] = v[1] [maxc];

e[2] = v[2] [maxc];

// Find the most extreme points along direction 'e'
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43.4

int imin, imax;

ExtremePointsAlongDirection(e, pt, numPts, &imin, &imax);
Point minpt = pt[imin];

Point maxpt = pt[imax];

float dist = Sqrt(Dot(maxpt - minpt, maxpt - minpt));
eigSphere.r = dist * 0.5f;
eigSphere.c = (minpt + maxpt) * 0.5f;

The modified full code for computing the approximate bounding sphere becomes:

void RitterEigenSphere(Sphere &s, Point pt[], int numPts)

{
// Start with sphere from maximum spread
EigenSphere(s, pt, numPts);
// Grow sphere to include all points
for (int i = 0; i < numPts; i++)
Sphere0fSphereAndPt(s, pt[il);
}

The type of covariance analysis performed here is commonly used for dimension
reduction and statistical analysis of data, and is known as principal component analysis
(PCA). Further information on PCA can be found in [Jolliffe02]. The eigenvectors
of the covariance matrix can also be used to orient an oriented bounding box, as
described in Section 4.4.3.

Bounding Sphere Through Iterative Refinement

The primary idea behind the algorithm described in Section 4.3.2 is to start with a
quite good, slightly underestimated, approximation to the actual smallest sphere and
then grow it until it encompasses all points. Given a better initial sphere, the final
sphere can be expected to be better as well. Consequently, it is hardly surprising that
the output of the algorithm can very effectively be used to feed itself in an iterative
manner. The resulting sphere of one iteration is simply shrunk by a small amount to
make it an underestimate for the next iterative call.

void RitterIterative(Sphere &s, Point pt[], int numPts)

{

const int NUM_ITER = 8;
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RitterSphere(s, pt, numPts);
Sphere s2 = s;
for (int k = 0; k < NUM_ITER; k++) {

4.3.5

// Shrink sphere somewhat to make it an underestimate (not bound)
s2.r = s2.r * 0.95f;

// Make sphere bound data again

for (int i = 0; i < numPts; i++) {
// Swap pt[i] with pt[j], where j randomly from interval [i+1,numPts-1]
DoRandomSwap () ;
Sphere0fSphereAndPt (s2, pt[i]);

}

// Update s whenever a tighter sphere is found
if (s2.r < s.r) s = s2;

To further improve the results, the points are considered at random, rather than in
the same order from iteration to iteration. The resulting sphere is usually much better
than that produced by Wu'’s method (described in the previous section), at the cost of
a few extra iterations over the input data. If the same iterative approach is applied to
Wu's algorithm, the results are comparable. As with all iterative hill-climbing algo-
rithms of this type (such as gradient descent methods, simulated annealing, or TABU
search), the search can get stuck in local minima, and an optimal result is not guar-
anteed. The returned result is often very nearly optimal, however. The result is also
very robust.

The Minimum Bounding Sphere

A sphere is uniquely defined by four (non co-planar) points. Thus, a brute-force
algorithm for computing the minimum bounding sphere for a set of points is to
consider all possible combinations of four (then three, then two) points, computing
the smallest sphere through these points and keeping the sphere if it contains all other
points. The kept sphere with the smallest radius is then the minimum bounding
sphere. This brute-force algorithm has a complexity of O(1n°) and is therefore not
practical. Fortunately, the problem of computing the minimum bounding sphere for
a set of points has been well studied in the field of computational geometry, and a
randomized algorithm that runs in expected linear time has been given by [WelzI91].

Assume a minimum bounding sphere S has been computed for a point set P. If a
new point Qisadded to P, then onlyif Q lies outside S does S need to be recomputed. It
is not difficult to see that Q must lie on the boundary of the new minimum bounding
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sphere for the point set P U {Q}. Welzl’s algorithm is based on this observation,
resulting in a recursive algorithm. It proceeds by maintaining both the set of input
points and a set of support, which contains the points from the input set that must
lie on the boundary of the minimum sphere. The following code fragment outlines
Welzl’s algorithm:

Sphere WelzlSphere(Point pt[], unsigned int numPts, Point sos[], unsigned int numSos)

{

// if no input points, the recursion has bottomed out. Now compute an
// exact sphere based on points in set of support (zero through four points)
if (numPts == 0) {

switch (numSos) {

case 0: return Sphere();

case 1: return Sphere(sos[0]);

case 2: return Sphere(sos[0], sos[1]);

case 3: return Sphere(sos[0], sos[1], sos[2]):

case 4: return Sphere(sos[0], sos[1], sos[2], sos[3]):
}

}
// Pick a point at "random" (here just the last point of the input set)
int index = numPts - 1;
// Recursively compute the smallest bounding sphere of the remaining points
Sphere smallestSphere = Welz1Sphere(pt, numPts - 1, sos, numSos); // (*)
// If the selected point lies inside this sphere, it is indeed the smallest
if(PointInsideSphere(pt[index], smallestSphere))

return smallestSphere;
// Otherwise, update set of support to additionally contain the new point
sos[numSos] = pt[index];
// Recursively compute the smallest sphere of remaining points with new s.o.s.
return WelzlSphere(pt, numPts - 1, sos, numSos + 1);

Although the two recursive calls inside the function make the function appear
expensive, Welzl showed that assuming points are removed from the input set at
random the algorithm runs in expected linear time. Note that, as presented, the first
recursive call (marked with an asterisk in the code) is likely to cause stack overflow
for inputs of more than a few thousand points. Slight changes to the code avoid this
problem, as outlined in [Gartner99]. A full implementation is given in [Capens01].
Also available on the Internet is a more intricate implementation, part of the Com-
putational Geometry Algorithms Library (CGAL). Writing a robust implementation
of Welzl’s algorithm requires that the four support functions for computing exact
spheres from one through four points must correctly deal with degenerate input,
such as collinear points.
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Welzl’s algorithm can be applied to computing both bounding circles and higher
dimensional balls. It does not, however, directly extend to computing the minimum
sphere bounding a set of spheres. An algorithm for the latter problem is given in
[Fischer03]. Having covered spheres in detail, we now turn our attention to bounding
boxes of arbitrary orientation.

Oriented Bounding Boxes (OBBs)

An oriented bounding box (OBB) is a rectangular block, much like an AABB but with
an arbitrary orientation. There are many possible representations for an OBB: as a
collection of eight vertices, a collection of six planes, a collection of three slabs (a pair
of parallel planes), a corner vertex plus three mutually orthogonal edge vectors, or
a center point plus an orientation matrix and three halfedge lengths. The latter is
commonly the preferred representation for OBBs, as it allows for a much cheaper
OBB-OBB intersection test than do the other representations. This test is based on
the separating axis theorem, which is discussed in more detail in Chapter 5.

/] Region R = { x | x = ctr*u[0]+s*u[l]+t*u[2] }, |r|<=e[0], |s|<=e[l], |t|<=e[2]
struct OBB {

Point c; // OBB center point

Vector u[3]; // Local x-, y-, and z-axes

Vector e; // Positive halfwidth extents of OBB along each axis

}s

4.4.1

At 15 floats, or 60 bytes for IEEE single-precision floats, the OBB is quite an expen-
sive bounding volume in terms of memory usage. The memory requirements could be
lowered by storing the orientation not as a matrix but as Euler angles or as a quater-
nion, using three to four floating-point components instead of nine. Unfortunately,
for an OBB-OBB intersection test these representations must be converted back to
a matrix for use in the effective separating axis test, which is a very expensive oper-
ation. A good compromise therefore may be to store just two of the rotation matrix
axes and compute the third from a cross product of the other two at test time. This
relatively cheap CPU operation saves three floating-point components, resulting in
a 20% memory saving.

OBB-OBB Intersection

Unlike the previous bounding volume intersection tests, the test for overlap between
two oriented bounding boxes is surprisingly complicated. At first, it seems a test to see
if either box that is fully outside a face of the other would suffice. In its simplest form,
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T+ L]

Figure 4.9 Two OBBs are separated if for some axis L the sum of their projected radii is less
than the distance between their projected centers.

this test could be performed by checking if the vertices of box A are all on the outside
of the planes defined by the faces of box B, and vice versa. However, although this
test works in 2D it does not work correctly in 3D. It fails to deal with, for example, the
case in which A and B are almost meeting edge to edge, the edges perpendicular to
each other. Here, neither box is fully outside any one face of the other. Consequently,
the simple test reports them as intersecting even though they are not. Even so, the
simple test may still be useful. Although it is not always correct, it is conservative in
that it never fails to detect a collision. Only in some cases does it incorrectly report
separated boxes as overlapping. As such, it can serve as a pretest for a more expensive
exact test.

An exact test for OBB-OBB intersection can be implemented in terms of what is
known as the separating axis test. This test is discussed in detail in Chapter 5, but
here it is sufficient to note that two OBBs are separated if, with respect to some axis
L, the sum of their projected radii is less than the distance between the projection of
their center points (as illustrated in Figure 4.9). That is, if

|T-L| > ra+r1p.

For OBBsiitis possible to show that at most 15 of these separating axes must be tested
to correctly determine the OBB overlap status. These axes correspond to the three
coordinate axes of A, the three coordinate axes of B, and the nine axes perpendicular
to an axis from each. If the boxes fail to overlap on any of the 15 axes, they are
not intersecting. If no axis provides this early out, it follows that the boxes must be
overlapping.

The number of operations in the test can be reduced by expressing B in the coor-
dinate frame of A. If t is the translation vector from A to Band R = [r,-j] (the rotation



4.4 Oriented Bounding Boxes (OBBs) 103

Table 4.1 The 15 separating axis tests needed to determine OBB-OBB intersection. Super-
scripts indicate which OBB the value comes from.

L |T- L| ra s
u) [to] e el [rool + €5 Iron| + €5 [roo
u |t1] el el rio| + ef |ri| + €5 |ra
u Ito] e B raol + e |ron| + e [
ub ltoroo + tirio + toraol | €4 [rool + € |riol + €5 [raol el
uf ltoror + tirin + torar| | e [ron| + € [ria| + €5 [raal el
uf ltoroz + tir1o + torm| | € [rozl + €] [r12] + €5 |rao] e’

u) x ub [tor10 — ta720l el |rool + €5 |raol el |ron| + 5 [rn|

uf x uf [tor11 — tiroa| el |ro| + €5 |l eb r0o] + €5 [rool

uf x uf [tor12 — tiroo] el [roo| + €4 [r12 el 7011 + €% |rool
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matrix bringing B into A’s coordinate frame), the tests that must be performed for the
different axes L are summarized in Table 4.1.
This test can be implemented as follows:

int TestOBBOBB(OBB &a, OBB &b)

{

float ra, rb;

Matrix33 R, AbsR;

// Compute rotation matrix expressing b in a's coordinate frame

for (int i =
for (int j

0; i < 3; i++)
= 0; § <3; j+)

R[i1[3] = Dot(a.u[i], b.u[jl);
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// Compute translation vector t

Vector t = b.c - a.c;

// Bring translation into a's coordinate frame

t = Vector(Dot(t, a.u[0]), Dot(t, a.u[2]), Dot(t, a.u[2]));

// Compute common subexpressions. Add in an epsilon term to
// counteract arithmetic errors when two edges are parallel and
// their cross product is (near) null (see text for details)
for (int i = 0; i < 3; i++)
for (int j = 0; j < 3; j++)
AbsR[i][j] = Abs(R[i][j]1) + EPSILON;

// Test axes L = A0, L = A1, L = A2

for (int i = 0; i < 3; i++) {
ra = a.e[il;
rb = b.e[0] * AbsR[i][0] + b.e[1] * AbsR[i][1] + b.e[2] * AbsR[i][2];
if (Abs(t[i]) > ra + rb) return 0;

}

// Test axes L = B0, L = Bl, L = B2
for (int i = 0; i < 3; i++) {
ra = a.e[0] * AbsR[0][i] + a.e[1] * AbsR[1][i] + a.e[2] * AbsR[2][i]:
rb = b.e[i];
if (Abs(t[0] * R[0][i] + t[1] * R[1]1[i] + t[2] * R[2]1[i]) > ra + rb) return 0;

// Test axis L = A0 x BO

ra = a.e[1] * AbsR[2][0] + a.e[2] * AbsR[1][0];

rb = b.e[1] * AbsR[0][2] + b.e[2] * AbsR[0][1];

if (Abs(t[2] * R[1]1[0] - t[1] * R[2]1[0]) > ra + rb) return O;

// Test axis L = A0 x Bl

ra = a.e[1] * AbsR[2][1] + a.e[2] * AbsR[1][1];

rb = b.e[0] * AbsR[0][2] + b.e[2] * AbsR[0][0];

if (Abs(t[2] * R[11[1] - t[1] * R[2][1]) > ra + rb) return O;

// Test axis L = A0 x B2

ra = a.e[1] * AbsR[2][2] + a.e[2] * AbsR[1][2];

rb = b.e[0] * AbsR[0][1] + b.e[1] * AbsR[0][0];

if (Abs(t[2] * R[1][2] - t[1] * R[2][2]) > ra + rb) return O;

// Test axis L = Al x B0
ra = a.e[0] * AbsR[2][0] + a.e[2] * AbsR[0][0];
rb = b.e[1] * AbsR[1][2] + b.e[2] * AbsR[1][1];
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(Abs(t[0] * R[2]1[0] - t[2] * R[0][0]) > ra + rb) return O;

Test axis L = Al x BI

= a.e[0] * AbsR[2][1] + a.e[2] * AbsR[0][1];

= b.e[0] * AbsR[1][2] + b.e[2] * AbsR[1][0];

(Abs(t[0] * R[2]1[1] - t[2] * R[0][1]) > ra + rb) return O;

Test axis L = Al x B2

= a.e[0] * AbsR[2][2] + a.e[2] * AbsR[0][2];

= b.e[0] * AbsR[1][1] + b.e[1] * AbsR[1][0];

(Abs(t[0] * R[21[2] - t[2] * R[0][2]) > ra + rb) return O;

Test axis L = A2 x BO

= a.e[0] * AbsR[1][0] + a.e[1] * AbsR[0][0];

= b.e[1] * AbsR[2][2] + b.e[2] * AbsR[2][1];

(Abs(t[1] * R[0][0] - t[0] * R[1][0]) > ra + rb) return 0;

Test axis L = A2 x Bl

= a.e[0] * AbsR[1][1] + a.e[1] * AbsR[0][1];

= b.e[0] * AbsR[2][2] + b.e[2] * AbsR[2][0];

(Abs(t[1] * R[0][1] - t[0] * R[1][1]) > ra + rb) return 0;

Test axis L = A2 x B2

= a.e[0] * AbsR[1][2] + a.e[1] * AbsR[0][2];

= b.e[0] * AbsR[2][1] + b.e[1] * AbsR[2][0];

(Abs(t[1] * R[0][2] - t[0] * R[1][2]) > ra + rb) return O;

Since no separating axis is found, the OBBs must be intersecting

return 1;

To make the OBB-OBB test as efficient as possible, it is important that the axes are
tested in the order given in Table 4.1. The first reason for using this order is that by
testing three orthogonal axes first there is little spatial redundancy in the tests, and
the entire space is quickly covered. Second, with the setup given here, where A is
transformed to the origin and aligned with the coordinate system axes, testing the
axes of A is about half the cost of testing the axes of B. Although it is not done here,
the calculations of R and AbsR should be interleaved with the first three tests, so that
they are not unnecessarily performed in their entirety when the OBB test exits in one
of the first few if statements.

If OBBs are used in applications in which they often tend to have one axis aligned
with the current world up, for instance, when traveling on ground, it is worthwhile
special-casing these “vertically aligned” OBBs. This simplification allows for a much
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faster intersection test that only involves testing four separating axes in addition to a
cheap test in the vertical direction.

In some cases, performing just the first 6 of the 15 axis tests may result in faster
results overall. In empirical tests, [Bergen97] found that the last 9 tests in the OBB
overlap code determine nonintersection about 15% of the time. As perhaps half of
all queries are positive to start with, omitting these 9 tests results in false positives
about 6 to 7% of the time. When the OBB test is performed as a pretest for an exact
test on the bounded geometry, this still leaves the test conservative and no collisions
are missed.

Making the Separating-axis Test Robust

A very important issue overlooked in several popular treatments of the separating-
axis theorem is the robustness of the test. Unfortunately, any code implementing this
test must be very carefully crafted to work as intended. When a separating axis is
formed by taking the cross product of an edge from each bounding box there is a
possibility these edges are parallel. As a result, their cross product is the null vector,
all projections onto this null vector are zero, and the sum of products on each side of
the axis inequality vanishes. Remaining is the comparison 0 > 0. In the perfect world
of exact arithmetic mathematics, this expression would trivially evaluate to false. In
reality, any computer implementation must deal with inaccuracies introduced by the
use of floating-point arithmetic.

For the optimized inequalities presented earlier, the case of parallel edges cor-
responds to only the zero elements of the rotation matrix R being referenced.
Theoretically, this still results in the comparison 0 > 0. In practice, however, due
to accumulation of errors the rotation matrix will not be perfectly orthonormal and
its zero elements will not be exactly zero. Thus, the sum of products on both sides
of the inequality will also not be zero, but some small error quantity. As this accu-
mulation of errors can cause either side of the inequality to change sign or shift in
magnitude, the result will be quite random. Consequently, if the inequality tests are
not very carefully performed these arithmetic errors could lead to the (near) null vec-
tor incorrectly being interpreted as a separating axis. Two overlapping OBBs therefore
could be incorrectly reported as nonintersecting.

As the right-hand side of the inequalities should be larger when two OBBs are
interpenetrating, a simple solution to the problem is to add a small epsilon value to
the absolute values of the matrix elements occurring on the right-hand side of the
inequalities. For near-zero terms, this epsilon term will be dominating and axis tests
corresponding to (near) parallel edges are thus made disproportionately conservative.
For other, nonzero cases, the small epsilon term will simply disappear. Note that as
the absolute values of the components of a rotation matrix are bounded to the range
[0, 1] using a fixed-magnitude epsilon works fine regardless of the sizes of the boxes
involved. The robustness of the separating-axis test is revisited in Chapter 5.
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(a) (b)
Figure 4.10 (a) A poorly aligned and (b) a well-aligned OBB.

Computing a Tight OBB

Computing tight-fitting oriented bounding boxes is a difficult problem, made worse
by the fact that the volume difference between a poorly aligned and a well-aligned
OBB can be quite large (Figure 4.10). There exists an algorithm for calculating the
minimum volume bounding box of a polyhedron, presented in [O’Rourke85]. The
key observation behind the algorithm is that given a polyhedron either one face and
one edge or three edges of the polyhedron will be on different faces of its bounding
box. Thus, these edge and face configurations can be searched in a systematic fashion,
resulting in an O(1®) algorithm. Although it is an interesting theoretical result, unfor-
tunately the algorithm is both too complicated and too slow to be of much practical
value.

Two other theoretical algorithms for computing near approximations of the
minimum-volume bounding box are presented in [Barequet99]. However, the authors
admit that these algorithms are probably too difficult to implement and would be
impractical even so, due to the large constant-factor overhead in the algorithms.
Thus, with the currently available theoretical algorithms of little practical use OBBs
must be computed using either approximation or brute-force methods.

A simpler algorithm offered in [Barequet99] provides a coarse approximation of the
optimal OBB for a point set by first computing the minimum AABB of the set. From
the point set, a pair of points on the two parallel box sides farthest apart are selected
to determine the length direction of the OBB. The set of points is then projected onto
the plane perpendicular to the OBB length direction. The same procedure is now
applied again, only this time computing the minimum axis-aligned rectangle, with
points on the two parallel sides farthest apart determining a second axis for the OBB.
The third OBB axis is the perpendicular to the first two axes. Although this algorithm is
very easy to code, in practice bounding boxes much closer to optimal can be obtained
through other algorithms of similar complexity, as described in the following.
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For long and thin objects, an OBB axis should be aligned with the direction of the
objects. For a flat object, an OBB axis should be aligned with the normal of the flat
object. These directions correspond to the principal directions of the objects, and the
principal component analysis used in Section 4.3.3 can be used here.

Computing bounding boxes based on covariance of model vertices generally works
satisfactorily for models whose vertices are uniformly distributed over the model
space. Unfortunately, the influence of internal points often bias the covariance and
can make the OBB take on any orientation regardless of the extremal points. For
this reason, all methods for computing bounding volumes based on weighting vertex
positions should ideally be avoided. It is sufficient to note that the defining features
(center, dimensions, and orientation) of a minimum bounding volume are all inde-
pendent of clustering of object vertices. This can easily be seen by considering adding
(or taking away) extra vertices off-center, inside or on the boundary, of a bounding
volume. These actions do not affect the defining features of the volume and therefore
should not affect its calculation. However, adding extra points in this manner changes
the covariance matrix of the points, and consequently any OBB features directly com-
puted from the matrix. The situation can be improved by considering just extremal
points, using only those points on the convex hull of the model. This eliminates the
internal points, which can no longer misalign the OBB. However, even though all
remaining points are extremal the resulting OBB can still be arbitrarily bad due to
point distribution. A clustering of points will still bias an axis toward the cluster. In
other words, using vertices alone simply cannot produce reliable covariance matrices.

A suggested solution is to use a continuous formulation of covariance, computing
the covariance across the entire face of the primitives [Gottschalk00]. The convex hull
should still be used for the calculation. If not, small outlying geometry would extend
the bounding box, but not contribute enough significance to align the box properly.
In addition, interior geometry would still bias the covariance. If the convex hull is
already available, this algorithm is O(n). If the convex hull must be computed, it is

O(nlogn).
Given n triangles (pk, qrs rk), 0 < k < n, in the convex hull, the covariance matrix
is given by
1 Ay
Ci=|— Z = (Omyimij + priprj + qridij + reitj) | — mmin,
aH 0<k<n 12

where a; = ||(gx — px) x (rc — pi)| /2 is the area and my = (p + g + 1) /3 is the
centroid of triangle k.
The total area of the convex hull is given by

ag = E Ak,

O0<k<n
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and the centroid of the convex hull,

1
mg = — E Ay Mk,
ag
O<k<n

is computed as the mean of the triangle centroids weighted by their area. The i and
j subscripts indicate which coordinate component is taken (that is, x, y, or z). Code
for this calculation can be found in the publicly available collision detection package
RAPID. A slightly different formulation of this covariance matrixis given in [Eberly01],
and code is available on the companion CD-ROM for this book.

The method just described treats the polyhedron as a hollow body, computing the
covariance matrix from the surface areas. A related method treating the polyhedron
as a solid body is described in [Mirtich96a]. Given an assumed uniform density poly-
hedron, Mirtich’s polyhedral mass property algorithm integrates over the volume of
the polyhedron, computing its 3 x 3 inertia tensor (also known as the inertia or mass
matrix). The eigenvectors of this symmetric matrix are called the principal axes of
inertia, and the eigenvalues the principal moments of inertia. Just as with the covari-
ance matrices before, the Jacobi method can be used to extract these axes, which in
turn can then serve as the orientation matrix of an OBB. Detailed pseudocode for
computing the inertia matrix is given in Mirtich’s article. A public domain implemen-
tation in C is also available for download on the Internet. Mirtich’s article is revisited
in [Eberly03], in which a more computationally efficient approach is derived and for
which pseudocode is provided.

Note that neither covariance-aligned nor inertia-aligned oriented bounding boxes
are optimal. Consider an object A and its associated OBB B. Let A be expanded by
adding some geometry to it, but staying within the bounds of B. For both methods,
this would in general result in a different OBB B’ for the new object A’. By construction,
B and B’ both cover the two objects A and A". However, as the dimensions of the two
OBBs are in the general case different, one OBB must be suboptimal.

Optimizing PCA-based OBBs

As covariance-aligned OBBs are not optimal, it is reasonable to suspect they could
be improved through slight modification. For instance, perhaps the OBB could
be rotated about one of its axes to find the orientation for which its volume is
smallest. One improved approach to OBB fitting is to align the box along just
one principal component. The remaining two directions are determined from the
computed minimum-area bounding rectangle of the projection of all vertices onto
the perpendicular plane to the selected axis. Effectively, this method determines
the best rotation about the given axis for producing the smallest-volume OBB.
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This approach was suggested in [Barequet96], in which three different methods were
investigated.

e All-principal-components box
e Max-principal-component box

e Min-principal-component box

The all-principal-components box uses all three principal components to align
the OBB, and is equivalent to the method presented in the previous section. For
the max-principal-component box, the eigenvector corresponding to the largest
eigenvalue is selected as the length of the OBB. Then all points are projected onto
a plane perpendicular to that direction. The projection is followed by computing
the minimum-area bounding rectangle of the projected points, determining the
remaining two directions of the OBB. Finally, the min-principal-component box
selects the shortest principal component as the initial direction of the OBB, and
then proceeds as in the previous method. Based on empirical results, [Barequet96]
conclude that the min-principal-component method performs best. A compelling
reason max-principal-component does not do better is also given: as the max-
imum principal component is the direction with the maximum variance, it will
contribute the longest possible edge and is therefore likely to produce a larger
volume.

A local minimum volume can be reached by iterating this method on a given
starting OBB. The procedure would project all vertices onto the plane perpendicular
to one of the directions of the OBB, updating the OBB to align with the minimum-
area bounding rectangle of the projection. The iterations would be repeated until no
projection (along any direction of the OBB) gives an improvement, at which point
the local minimum has been found. This method serves as an excellent optimization
of boxes computed through other methods, such as Mirtich’s, when performed as a
preprocessing step.

Remaining is the problem of computing the minimum-area bounding rectan-
gle of a set of points in the plane. The key insight here is a result from the field
of computational geometry. It states that a minimum-area bounding rectangle of
a convex polygon has (at least) one side collinear with an edge of the polygon
[Freeman?75].

Therefore, the minimum rectangle can trivially be computed by a simple algorithm.
First, the convex hull of the point set is computed, resulting in a convex polygon.
Then, an edge at a time of the polygon is considered as one direction of the bound-
ing box. The perpendicular to this direction is obtained, and all polygon vertices are
projected onto these two axes and the rectangle area is computed. When all poly-
gon edges have been tested, the edge (and its perpendicular) giving the smallest
area determines the directions of the minimum-area bounding rectangle. For each
edge considered, the rectangle area is computed in O(n) time, for a total complexity
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of O(n?) for the algorithm as a whole. This algorithm can be implemented as
follows:

// Compute the center point, 'c', and axis orientation, u[0] and u[l], of
// the minimum area rectangle in the xy plane containing the points pt[].
float MinAreaRect(Point2D pt[], int numPts, Point2D &c, Vector2D u[2])

{
float minArea = FLT_MAX;

// Loop through all edges; j trails i by 1, modulo numPts
for (int i = 0, j = numPts - 1; i < numPts; j = i, i++) {
// Get current edge e0 (eOx,eOy), normalized
Vector2D e0 = pt[i] - pt[il;
e0 /= Length(e0);

// Get an axis el orthogonal to edge e0
Vector2D el = Vector2D(-e0.y, e0.x); // = Perp2D(e0)

// Loop through all points to get maximum extents
float min0 = 0.0f, minl = 0.0f, max0 = 0.0f, maxl = 0.0f;
for (int k = 0; k < numPts; k++) {
// Project points onto axes e0 and el and keep track
// of minimum and maximum values along both axes
Vector2D d = pt[k] - pt[il:
float dot = Dot2D(d, e0);
if (dot < min0) min0 = dot;

if (dot > max0) max0 = dot;
dot = Dot2D(d, el);

if (dot < minl) minl = dot;
if (dot > maxl) maxl = dot;

}

float area = (max0 - min0) * (maxl - minl);

/! If best so far, remember area, center, and axes

if (area < minArea) {
minArea = area;
c = pt[j] + 0.5F * ((min0 + max0) * e0 + (minl + maxl) * el);
u[0] = e0; u[l] = el;

}

return minArea;
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4.5

The minimum-area bounding rectangle of a convex polygon can also be computed
in O(nlogn) time, using the method of rotating calipers [Toussaint83]. The rotating
calipers algorithm starts out bounding the polygon by four lines through extreme
points of the polygon such that the lines determine a rectangle. At least one line is
chosen to be coincident with an edge of the polygon. For each iteration of the algo-
rithm, the lines are simultaneously rotated clockwise about their supporting points
until a line coincides with an edge of the polygon. The lines now form a new bound-
ing rectangle around the polygon. The process is repeated until the lines have been
rotated by an angle of 90 degrees from their original orientation. The minimum-area
bounding rectangle corresponds to the smallest-area rectangle determined by the
lines over all iterations. The time complexity of the algorithm is bounded by the cost
of computing the convex hull. If the convex hull is already available, the rotating
calipers algorithm is O(n).

Brute-force OBB Fitting

The last approach to OBB fitting considered here is simply to compute the OBB in
a brute-force manner. One way to perform brute-force fitting is to parameterize
the orientation of the OBB in some manner. The space of orientations is sampled
at regular intervals over the parameterization and the best OBB over all sampled
rotations is kept. The OBB orientation is then refined by sampling the interval in
which the best OBB was found at a higher subinterval resolution. This hill-climbing
approach is repeated with smaller and smaller interval resolutions until there is little
or no change in orientation for the best OBB.

For each tested coordinate system, computing the candidate OBB requires the
transformation of all vertices into the coordinate system. Because this transformation
is expensive, the search should exit as soon as the candidate OBB becomes worse
than the currently best OBB. In that it is cheap to compute and has a relatively good
fit, a PCA-fitted OBB provides a good initial guess, increasing the chances of an early
out during point transformation [Miettinen02a]. To further increase the chance of an
early out, the (up to) six extreme points determining the previous OBB should be the
first vertices transformed. In [Miettinen02b] it is reported that over 90% of the tests
are early-exited using this optimization. Brute-force fitting of OBBs generally results
in much tighter OBBs than those obtained through PCA-based fitting.

The hill-climbing approach just described considers many sample points in the
space of orientation before updating the currently best OBB. The optimization-based
OBB-fitting method described in [Lahanas00] hill climbs the search space one sample
at a time, but employs a multisample technique to aid the optimizer escape from local
minima.

Sphere-swept Volumes

After spheres and boxes, it is natural to consider cylinders as bounding volumes.
Unfortunately, when the mathematics is worked out it turns out that the overlap test
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Figure 4.11 (a) A sphere-swept point (SSP). (b) A sphere-swept line (SSL). (c) A sphere-swept
rectangle (SSR).

for cylinders is quite expensive, making them less attractive as bounding volumes.
However, if a cylinder is fitted with spherical end caps the resulting capped cylinder
volume becomes a more attractive bounding volume. Let the cylinder be described by
the points A and B (forming its medial axis) and a radius r. The capped cylinder would
be the resulting volume from sweeping a sphere of radius r along the line segment
AB. This volume is part of a family of volumes, extensions of the basic sphere.

Recall that the test between two spheres computes the distance between the
two center points, comparing the result against the sum of the radii (squaring the
quantities to avoid an expensive square root). By replacing the sphere center points
with arbitrary inner primitives or medial structures, new bounding volumes can be
obtained. The resultant volumes are equivalent to sweeping the inner primitive with
asphere of radius  (or, technically, forming the Minkowski sum of the sphere and the
primitive). As such, this entire family of bounding volumes is therefore collectively
referred to as sphere-swept volumes (SSVs). All points within a distance r from the
inner medial structure belong to the SSV. Three types of sphere-swept volumes are
illustrated in Figure 4.11.

Following the sphere overlap test, the intersection test for two SSVs simply
becomes calculating the (squared) distance between the two inner primitives and
comparing it against the (squared) sum of their combined radii. The cost of sphere-
swept tests is completely determined by the cost of the distance function. To make
the distance test as inexpensive as possible, the inner primitives are usually limited
to points, line segments, or rectangles. The resulting SSVs — sphere-swept points
(SSPs), sphere-swept lines (SSLs), and sphere-swept rectangles (SSRs) — are com-
monly referred to, respectively, as spheres, capsules, and lozenges. The latter looks like
an OBB with rounded corners and edges. Capsules are also referred to as capped cylin-
ders or spherocylinders. The data structures for capsules and lozenges can be defined
as follows:

// Region R = { x | (x - [a+ (b -a)*t])"2 <=r }, 0 <=t <=1
struct Capsule {

Point a; // Medial line segment start point

Point b; // Medial line segment endpoint
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float r; // Radius
}s

/] Region R = { x | (x - [a + u[0]*s + u[l1]*t])"2 <=r }, 0 <= s,t <= 1
struct Lozenge {

Point a; // Origin
Vector u[2]; // The two edges axes of the rectangle
float r; // Radius

}s

Due to similarity in shape, lozenges can be a viable substitute for OBBs. In situ-
ations of close proximity, the lozenge distance computation becomes less expensive
than the OBB separating-axis test.

Sphere-swept Volume Intersection

By construction, all sphere-swept volume tests can be formulated in the same way.
First, the distance between the inner structures is computed. Then this distance is
compared against the sum of the radii. The only difference between any two types
of sphere-swept tests is in the calculation used to compute the distance between
the inner structures of the two volumes. A useful property of sphere-swept volumes
is that the distance computation between the inner structures does not rely on the
inner structures being of the same type. Mixed-type or hybrid tests can therefore
easily be constructed. Two tests are presented in the following: the sphere-capsule
and capsule-capsule tests.

int TestSphereCapsule(Sphere s, Capsule capsule)

{

// Compute (squared) distance between sphere center and capsule line segment
float dist2 = SqDistPointSegment(capsule.a, capsule.b, s.c);

/! If (squared) distance smaller than (squared) sum of radii, they collide
float radius = s.r + capsule.r;

return dist2 <= radius * radius;

}

int TestCapsuleCapsule(Capsule capsulel, Capsule capsule2)

{

// Compute (squared) distance between the inner structures of the capsules
float s, t;

Point cl, c2;

float dist2 = ClosestPtSegmentSegment(capsulel.a, capsulel.b,

capsule2.a, capsule2.b, s, t, cl, c2);
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/! If (squared) distance smaller than (squared) sum of radii, they collide
float radius = capsulel.r + capsule2.r;
return dist2 <= radius * radius;

452

4.6

The functions SqDistPointSegment() and ClosestPtSegmentSegment() used
here are found in Chapter 5 (Sections 5.1.2.1 and 5.1.9, respectively). A distance
test for SSRs (and thus, by reduction, also for SSLs and SSPs) based on halfspace
tests is given in [Larsen99] and [Larsen00].

Computing Sphere-swept Bounding Volumes

The machinery needed for computing SSVs has been described in previous sections.
For instance, by computing the principal axes a capsule can be fitted by using the
longest axis as the capsule length. The next longest axis determines the radius.
Alternatively, the length can also be fit using a least-square approach for fitting a
line to a set of points. For SSRs, all three axes would be used, with the shortest axis
forming the rectangle face normal. See [Eberly01], [Larsen99], and [Larsen00] for
further detail.

Halfspace Intersection Volumes

With the notable exception of spheres, most bounding volumes are convex polyhedra.
All of these polyhedral bounding volumes are representable as the intersection of a
set of halfspaces, wherein the halfspace dividing planes coincides with the sides of
the bounding volume. For instance, AABBs and OBBs are both the intersection of six
halfspaces. A tetrahedron is the intersection of four halfspaces — the smallest number
of halfspaces needed to form a closed volume. Generally, the more halfspaces used
the better the resulting intersection volume can fit an object. If the bounded object
is polyhedral, the tightest possible convex bounding volume is the convex hull of the
object. In this case, the number of faces on the hull serves as a practical upper limit
on how many halfspaces are needed to form the bounding volume. Convex hulls
are important bounding volumes, and an in-depth treatment of collision detection
algorithms for convex hulls is given in Chapter 9.

Although convex hulls form the tightest bounding volumes, they are not neces-
sarily the best choice of bounding volume. Some drawbacks of convex hulls include
their being expensive and difficult to compute, taking large amounts of memory
to represent, and potentially being costly to operate upon. By limiting the number
of halfspaces used in the intersection volume, several simpler alternative bounding
volumes can be formed. A few variants are described in the sections that follow.
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Figure 4.12 A slab is the infinite region of space between two planes, defined by a normal
n and two signed distances from the origin.

Kay-Kajiya Slab-based Volumes

First introduced by Kay and Kajiya for speeding up ray-object intersection tests,
Kay—Kajiya volumes are a family of many-sided parallelepipedal bounding volumes
based on the intersection of slabs [Kay86]. A slab is the infinite region of space
between two parallel planes (Figure 4.12). This plane set is represented by a unit
vector n (the plane-set normal) and two scalar values giving the signed distance from
the origin (along n) for both planes.

/] Region R = { (x, y, z) | dNear <= a*x + b*y + c*z <= dFar }
struct Slab {
float n[3]; // Normal n = (a, b, c)
float dNear; // Signed distance from origin for near plane (dNear)
float dFar; // Signed distance from origin for far plane (dFar)
IH

To form a bounding volume, a number of normals are chosen. Then, for each
normal, pairs of planes are positioned so that they bound the object on both its sides
along the direction of the normal. For polygonal objects, the positions of the planes
can be found by computing the dot product of the normal and each object vertex.
The minimum and maximum values are then the required scalar values defining the
plane positions.

To form a closed 3D volume, at least three slabs are required. Both AABBs and OBBs
are examples of volumes formed as the intersection of three slabs. By increasing the
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number of slabs, slab-based bounding volumes can be made to fit the convex hulls
of objects arbitrarily tightly.

For the original application of ray intersection, a quick test can be based on the
fact that a parameterized ray intersects a slab if and only if it is simultaneously inside
all (three) slabs for some interval, or equivalently if the intersection of the intervals
for ray-slab overlap is nonzero. With pairs of planes sharing the same normal, cal-
culations can be shared between the two ray-plane intersection tests, improving test
performance.

Although slab-based volumes allow for fast ray intersection tests, they cannot
easily be used as-is in object-object intersection testing. However, by sharing nor-
mals across all objects it is possible to perform fast object-object tests (explored in
the next section).

Discrete-orientation Polytopes (k-DOPs)

Based on the same idea as the Kay—Kajiya slab-based volumes are the volumes known
as discrete-orientation polytopes (k-DOPs) or fixed-direction hulls (FDHs), suggested by
[Kone¢ny97] and [Klosowski98]. (Although the latter is perhaps a more descriptive
term, the former is more commonly used and is adopted here.) These k-DOPs are
convex polytopes, almost identical to the slab-based volumes except that the normals
are defined as a fixed set of axes shared among all k-DOP bounding volumes. The
normal components are typically limited to the set {—1,0, 1}, and the normals are
not normalized. These normals make computation of k-DOPs cheaper, which is
important because k-DOPs must be dynamically realigned. By sharing the normals
among all objects, k-DOP storage is very cheap. Only the min-max intervals for each
axis must be stored. For instance, an 8-DOP becomes:

struct DOP8 {
float min[4]; // Minimum distance (from origin) along axes 0 to 3
float max[4]; // Maximum distance (from origin) along axes 0 to 3

}s

A 6-DOP commonly refers to polytopes with faces aligned along the six directions
(£1,0,0), (0, £1, 0), and (0,0, &1). This 6-DOP is of course an AABB, but the AABB
is just a special-case 6-DOP; any oriented bounding box could also be described as
a 6-DOP. An 8-DOP has faces aligned with the eight directions (+1, 1, +1) and a
12-DOP with the 12 directions (£1, £1, 0), (£1, 0, £1), and (0, &1, £1). An example
of a 2D 8-DOP is shown in Figure 4.13.

A 14-DOP is defined using the combined directions of the 6-DOP and 8-DOP.
The 18-DOP, 20-DOP, and 26-DOP are formed in a similar way. The 14-DOP corre-
sponds to an axis-aligned box with the eight corners cut off. The 18-DOP is an AABB
wherein the 12 edges have been cut off. The 18-DOP is also referred to as a tribox
[Crosnier99].
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Figure4.13 8-DOP for triangle (3, 1), (5,4), (1,5)is{1,1,4, 4,5, 5,9, 2} foraxes (1, 0), (0, 1),
(1,1, (1,=1).

Note that the k-DOP is not just any intersection of slabs, but the tightest slabs that
form the body. For example, the triangle (0, 0), (1, 0), (0, 1) can be expressed as several
slab intersections, but there is only one k-DOP describing it. If and only if the slab
planes have a common point with the volume formed by the intersection of the slabs
are the slabs defining a k-DOP. This tightness criterion is important, as the overlap
test for k-DOPs does not work on the intersection volume but solely on the slab
definitions. Without the given restriction, the overlap test would be quite ineffective.

Compared to oriented bounding boxes, the overlap test for k-DOPs is much faster
(about an order of magnitude), even for large-numbered DOPs, thanks to the fixed-
direction planes. In terms of storage, the same amount of memory required for an
OBB roughly corresponds to a 14-DOP. k-DOPs have a (probable) tighter fit than
OBBs, certainly as k grows and the k-DOP resembles the convex hull. For geometry
that does not align well with the axes of the k-DOP, OBBs can still be tighter. OBBs
will also perform better in situations of close proximity.

The largest drawback to k-DOPs is that even if the volumes are rarely colliding the
k-DOPs must still be updated, or “tumbled.”As this operation is expensive, whenever
possible the tumbling operation should be avoided. This is usually done by pretesting
the objects using bounding spheres (not performing the k-DOP test if the sphere test
fails). In general, k-DOPs perform best when there are few dynamic objects being
tested against many static objects (few k-DOPs have to update) or when the same
object is involved in several tests (the cost of updating the k-DOP is amortized over
the tests).

A slightly different k-DOP is examined in [Zachmann00]. Here, the k-DOP axes
are selected using a simulated annealing process in which k points are randomly
distributed on a unit sphere, with the provision that for each point P, —P is also in
the set. A repelling force among points is used as the annealing temperature.

k-DOP-k-DOP Overlap Test

Due to the fixed set of axes being shared among all objects, intersection detection
for k-DOPs is similar to and no more difficult than testing two AABBs for overlap.
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The test simply checks the k/2 intervals for overlap. If any pair of intervals do not
overlap, the k-DOPs do not intersect. Only if all pairs of intervals are overlapping are
the k-DOPs intersecting.

int TestKDOPKDOP(KDOP &a, KDOP &b, int k)

{
// Check if any intervals are non-overlapping, return if so
for (int i = 0; i <k / 2; i++)
if (a.min[i] > b.max[i] || a.max[i] < b.min[i])
return 0;
// All intervals are overlapping, so k-DOPs must intersect
return 1;
}

As with oriented bounding boxes, the order in which axes are tested is likely to
have an effect on performance. As intervals along“near” directions are likely to have
similar overlap status, consecutive interval tests preferably should be performed on
largely different (perpendicular) directions. One way to achieve this is to preprocess
the order of the global axes using a simple greedy algorithm. Starting with any axis
to test first, it would order all axes so that the successor to the current axis is the one
whose dot product with the current axis is as close to zero as possible.

4.6.4 Computing and Realigning k-DOPs

Computing the k-DOP for an object can be seen as a generalization of the method
for computing an AABB, much as the overlap test for two k-DOPs is really a general-
ization of the AABB-AABB overlap test. As such, a k-DOP is simply computed from
the projection spread of the object vertices along the defining axes of the k-DOP.
Compared to the AABB calculation, the only differences are that the vertices have to
be projected onto the axes and there are more axes to consider. The restriction to keep
axis components in the set {—1, 0, 1} makes a hardcoded function for computing the
k-DOP less expensive than a general function for arbitrary directions, as the projec-
tion of vertices onto these axes now involves at most three additions. For example,
an 8-DOP is computed as follows:

// Compute 8-DOP for object vertices v[] in world space
// using the axes (1,1,1), (1,1,-1), (1,-1,1) and (-1,1,1)
void ComputeDOP8(Point v[], int numPts, DOP8 &dop8)

{
// Initialize 8-DOP to an empty volume
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dop8.min[0] = dop8.min[1] = dop8.min[2]
dop8.max[0] = dop8.max[1] = dop8.max[2]

dop8.min[3]
dop8.max[3]

FLT_MAX;
-FLT_MAX;

// For each point, update 8-DOP bounds if necessary
float value;
for (int i = 0; i < numPts; i++) {
// Axis 0 = (1,1,1)
value = v[i].x + v[il.y + v[i].z;
if (value < dop8.min[0]) dop8.min[0] = value;
else if (value > dop8.max[0]) dop8.max[0] = value;

/] Axis 1 = (1,1,-1)

value = v[i].x + v[i]l.y - v[i].z;

if (value < dop8.min[1]) dop8.min[1l] = value;
else if (value > dop8.max[1]) dop8.max[1] = value;

// Axis 2 = (1,-1,1)

value = v[i].x - v[il.y + v[il.z;

if (value < dop8.min[2]) dop8.min[2] = value;
else if (value > dop8.max[2]) dop8.max[2] = value;

/] Axis 3 = (-1,1,1)

value = -v[i].x + v[i].y + v[i].z;

if (value < dop8.min[3]) dop8.min[3] = value;
else if (value > dop8.max[3]) dop8.max[3] = value;

Although k-DOPs are invariant under translation, a rotation leaves the volume
unaligned with the predefined axes. As with AABBs, k-DOPs must therefore be
realigned whenever the volume rotates. A simple solution is to recompute the k-DOP
from scratch, as described. However, because recomputing the k-DOP involves trans-
forming the object vertices into the new space this becomes expensive when the
number of object vertices is large. A more effective realignment approach is to use a
hill-climbing method similar to that described in Section 4.2.5 for computing AABBs.
The only difference is that instead of keeping track of six references to vertices of the
convex hull the hill climber would for a k-DOP now keep track of k vertex references,
one for each facial direction of the k-DOP. If frame-to-frame coherency is high and
objects rotate by small amounts between frames, tracking vertices is a good approach.
However, the worst-case complexity of this method is O(1n?) and it can perform poorly
when coherency is low. Hill climbing results in a tight bounding volume.

Another, approximative, approach is based on computing and storing the vertices
of each k-DOP for its initial local orientation at preprocess time. Then at runtime
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the k-DOP is recomputed from these vertices and transformed into world space by
the current orientation matrix. This is equivalent to the AABB method described in
Section 4.2.6.

The vertex set of the k-DOP in its initial orientation can be computed with the help
of a duality transformation mapping. Here the dual mapping of a plane ax 4+ by + cz =
listhe point (a, b, c) and vice versa. Let the defining planes of the k-DOP be expressed
as plane equations. Then by computing the convex hull of the dual of these planes the
faces (edges and vertices) of the convex hull maps into the vertices (edges and faces)
of the intersection of the original planes when transformed back under the duality
mapping. For this duality procedure to work, the k-DOP must be translated to contain
the origin, if it is not already contained in the k-DOP. For volumes formed by the
intersection of halfspaces, a point in the volume interior can be obtained through
linear programming (see Section 9.4.1). Another, simpler, option is to compute an
interior point using the method of alternating projection (MAP). This method starts
with an arbitrary point in space. Looping over all halfspaces, in arbitrary order, the
point is updated by projecting it to the bounding hyperplane of the current halfspace
whenever it lies outside the halfspace. Guaranteed to converge, the loop over all
halfspaces is repeated until the point lies inside all halfspaces. If the starting point lies
outside the intersection volume, asis likely, the resulting point will lie on the boundary
of the intersection volume, and specifically on one of the bounding hyperplanes.
(If the point lies inside the volume, the point itself is returned by the method.) A point
interior to the volume is obtained by repeating the method of alternating projections
with different starting points until a second point, on a different bounding hyperplane,
is obtained. The interior point is then simply the midpoint of the two boundary points.
MAP may converge very slowly for certain inputs. However, for the volumes typically
used as bounding volumes, slow convergence is usually not a problem. For more
information on MAP, see [Deutsch01]. For more information on duality (or polarity)
transformations see, for example, [Preparata85], [O'Rourke98], or [Berg00].

A simpler way of computing the initial vertex set is to consider all combinations
of three non co-planar planes from the input set of k-DOP boundary planes. Each
such set of three planes intersects in a point (Section 5.4.5 describes how this point is
computed). After all intersection points have been computed, those that lie in front
of one or more of the k-DOP boundary planes are discarded. The remaining points
are then the vertices of the k-DOP.

k-DOPs can also be realigned using methods based on linear programming, as
described in [Konecny97] and [Koneény98]. A more elaborate realignment strategy
is presented in [Flinfzig03]. Linear programming is described in Section 9.4.

Approximate Convex Hull Intersection Tests
It is easy to test separation between two convex polygons (for example, using the

rotating calipers method mentioned in Section 4.4.4). Unfortunately, the problem
is not as simple for polytopes. Accurate methods for this problem are discussed in
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4.7

Chapter 9. In many situations, however, fully accurate polytope collision detection
might be neither necessary nor desired. By relaxing the test to allow approximate
solutions, it is possible to obtain both simpler and faster methods.

One such approach maintains both the defining planes and vertices of each convex
hull. To test two hulls against each other, the vertices of each hull are tested against
the planes of the other to see if they lie fully outside any one plane. If they do, the
hulls are not intersecting. If neither set of vertices is outside any face of the other hull,
the hulls are conservatively considered overlapping. In terms of the separating-axis
test, this corresponds to testing separation on the face normals of both hulls, but not
the edge-edge combinations of both.

Another approach is simply to replace the vertex set with a set of spheres. The
spheres are chosen so that their union approximates the convex hull. Now the test
proceeds by testing spheres (instead of vertices) against the planes. The idea is that
compared to vertex tests fewer sphere tests must be performed. Although this test is
faster, it is also less accurate. To improve accuracy while keeping the set size down,
the set of spheres is often hand optimized.

As with k-DOPs, testing can be sped up by ordering the stored planes to make
successive planes as perpendicular to each other as possible. Similarly, to avoid degen-
erate behavior due to clustering the vertices (or spheres) can be randomly ordered.
Bounding the vertex set with a sphere and testing the sphere against the plane before
testing all vertices often allow for early outs.

Compared to other bounding volume tests, these tests are still relatively expensive
and are typically preceded by a cheaper bounding volume test (such as a sphere-
sphere test) to avoid hull-testing objects that are sufficiently far apart to not be
intersecting. The coherency methods presented in Chapter 9 are also useful for
minimizing the number of hull tests that have to be performed.

Other Bounding Volumes

In addition to the bounding volumes covered here, many other types of volumes
have been suggested as bounding volumes. These include cones [Held97], [Eberly02],
cylinders [Held97], [Eberly00], [Schémer00], spherical shells [Krishnan98], ellipsoids
[Rimon92], [Wang01], [Choi02], [Wang02], [Chien03], and zonotopes [Guibas03].
Cones, cylinders, and ellipsoids are self-explanatory. Spherical shells are the inter-
section of the volume between two concentric spheres and a cone with its apex at
the sphere center. Zonotopes are centrally symmetric polytopes of certain properties.
These shapes have not found widespread use as bounding volumes, in part due to
having expensive intersection tests. For this reason, they are not covered here further.

It should be noted that whereas ellipsoid-ellipsoid is an expensive intersection test,
tests of ellipsoids against triangles and other polygons can be transformed into testing
asphere against a skewed triangle by applying a nonuniform scaling to the coordinate
space. Thus, ellipsoids are feasible bounding volumes for certain sets of tests.
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4.8 Summary

Bounding volumes are simple geometric shapes used to encapsulate one or more
objects of greater geometrical complexity. Most frequently, spheres and boxes are
used as bounding volumes. If a really tight fit is required, slab volumes or convex hulls
may be used. Bounding volumes are used as early overlap rejection tests, before more
expensive tests are performed on the geometry enclosed within them. As discussed in
Section 4.1, there are trade-offs involved in the selection of bounding volume shapes.
By using bounding volumes of tighter fit, the chance of early rejection increases, but
at the same time the bounding volume test becomes more expensive and the storage
requirement for the bounding volume increases. Typically, bounding volumes are
computed in a preprocessing step and, as necessary, transformed with the bounded
objects at runtime to match the objects’movements.

In addition to detailing the most common bounding volumes and how to com-
pute them, this chapter described how to perform homogeneous intersection tests
(between volumes of the same type). These tests were meant as a teaser toward
Chapter 5, which in considerable detail covers (heterogeneous) intersection tests and
distance calculations between primitive geometrical shapes, such as lines and line
segments, spheres, boxes, triangles, polygons, and polyhedra.
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Chapter §

5.1

Basic Primitive Tests

After a high-level system has ruled out as many objects as possible from further col-
lision tests, all collision systems must perform low-level tests between primitives or
bounding volumes to determine intersection status. In some cases, a simple indica-
tion whether there is an intersection is sufficient. In other cases, the actual point of
intersection is required. This chapter describes how these low-level tests can be effi-
ciently performed. In addition, the goal is to provide enough specific mathematical
detail to allow derivation of tests that go beyond the scope of this presentation, using
the mathematical ideas examined here.

Note that some of the mathematical expressions presented herein may be subject to
numerical accuracy problems when implemented in floating-point arithmetic. These
problems are only briefly touched on here. A deeper discussion of the robustness
issues due to numerical accuracy problems is found in Chapter 11.

Closest-point Computations

Closest-point queries are some of the most powerful of collision queries. Given the
closest points between two objects, the distance between the objects is obtained. If
the combined maximum movement of two objects is less than the distance between
them, a collision can be ruled out. In a hierarchical representation, closest-point
computations allow parts of the hierarchy that will never come close enough to collide
to be pruned from further consideration.

Obtaining the closest points between two objects can be seen as a minimization
problem. One approach is to formulate the minimization problem and solve it using
methods of calculus (such as the method of Lagrange multipliers). In this text a more
geometric approach is preferred, and the following subsections illustrate how the
closest points can be obtained for various geometric objects.

125
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Note that closest points between two objects can sometimes be maintained incre-
mentally at low cost, facilitating fast collision testing. Incremental computation of
closest points is further explored in Chapter 9, in the context of collision between
convex objects.

5.1.1 Closest Point on Plane to Point

Given a plane m, defined by a point P and a normal n, all points X on the plane satisfy
the equation n - (X — P) = 0 (that is, the vector from P to X is perpendicular to n).
Now let Q be an arbitrary point in space. The closest point R on the plane to Q is the
orthogonal projection of Q onto the plane, obtained by moving ( perpendicularly
(with respect to n) toward the plane. That is, R = Q — tn for some value of ¢, as
illustrated in Figure 5.1. Inserting this expression for R into the plane equation and
solving for f gives:

n-(Q—tn)—P) =0« (inserting R for X in plane equation)

n-Q—tn-n)—n-P=0<% (expanding dot product)

n-(Q—-P)=t(n-n) & (gathering similar terms and moving t expression to RHS)

t=n-(Q—P)/(n-n) (dividing both sides by n - n)

Substituting this expression for t in R = Q — tn gives the projection point R as

R=Q—-(n-(Q-P)/(n -n)n.

When n is of unit length, ¢ simplifies to f = n - (Q — P), giving R as simply
R =Q— (n-(Q— P))n. From this equation it is easy to see that for an arbitrary point
Q,t =n-(Q — P) corresponds to the signed distance of Q from the plane in units of
the length of n. If ¢ is positive, Q is in front of the plane (and if negative, Q is behind
the plane).

When the plane is given in the four-component form n - X = d, the corresponding
expression for tis t = ((n - Q) — d)/(n - n). The code for computing the closest point
on the plane to a point therefore becomes:

Point ClosestPtPointPlane(Point q, Plane p)

{
float t = (Dot(p.n, q) - p.d) / Dot(p.n, p.n);
return q - t * p.n;



5.1 Closest-point Computations 127

: nl
°Rr p

Figure 5.1 Plane 7 given by P and n. Orthogonal projection of Q onto 7 gives R, the closest
point on  to Q.

If the plane equation is known to be normalized, this simplifiesto t = (n- Q) —d,

giving:

Point ClosestPtPointPlane(Point q, Plane p)

{
float t = Dot(p.n, q) - p.d;
return g - t * p.n;

The signed distance of Q to the plane is given by just returning the computed
value of t:

float DistPointPlane(Point q, Plane p)

{
// return Dot(q, p.n) - p.d; if plane equation normalized (||p.n||==1)

return (Dot(p.n, q) - p.d) / Dot(p.n, p.n);

5.1.2 Closest Point on Line Segment to Point

Let AB be a line segment specified by the endpoints A and B. Given an arbitrary
point C, the problem is to determine the point D on AB closest to C. As shown in
Figure 5.2, projecting C onto the extended line through AB provides the solution. If
the projection point P lies within the segment, P itself is the correct answer. If P lies
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(a) (b)

Figure 5.2 The three cases of C projecting onto AB: (a) outside AB on side of A, (b) inside
AB, and (c) outside AB on side of B.

outside the segment, it is instead the segment endpoint closest to C that is the closest
point.

Any point on the line through AB can be expressed parametrically as P(t) = A +
t (B — A). Using the projective properties of the dot product, the ¢ corresponding
to the projection of C onto the line is given by t = (C — A) - n/||B — A||, where
n = (B—A)/||B — AJ| is a unit vector in the direction of AB.

Because the closest point on the line segment is required, f must be clamped to the
interval 0 < t < 1, after which D can be obtained by substituting t into the parametric
equation. Implemented, this becomes:

// Given segment ab and point c, computes closest point d on ab.
// Also returns t for the position of d, d(t) = a + t*(b - a)
void ClosestPtPointSegment(Point c, Point a, Point b, float &t, Point &d)
{
Vector ab = b — a;
// Project c onto ab, computing parameterized position d(t) = a + t*(b — a)
t = Dot(c — a, ab) / Dot(ab, ab);
// If outside segment, clamp t (and therefore d) to the closest endpoint
if (t < 0.0f) t = 0.0f;
if (t > 1.0f) t = 1.0f;
// Compute projected position from the clamped t
d=a+t* ab;

If divisions are expensive, the division operation can be postponed by multiply-
ing both sides of the comparisons by the denominator, which as a square term is
guaranteed to be nonnegative. Optimized in this fashion, the code becomes:

// Given segment ab and point c, computes closest point d on ab.
// Also returns t for the parametric position of d, d(t) = a + t*(b - a)
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void ClosestPtPointSegment(Point c, Point a, Point b, float &t, Point &d)

{

Vector ab = b - a;
// Project c onto ab, but deferring divide by Dot (ab, ab)
t = Dot(c - a, ab);
if (t <= 0.0f) {
/] ¢ projects outside the [a,b] interval, on the a side; clamp to a
t = 0.0f;
d = a;
} else {
float denom = Dot(ab, ab); // Always nonnegative since denom = ||ab||*2
if (t >= denom) {
/! ¢ projects outside the [a,b] interval, on the b side; clamp to b

t = 1.0f;
d = b;
} else {

// ¢ projects inside the [a,b] interval; must do deferred divide now
t =t / denom;
d=a+1t* ab;

The same basic method can be used for finding the closest point on a ray or the
closest point on a line. For a ray, it is necessary to clamp ¢ only when it goes negative.
For a line, there is no need to clamp t at all.

5.1.2.1 Distance of Point to Segment

The squared distance between a point C and a segment AB can be directly computed
without explicitly computing the point D on AB closest to C. As in the preceding
section, there are three cases to consider. When AC - AB < 0, A is closest to C and
the squared distance is given by AC - AC. When AC - AB > AB - AB, B is closest to C
and the squared distance is BC - BC. In the remaining case, 0 < AC - AB < AB - AB,
the squared distance is given by CD - CD, where

AC-AB

D=—aqg 245
t AB. AB

AB.

However, because the expression CD - CD simplifies to

(AC - AB)?

AC-AC — ,
c-AC AB - AB
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computing D is not required. Because several subterms recur, the implementation
can be efficiently written as follows:

// Returns the squared distance between point ¢ and segment ab
float SqDistPointSegment(Point a, Point b, Point c)
{

Vector ab = b — a, ac = c — a, bc = ¢ - b;

float e = Dot(ac, ab);

// Handle cases where c projects outside ab

if (e <= 0.0f) return Dot(ac, ac);

float f = Dot(ab, ab);

if (e >= f) return Dot(bc, bc);

// Handle cases where c projects onto ab

return Dot(ac, ac) —e * e / f;

5.1.3 Closest Point on AABB to Point

Let Bbe an axis-aligned bounding boxand P an arbitrary point in space. The point Q on
(orin) B closest to Pis obtained by clamping P to the bounds of B on a componentwise
basis. There are four cases to consider for verifying that clamping gives the desired
result. If P is inside B, the clamped point is P itself, which is also the point in B
closest to P. If P is in a face Voronoi region of B, the clamping operation will bring
P to that face of B. (Voronoi regions were introduced in Chapter 3.) The clamping
corresponds to an orthogonal projection of P onto B and must therefore result in
the closest point on B. When P is in a vertex Voronoi region of B, clamping P gives
the vertex as a result, which again is the closest point on B. Finally, when P is in
an edge Voronoi region, clamping P corresponds to an orthogonal projection onto
the edge, which also must be the closest point on B to P. This procedure works in
both two and three dimensions. The clamping procedure for a 2D box is illustrated
in Figure 5.3, for the point P lying in an edge Voronoi region (a) and in a vertex
Voronoi region (b).
The following code implements the closest-point operation:

// Given point p, return the point g on or in AABB b that is closest to p
void ClosestPtPointAABB(Point p, AABB b, Point &q)
{

// For each coordinate axis, if the point coordinate value is

// outside box, clamp it to the box, else keep it as is
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(b)

Figure 5.3 Clamping P to the bounds of B gives the closest point Q on B to P: (a) for an edge
Voronoi region, (b) for a vertex Voronoi region.

for (int i = 0; i < 3; i++) {
float v = p[il;
if (v < b.min[i]) v
if (v > b.max[i]) v
qli] = v;

b.min[il; // v
b.max[il; // v

max (v, b.min[i])
min(v, b.max[i])

In CPU architectures supporting SIMD instructions this function can often be
implemented in just two instructions: a max instruction followed by a min instruction!

5.1.3.1 Distance of Point to AABB

When the point Q on an AABB B closest to a given point P is computed only
to determine the distance between P and Q, the distance can be calculated with-
out explicitly obtaining Q. This is illustrated by the following code. To simplify
the calculation and to avoid an expensive square root call, the squared distance is
computed.

// Computes the square distance between a point p and an AABB b
float SqDistPointAABB(Point p, AABB b)

{
float sqDist = 0.0f;
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for (int i = 0; i < 3; i++) {
// For each axis count any excess distance outside box extents
float v = p[i];
if (v < b.min[i]) sqDist += (b.min[i] - v) * (b.min[i] - v);
if (v > b.max[i]) sqDist += (v - b.max[i]) * (v - b.max[i]);

}

return sqDist;

5.1.4 Closest Point on OBB to Point

Let B be an OBB given by a center point C; three orthogonal unit vectors ug, uy, and u,
specifying the orientation of the x, y, and z axes of B; and three scalar values ¢y, e1, and
e» specifying the box halfwidths along each axis (Figure 5.4). In this representation,
all points S contained by B can be written as S = C +aug + bu; + cup, where |a| < ey,
|b| < e, and Ic] < e,.

A point P in world space relates to its corresponding point Q = (x,y,2z) in
the coordinate system of the OBB B as P = C + xuy + yu; + zup. Given P, the
OBB-space coordinates can be solved for as follows. Only the derivation of the x

Figure 5.4 The point P, in world space, can be expressed as the point (x, y) in the coordinate
system of this 2D OBB.
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coordinate is shown here. The other coordinates can be solved for in a similar

manner.

P=C+xup+yu; +zu; & (original expression)
P—C=xuy+yu +zu; & (moving C to left side)
(P—0C)-up = (xup + yuy + zup) - up < (taking dot product with uy on both sides)
(P—C)-up=x(up - up) +y(uy - up) + z(uz - wp) & (expanding dot product expression)
P=C)-uy=x (simplifying usingup - up = 1,

up-ug=up-up=0)

The full set of OBB coordinates are thus given byx = (P —C) -up, y = (P —C) - uy,
andz= (P —C) - up.

To compute the point R on (or in) B closest to P, the same approach as used for an
AABB can be applied by expressing P in the OBB coordinate system as Q, clamping

Q to the extents ey, e1, and e, and reexpressing Q in world coordinates. The code for
this follows.

// Given point p, return point q on (or in) 0BB b, closest to p
void ClosestPtPoint0BB(Point p, OBB b, Point &q)

{
Vector d = p - b.c;
// Start result at center of box; make steps from there
q = b.c;
// For each 0BB axis...
for (int i = 0; i < 3; i++) {
// ...project d onto that axis to get the distance
// along the axis of d from the box center
float dist = Dot(d, b.u[i]);
// If distance farther than the box extents, clamp to the box
if (dist > b.e[i]) dist = b.e[i];
if (dist < -b.e[i]) dist = -b.e[i];
// Step that distance along the axis to get world coordinate
q += dist * b.u[i];
}
}

Mathematically, the described method is equivalent to transforming the point P
into the local coordinate system of the OBB, computing the point on the OBB (now
effectively an AABB) closest to the transformed point, and transforming the resulting
point back into world coordinates.
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5.1.4.1 Distance of Point to OBB

To obtain the squared distance between the point P and the closest point on OBB B,
the previous function could be called in this way:

// Computes the square distance between point p and 0BB b
float SqDistPointOBB(Point p, OBB b)

{
Point closest;
ClosestPtPointOBB(p, b, closest);
float sqDist = Dot(closest - p, closest - p);
return sqDist;
}

If only the squared distance and not the closest point is needed, this code can be
further simplified. By projecting the vector v from the center of B to P onto each of the
three OBB axes, the distance d from P to the box center along that axis is obtained.
Because the axes are orthogonal, any excess amount that d is beyond the extent of
the box for a given axis can be computed, squared, and added to the total squared
distance of P independently of the other two axes.

// Computes the square distance between point p and 0BB b
float SqDistPointOBB(Point p, OBB b)
{
Vector v = p - b.c;
float sqDist = 0.0f;
for (int i = 0; i < 3; i++) {
// Project vector from box center to p on each axis, getting the distance
// of p along that axis, and count any excess distance outside box extents
float d = Dot(v, b.u[i]), excess = 0.0f;
if (d < -b.e[i])
excess = d + b.e[i];
else if (d > b.e[i])
excess = d - b.e[i];
sgDist += excess * excess;
}

return sqDist;
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5.1.4.2 Closest Point on 3D Rectangle to Point

Determining the point Q on a 3D rectangle R closest to a given point P is virtually
equivalent to the problem of finding the closest point on an OBB, in thata 3D rectangle
can be seen as an OBB with zero extent along the z axis.

As such, a rectangle is defined by a center point C, two orthogonal unit vectors ug
and u; specifying the orientation of the x and y axes of R, and two scalar values ¢y and
e1 specifying the rectangle halfwidth extents along each axis. In this representation,
all points S contained by R are given by S = C + aug + bu;, where |a| < ey and
|| < e1. Expressed as code, this rectangle structure becomes:

struct Rect {
Point c; // center point of rectangle
Vector u[2]; // unit vectors determining local x and y axes for the rectangle
float e[2]; // the halfwidth extents of the rectangle along the axes

}s

Rewriting the ClosestPtPointOBB() code to account for a zero-extent z axis
results in the following code for finding the closest point on a 3D rectangle.

// Given point p, return point q on (or in) Rect r, closest to p
void ClosestPtPointRect(Point p, Rect r, Point &q)

{
Vector d = p - r.c;
// Start result at center of rect; make steps from there
q=r.c;
// For each rect axis...
for (int i = 0; i < 2; i++) {
/] ...project d onto that axis to get the distance
// along the axis of d from the rect center
float dist = Dot(d, r.ul[i]l);
/! If distance farther than the rect extents, clamp to the rect
if (dist > r.e[i]) dist = r.e[i];
if (dist < -r.e[i]) dist = -r.e[i];
// Step that distance along the axis to get world coordinate
q += dist * r.u[i];
}
}

A 3D rectangle R can also be given by three points (4, B, and C) such that the
vectors B — A and C — A span the rectangle. All points S in R are now given by
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S=A4+uB—-A)+0v(C—-A),0 <u=<1 and 0 < v < 1. In this scenario, a
similar projection approach can be used (but adjusting for the new clamping inter-
vals). Optimizing the implementation for this case results in the following code.

// Return point q on (or in) rect (specified by a, b, and c), closest to given point p
void ClosestPtPointRect(Point p, Point a, Point b, Point c, Point &q)

{

Vector ab = b - a; // vector across rect
Vector ac = ¢ - a; // vector down rect
Vector d = p - a;
// Start result at top-left corner of rect; make steps from there
q = a;
// Clamp p' (projection of p to plane of r) to rectangle in the across direction
float dist = Dot(d, ab);
float maxdist = Dot(ab, ab);
if (dist >= maxdist)
q += ab;
else if (dist > 0.0f)
q += (dist / maxdist) * ab;
// Clamp p' (projection of p to plane of r) to rectangle in the down direction
dist = Dot(d, ac);
maxdist = Dot(ac, ac);
if (dist >= maxdist)
q *+= ac;
else if (dist > 0.0f)
q += (dist / maxdist) * ac;

This is slightly more expensive than the initial approach, as it is not bene-
fitting from normalization of the rectangle’s across and down vectors during a
precalculation step.

5.1.5 Closest Point on Triangle to Point

Given a triangle ABC and a point P, let ) describe the point on ABC closest to P. One
way of obtaining Q is to rely on the fact that if P orthogonally projects inside ABC
the projection point is the closest point Q. If P projects outside ABC, the closest point
must instead lie on one of its edges. In this case, Q can be obtained by computing
the closest point to P for each of the line segments AB, BC, and CA and returning the
computed point closest to P. Although this works, it is not a very efficient approach.
A better solution is to compute which of the triangle’s Voronoi feature regions P is in.
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X-4)-(C-4)<0

X-A)«(B-A)<0

Cc

Figure 5.5 The Voronoiregion of vertex A, VR(A), is the intersection of the negative halfspaces
of the two planes (X-A) - (B-A)=0and (X-A) - (C-A)=0.

Once determined, only the orthogonal projection of P onto the corresponding fea-
ture must be computed to obtain Q.

To see how P can be determined to be in a vertex Voronoi region, consider the
vertex Voronoi region of A. This region is determined as the intersection of the
negative halfspaces of two planes through A, one with a normal of B — A and the other
with the normal C — A (as illustrated in Figure 5.5).

Determining if P lies in one of the edge Voronoi regions can be done in a number
of ways. It turns out that an efficient test is to effectively compute the barycentric
coordinates of the orthogonal projection R of P onto ABC. Recall from Section 3.4
that the barycentric coordinates of R are given as the ratios of (anything propor-
tional to) the signed areas of triangles RAB, RBC, and RCA to the signed area of
ABC. Let n be the normal of ABC and let R = P — fn for some t. The barycen-
tric coordinates (1, v, w) of R, R = uA + vB + wC, can then be computed from the
quantities

Vector n = Cross(b - a, c - a);

float rab = Dot(n, Cross(a - r, b - r)); // proportional to signed area of RAB
float rbc = Dot(n, Cross(b - r, ¢ - r)); // proportional to signed area of RBC
float rca = Dot(n, Cross(c - r, a - r)); // proportional to signed area of RCA
float abc = rab + rbc + rca; // proportional to signed area of ABC
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as u = rbclabc, v = rcalabc, and w = rablabc. However, a little vector arithmetic
shows that these expressions simplify. For example, the expression for rab simplifies

as follows:
((A—R) x (B—R)) = (original expression)
-(Ax(B—R)—Rx (B—R)) = (expanding cross product)
-AxB—AxR—-RxB)= (expanding cross products; removing n - (R x R) = 0 term)
-(AxB—Ax(P—tn)—(P—1tn) x B) = (substituting R = P — tn for R)
-AxB—AxP+tAxn—PxB+tnxB)= (expanding cross products)
cAxB—AxP-PxB+inx (B-A))= (gathering similar terms)
-(AxB—AxP—-PxB)= (removingn - (tn x (B — A)) = 0 term)
-((A—P) x (B—P)) (contracting cross product after adding n - (P x P) = 0 term)

In other words, the barycentric coordinates of R can be obtained directly from P
without computing R.

For P to lie in an edge Voronoi region — for example, the one corresponding to
edge AB— Pwould have to lie outside or on AB, signified by rab < 0, as well as within
the positive halfspaces of the planes (X —A) - (B—A) =0and (X —B) - (A—B) = 0.
Note that it is not sufficient just to test if P is outside AB, in that for a triangle with an
obtuse angle at A, P could be outside AB and actually be located in the Voronoi region
of edge CA (Figure 5.6). (Similarly, it is a common mistake to assume, for example,
that A is the closest point to P if P lies outside AB and (P — A) - (B—A) < 0.) If Pis
not found to be in any of the vertex or edge Voronoi regions, Q must lie inside ABC

J .P
.

B

. ve

Figure 5.6 When the angle at A is obtuse, P may lie in the Voronoi region of edge CA even
though P lies outside AB and not in the vertex Voronoi regions of either A or B.
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and, in fact, be the orthogonal projection R, which can now be easily computed per

the preceding. This information is now enough to produce a code solution.

Point ClosestPtPointTriangle(Point p, Point a, Point b, Point c)

{

Vector ab = b - a;
Vector ac = ¢ - a;
Vector bc = ¢ - b;

// Compute parametric position s for projection P' of P on AB,
// P' = A + s*AB, s = snom/(snom+sdenom)
float snom = Dot(p - a, ab), sdenom = Dot(p - b, a - b);

// Compute parametric position t for projection P' of P on AC,
// P' = A + t*AC, s = tnom/(tnom+tdenom)
float tnom = Dot(p - a, ac), tdenom = Dot(p - c, a - c);

if (snom <= 0.0f &% tnom <= 0.0f) return a; // Vertex region early out

// Compute parametric position u for projection P' of P on BC,
// P' =B + u*BC, u = unom/ (unom+udenom)
float unom = Dot(p - b, bc), udenom = Dot(p - ¢, b - ¢);

if (sdenom <= 0.0f && unom <= 0.0f) return b; // Vertex region early out
if (tdenom <= 0.0f && udenom <= 0.0f) return c; // Vertex region early out

// P is outside (or on) AB if the triple scalar product [N PA PB] <= 0
Vector n = Cross(b - a, ¢ - a);
float vc = Dot(n, Cross(a - p, b - p));
// If P outside AB and within feature region of AB,
// return projection of P onto AB
if (vc <= 0.0f &% snom >= 0.0f && sdenom >= 0.0f)
return a + snom / (snom + sdenom) * ab;

// P is outside (or on) BC if the triple scalar product [N PB PC] <= 0
float va = Dot(n, Cross(b - p, ¢ - p));
// If P outside BC and within feature region of BC,
// return projection of P onto BC
if (va <= 0.0f && unom >= 0.0f && udenom >= 0.0f)
return b + unom / (unom + udenom) * bc;

// P is outside (or on) CA if the triple scalar product [N PC PA] <= 0
float vb = Dot(n, Cross(c - p, a - p));
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// If P outside CA and within feature region of CA,

// return projection of P onto CA

if (vb <= 0.0f &% tnom >= 0.0f && tdenom >= 0.0f)
return a + tnom / (tnom + tdenom) * ac;

// P must project inside face region. Compute Q using barycentric coordinates

float u = va / (va + vb + vc);
float v = vb / (va + vb + vc);
float w = 1.0f - u - v; // = vc
return u *a+v*bh+w?*c;

/ (va + vb + vc)

As presented, this code contains four cross-product calls. Because cross products
are often more expensive to calculate than dot products, it is worthwhile exploring
whether these can be replaced by more economical expressions. It turns out that the

Lagrange identity

(axb)-(exd)=(@-¢)(b-d)—(a-d)(b-0)

can be used to express the three scalar triple products

Vector n = Cross(b - a, ¢
float va = Dot(n, Cross(b
float vb = Dot(n, Cross(c
float vc = Dot(n, Cross(a

in terms of the six dot products

float d1 = Dot(b - a,
float d2 = Dot(c - a,
float d3 = Dot(b - a,
float d4 = Dot(c - a,
float d5 = Dot(b - a,
float d6 = Dot(c - a,

T T T T T T
1

as

float va
float vb
float vc

d3*d6 - d5*d4;
d5*d2 - d1*d6;
di*d4 - d3*d2;

- a);

-p,c-p))s
- P, a'P));
-ps b-p));

a);
a);
b) ;
b) ;
c);
c);
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these six dot products, d1 to d6, can be used to compute the snom, sdenom,

tnom, tdenom, unom, and udenom terms as well:

float
float
float
float
float
float

snom = dl;
sdenom = -d3;
tnom = d2;
tdenom = -d6;

unom = d4 - d3;
udenom = d5 - d6;

The vector n is no longer needed. This allows the code to be optimized to the final

version.

Point ClosestPtPointTriangle(Point p, Point a, Point b, Point c)

{

// Check if P in vertex region outside A

Vector ab = b - a;

Vector ac = c - a;

Vector ap = p - a;

float d1 = Dot(ab, ap);

float d2 = Dot(ac, ap);

if (d1 <= 0.0f && d2 <= 0.0f) return a; // barycentric coordinates (1,0,0)
// Check if P in vertex region outside B

Vector bp = p - b;

float d3 = Dot(ab, bp);
float d4 = Dot(ac, bp);

if (d3 >= 0.

// Check if

0f &8 d4 <= d3) return b; // barycentric coordinates (0,1,0)

P in edge region of AB, if so return projection of P onto AB

float vc = dl*d4 - d3*d2;

if (ve <= 0.
float v

0f 8& d1 >= 0.0f && d3 <= 0.0f) {
=dl / (d1 - d3);

return a + v * ab; // barycentric coordinates (1-v,v,0)

}

// Check if
Vector cp =

P in vertex region outside C
p-c;

float d5 = Dot(ab, cp);
float d6 = Dot(ac, cp);

if (d6 >= 0.

0f &8 d5 <= d6) return c; // barycentric coordinates (0,0,1)
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// Check if P in edge region of AC, if so return projection of P onto AC
float vb = d5*d2 - d1*d6;
if (vb <= 0.0f && d2 >= 0.0f && d6 <= 0.0f) {

}

float w = d2 / (d2 - d6);
return a + w * ac; // barycentric coordinates (1-w,0,w)

// Check if P in edge region of BC, if so return projection of P onto BC
float va = d3*d6 - d5*d4;
if (va <= 0.0f &% (d4 - d3) >= 0.0f & (d5 - d6) >= 0.0f) {

}

float w = (d4 - d3) / ((d4 - d3) + (d5 - d6));
return b + w * (c - b); // barycentric coordinates (0,1-w,w)

// P inside face region. Compute Q through its barycentric coordinates (u,v,w)
float denom = 1.0f / (va + vb + vc);

float v = vb * denom;

float w = vc * denom;

return a + ab * v + ac * w; // = u*a + v*b + w*c, u = va * denom = 1.0f - v - w

A third way of obtaining the closest point is to use a vector calculus approach,
as suggested in [Eberly01]. Briefly, the triangle ABC is parameterized as T(s,t) =
A+5(B—A)+t(C—A), wheres > 0,t > 0, and s + ¢t < 1. The closest point to
a given point P now corresponds to the minimum of the squared distance function
d(s, t) = H T(s,t)—P 2, which is a quadratic expression in s and t. The minimum of
this function must occur in one of three cases: at a vertex, on an edge, or in the interior
of the triangle. By first differentiating d(s, t) with respect to these different cases (that
is, substituting s = 0, t = 0, or t = 1 — s as necessary), setting the derivatives to zero
and solving, and then comparing the resulting s and ¢ values to the triangle bounds,
it is possible to find out which case corresponds to the minimum.

For this particular application, the vector calculus solution becomes more com-
plicated than just described. However, the general approach of viewing the problem
as a quadratic minimization problem is valuable, and the same idea can be used to
determine the distance between, say, a line or line segment and a triangle. Addi-
tional information on the vector calculus approach, including pseudocode, is given
in [Eberly01].

Closest Point on Tetrahedron to Point

Given a point P, the problem is determining the point Q on (or in) a tetrahedron ABCD
closest to P (as illustrated in Figure 5.7). A straightforward solution is to compute Q
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c

Figure 5.7 The point Q on the tetrahedron ABCD closest to P.

by calling the ClosestPtPointTriangle() function (defined in the previous section)
once for each face plane of the tetrahedron P. Of all computed points, the one closest
to P is returned as Q. Separately from the distance tests, a different test is made to
see if P lies inside all face planes. When it does, P itself is the closest point.

Assuming the tetrahedron ABCD has been defined so that its faces ABC, ACD,
ADB, and BDC all are arranged counterclockwise when viewed from outside the
tetrahedron, this solution can be implemented as follows.

Point ClosestPtPointTetrahedron(Point p, Point a, Point b, Point c, Point d)
{
// Start out assuming point inside all halfspaces, so closest to itself
Point closestPt = p;
float bestSqDist = FLT_MAX;
// If point outside face abc then compute closest point on abc
if (PointOutsideOfPlane(p, a, b, c)) {
Point q = ClosestPtPointTriangle(p, a, b, c);
float sqDist = Dot(q - p, q - p);
// Update best closest point if (squared) distance is less than current best
if (sqDist < bestSqDist) bestSqDist = sqDist, closestPt = q;
}
// Repeat test for face acd
if (PointOutsideOfPlane(p, a, c, d)) {
Point q = ClosestPtPointTriangle(p, a, c, d);
float sqDist = Dot(q - p, q - p);
if (sqDist < bestSqDist) bestSqDist = sqDist, closestPt = q;
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// Repeat test for face adb

if (PointOutsideOfPlane(p, a, d, b)) {
Point q = ClosestPtPointTriangle(p, a, d, b);
float sqDist = Dot(q - p, q - p);

if (sqDist < bestSqDist) bestSqDist = sqDist, closestPt = q;
}
// Repeat test for face bdc
if (PointOutsideOfPlane(p, b, d, c)) {

Point q = ClosestPtPointTriangle(p, b, d, c);

float sqDist = Dot(q - p, q - p);

if (sqDist < bestSqDist) bestSqDist = sqDist, closestPt = q;

}

return closestPt;

Here the value of PointOutside0fPlane(P, A, B, C) corresponds to the sign of
the scalar triple product of the vectors P — A, B — A, and C — A.

// Test if point p lies outside plane through abc
int PointOutsideOfPlane(Point p, Point a, Point b, Point c)
{
return Dot(p - a, Cross(b - a, ¢ - a)) >= 0.0f; // [AP AB AC] >= 0
}

Often the winding of the tetrahedron vertices is not known beforehand, meaning
it cannot be assumed, say, that face ABC is counterclockwise when viewed from
outside the tetrahedron. In this case, the solution is to additionally pass the fourth
tetrahedron vertex to PointOutside0fPlane () and make sure it and the tested point
lie on opposite sides of the tested tetrahedron face. In other words, the function then
becomes:

// Test if point p and d lie on opposite sides of plane through abc
int PointOutside0OfPlane(Point p, Point a, Point b, Point c, Point d)
{
float signp = Dot(p - a, Cross(b - a, c - a)); // [AP AB AC]
float signd = Dot(d - a, Cross(b - a, ¢ - a)); // [AD AB AC]
// Points on opposite sides if expression signs are opposite
return signp * signd < 0.0f;
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This overall approach works well and is simple to implement. However, it is pos-
sible to derive a more efficient solution by applying the same basic method used for
finding the closest point on a triangle. First, the Voronoi feature region in which the
point P is located is determined. Once the feature has been obtained, Q is given by
the orthogonal projection of P onto this feature. For a tetrahedron there are 14 overall
Voronoi feature regions that must be considered: four vertex regions, six edge regions,
and four face regions. If P does not lie in one of the feature regions, P must by default
be contained in the tetrahedron. The tests for containment in a feature region are
similar to those made earlier for the triangle. For example, P is now determined to lie
in the vertexVoronoi region of A if the following expressions are satisfied.

(P—-A)-B-A)=0
(P-A)-(C-A)=0
(P—-A4)-D-A) =0

For P to lie in theVoronoi region associated with edge AB, the following tests would
have to be satisfied (again assuming a known counterclockwise winding of the faces).

(P-A)-B-A)=0
(P-B)-(A-B)=0
(P—A)-((B—A) xnapc) >0, where npggc = (B—A) x (C—A)
(P—A)-(napg x (B—A)) >0, wherenapg = (D —A) x (B—A)

Analogous sets of expressions can be defined for testing containment in the
remaining regions. At first glance, this may not seem like an improvement over
the earlier test. However, many of the computed quantities are shared between dif-
ferent Voronoi regions and need not be recomputed. It is also possible to simplify
the expressions involved in testing the Voronoi regions using the Lagrange identity,
similar to the optimization done for the closest-point-on-triangle test. In this case, it
turns out that all tests can be composed in terms of just 10 different dot products.

Closest Point on Convex Polyhedron to Point

Several approaches are available for locating the point on a convex polyhedron H
closest to a point P in space. A simple-to-implement O(n) method is to compute
the point on each polyhedron face closest to P and return the one closest to P. A
concurrently run test determines if P lies inside all faces of H, in which case P is
interior to H. To speed up the test, the face distance calculation would have to be run
only when P lies in front of the face.
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For larger polyhedra, a faster approach is to construct, as a precomputation, a
hierarchy over the parts of the polyhedron. Utilizing a preconstructed hierarchy
allows the closest point to be located in logarithmic time. An example of such a
hierarchy is the Dobkin—Kirkpatrick hierarchy, described in Chapter 9. Chapter 9
also describes other approaches that can efficiently locate the closest point on the
polyhedra (such as the GJK algorithm).

Closest Points of Two Lines

Whereas a pair of lines in two dimensions always intersect unless they are parallel, a
pair of lines in three dimensions almost never intersect. Furthermore, even if two 3D
lines intersect in exact real arithmetic, under floating-point arithmetic they are quite
likely not to, due to rounding errors. Thus, to be able to robustly test the intersection
of two 3D lines it is best to assume that the lines might not intersect but only come
sufficiently close to each other. The intersection test then becomes determining the
distance between the lines and checking whether this distance is less than a given
threshold value.

The closest points of two lines can be determined as follows. Let the lines L; and
L, be specified parametrically by the points P; and Q7 and P; and Q»:

Li(s) =P1 +sd;,d1 =Q1 — P4
Ly(t) =P +tdy, dy = Q2 — P>

For some pair of values for s and ¢, L1 (s) and L, (t) correspond to the closest points
on the lines, and v(s, t) = L1(s) — L (t) describes a vector between them (Figure 5.8).
The points are at their closest when v is of minimum length. The key realization is
that this happens when v is perpendicular to both L1 and L. To see this, consider that
the shortest distance between a point P and a line L is the length of a straight line

Li(s)=P; +sd;,d; =Q - P4 0,

v(s, 1) = Li(s) — Ly(2)

Py

Ly(t) = Py + tdy,d, = Q, - P, Q

Figure 5.8 The vector v(s, t) connecting the two closest points of two lines, L1(s) and Ly(1),
is always perpendicular to both lines.
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between P and the point Q corresponding to the orthogonal projection of P onto L.
Consequently, the line PQ is orthogonal to L. Because this reasoning holds for both
L1 (s) with respect to L, and L (t) with respect to L1, v must be perpendicular to both
lines. For nonparallel lines, v is unique.

The problem is now finding values for s and ¢ satisfying these two perpendicularity
constraints:

dy-v(s,t) =0
d2 . V(S, f) =0.

Substituting the parametric equation for v(s, t) gives:

di - (Li(s) = La(t)) = dy - ((P1 — P2) +sdy —tdp) =0
do - (L1(s) — La(t)) = da - ((P1 — P2) +sdy — tds) = 0.

This can be expressed as the 2 x 2 system of linear equations

(di-dy)s — (dy - do)t = —(dq - 1)
(d2-dy)s — (dp - do)t = —(d> - 1),

where r = P; — P,.
Written symbolically, in matrix notation, this corresponds to

b=

wherea=d;-dy,b=d;-dy,c=dj-r,e=dy-dy and f = dy - r. This system of
equations is solved, for example, using Cramer’s rule to give

s=(bf —ce)ld
t = (af —be)ld,

where d = ae —b*. Note thatd > 0, in thatd = |dy ||2 |d> ”2 —(||di] |d2| cos(8))? =
(||d1 || ||d2 || sin(0))?. When d = 0, the two lines are parallel, which must be han-
dled separately. In this case, any point P can be selected on the one line. On the

other line, the point closest to P is selected using the projection method described in
Section 5.1.2.
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5.1.9 Closest Points of Two Line Segments

The problem of determining the closest points of two line segments S; and S,

Si(s) =P1+sdy, di=Q1—P1, 0<s<1
Sty =Pr+tdy, do=Q—P,, 0<t <1,

is more complicated than computing the closest points of the lines L; and Ly of
which the segments are a part. Only when the closest points of L and L, happen to
lie on the segments does the method for closest points between lines apply. For the
case in which the closest points between L; and L, lie outside one or both segments,
a common misconception is that it is sufficient to clamp the outside points to the
nearest segment endpoint. However, as cases (b) and (c) of Figure 5.9 illustrate, this
is not a valid assumption.

It can be shown that if just one of the closest points between the lines is outside
its corresponding segment that point can be clamped to the appropriate endpoint of
the segment and the point on the other segment closest to the endpoint is computed
[Lumelsky85]. This corresponds to case (b) in Figure 5.9, in which the closest point on
L1 is clamped to endpoint Q; on segment S;. The closest point R on L, to Q5 is then
computed and found to be on segment S,, leaving the closest points as Q; and R.

If both points are outside their respective segments, the same clamping procedure
must be repeated twice, as illustrated by case (c) in Figure 5.9. Again the closest point
on Ly gets clamped to endpoint Q1 on S1.The closest point R on L to Q; is computed.
Because R is found to be outside segment Sy, it is clamped to the nearest segment
endpoint, Q. The closest point S on Ly to Q; is then computed and now found to be
on segment Sy, leaving the closest points as Q, and S.

Given a point Sy(t) = P, + td, on the second segment, the closest point L1 (s) on
L, is given by

s = (Sz(t) — P1) . d1/d1 . d1 = (Pz + fdz — P1) . dl/d1 . dl.

(a) (b) (d)

Figure 5.9 Closest points (a) inside both segments, (b) and (c) inside one segment endpoint
of other, (d) endpoints of both segments (after [Lumelsky85]).
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Similarly, given the point Si(s) = P; + sd; on Sy, the closest point Ly(f) on L; is

computed as

t=(S1(s) = P2) - da/dy - dp = (P1 +5d1 — Py) - do/dy - do.

Alternatively, Gaussian elimination can be used on the 2 x 2 system of linear
equations to solve for the one unknown in terms of the other. In either case, the

expressions for s and ¢ simplify to

s= (bt —c)la
t=(bs+f)le,

Mthu=d1~d1,b=d1~dz,c=d1-r,e=d2~d2,andf=d2-r.
Code implementing this function follows.

// Clamp n to lie within the range [min, max]
float Clamp(float n, float min, float max) {
if (n < min) return min;
if (n > max) return max;
return n;

}

// Computes closest points C1 and C2 of SI(s)=Pl1+s*(Q1-P1) and
/] S2(t)=P2+t*(Q2-P2), returning s and t. Function result is squared
// distance between between S1(s) and S2(t)
float ClosestPtSegmentSegment(Point pl, Point ql, Point p2, Point q2,
float &s, float &t, Point &cl, Point &c2)
{
Vector d1 = ql1 - pl; // Direction vector of segment Sl
Vector d2 = q2 - p2; // Direction vector of segment S2
Vector r = pl - p2;
float a = Dot(dl, dl); // Squared length of segment S1, always nonnegative
float e = Dot(d2, d2); // Squared length of segment S2, always nonnegative
float f = Dot(d2, r);

// Check if either or both segments degenerate into points
if (a <= EPSILON 8% e <= EPSILON) {

// Both segments degenerate into points

s =t = 0.0f;

cl = pl;

c2 = p2;
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return Dot(cl - c2, cl - c2);

}

if (a <= EPSILON) {
/] First segment degenerates into a point
s = 0.0f;

t=Ff/e //s=0=>t=(b*s+Ff)/e=Ff/e
t = Clamp(t, 0.0f, 1.0f);
} else {

float ¢ = Dot(dl, r);
if (e <= EPSILON) {
// Second segment degenerates into a point

t = 0.0f;
s = Clamp(-c / a, 0.0f, 1.0f); // t =0=>s = (b*t -c) /a=-c/ a
} else {

// The general nondegenerate case starts here
float b = Dot(dl, d2);
float denom = a*e-b*b; // Always nonnegative

/! If segments not parallel, compute closest point on LI to L2 and
// clamp to segment S1. Else pick arbitrary s (here 0)
if (denom != 0.0f) {
s = Clamp((b*f - c*e) / denom, 0.0f, 1.0f);
} else s = 0.0f;
// Compute point on L2 closest to S1(s) using
/] t = Dot((P1 + DI*s) - P2,02) / Dot(D2,02) = (b*s + f) / e
t = (b*s + f) / e;

// If t in [0,1] done. Else clamp t, recompute s for the new value
// of t using s = Dot((P2 + D2*t) - P1,D1) / Dot(D1,D1)= (t*b - c) / a
// and clamp s to [0, 1]
if (t < 0.0f) {
t = 0.0f;
s = Clamp(-c / a, 0.0f, 1.0f);
} else if (t > 1.0f) {
t = 1.0f;
s = Clamp((b - c) / a, 0.0f, 1.0f);

}

cl=pl+dl *s;
c2 = p2 +d2 * t;
return Dot(cl - c2, cl - c2);
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As an optimization, the division by e can be deferred until ¢ is known to be in the
range [0, 1], making the code at the end of the large else statement read:

float tnom = b*s + f;
if (tnom < 0.0f) {
t = 0.0f;
s = Clamp(-c / a, 0.0f, 1.0f);
} else if (tnom > e) {
t = 1.0f;
s = Clamp((b - ¢) / a, 0.0f, 1.0f);
} else {
t = tnom / e;

}

This deferral saves one, often expensive, division operation in the general case.

5.1.9.1 2D Segment Intersection

Testing whether two 2D segments AB and CD intersect can be done by first computing
the intersection point of their extended lines and then verifying that the intersection
point lies within the bounding box of each segment. Refer to Figures 5.10a and b for
examples. The case of the lines being parallel has to be handled separately.

The intersection between the extended lines can be computed by writing the first
line in explicit form, L1(t) = A + t(B — A), and the second line in implicit form,
n- (X —C) = 0, where n = (D — C)* is a perpendicular to CD. Substituting the first
line equation for the unknown point in the second equation and solving for ¢ then

gives:
n-A+tB-A)-C) =0« (substituting A + t(B — A) for X)
n-A-C0+tn-(B-A)=0% (expanding the dot product; gathering similar terms)
th-B—A)=-n-A-0C) & (isolating t term on LHS)
th-(B—A)=n-(C—-A) & (removing negation on RHS by inverting vector)
t=n-(C—A)mn-(B-A) (dividing both sides by n - (B — A))

The actual intersection point P = L1(t) can now be obtained by substituting t into
the explicit equation. An alternative to testing if P lies within the bounding box of AB
is to verify that 0 <t < 1.

An alternative overlap test for 2D segments can be based on the insight that the
segments overlap only if the endpoints of either segment are located on different sides
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Figure 5.10 (a) Segments AB and CD do not intersect because the intersection point P of
their extended lines lies outside the bounding box of CD. (b) Segments AB and CD intersect
because P lies inside the bounding boxes of both AB and CD. (c) Segment CD intersects the
line through AB because the triangles ABD and ABC have opposite winding.

of the extended line through the other segment. That is, for AB and CD to overlap, A
and B must be on different sides of CD and C and D must be on different sides of AB.

Testing whether the endpoints C and D are on different sides of AB can be done by
verifying that the triangles ABD and ABC wind in different directions (illustrated in
Figure 5.10c). To determine the winding, the signed triangle area can be computed.
Recall that the signed area is positive if the triangle winds counterclockwise, negative
if it winds clockwise, and zero if the triangle is degenerate (collinear or coincident
points).

// Returns 2 times the signed triangle area. The result is positive if
// abc is ccw, negative if abc is cw, zero if abc is degenerate.
float Signed2DTriArea(Point a, Point b, Point c)
{
return (a.x - c.x) * (b.y - c.y) - (a.y - c.y) * (b.x - c.x);
}

In the case in which the segments are intersecting, it turns out that the signed
areas computed to detect this can also be used to compute the intersection point. The
computation and its derivation are given in the following implementation.

// Test if segments ab and cd overlap. If they do, compute and return
// intersection t value along ab and intersection position p
int Test2DSegmentSegment(Point a, Point b, Point c, Point d, float &t, Point &p)
{
// Sign of areas correspond to which side of ab points c and d are
float al = Signed2DTriArea(a, b, d); // Compute winding of abd (+ or -)
float a2 = Signed2DTriArea(a, b, c); // To intersect, must have sign opposite of al
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// If ¢ and d are on different sides of ab, areas have different signs
if (al * a2 < 0.0F) {
// Compute signs for a and b with respect to segment cd
float a3 = Signed2DTriArea(c, d, a); // Compute winding of cda (+ or -)
// Since area is constant al - a2 = a3 - a4, or a4 = a3 + a2 - al
// float a4 = Signed2DTriArea(c, d, b); // Must have opposite sign of a3
float a4 = a3 + a2 - al;
// Points a and b on different sides of cd if areas have different signs
if (a3 * a4 < 0.0f) {
// Segments intersect. Find intersection point along L(t) =a+t * (b-a).
// Given height hl of an over cd and height h2 of b over cd,
// t =hl /[ (h1 - h2) = (b*h1/2) | (b*h1/2 - b*h2/2) = a3 / (a3 - a4),
// where b (the base of the triangles cda and cdb, i.e., the length
// of cd) cancels out.
t =a3/ (a3 - ad);
p=a+t*(b-a);
return 1;
}
}
// Segments not intersecting (or collinear)
return 0;

Here, the expression al * a2 < 0.0f is used to test if al and a2 have different signs
(and similarly for a3 and a4). When working with signed integers, a better alternative
is to use exclusive-or instead of multiplication, al * a2 < 0, thereby avoiding potential
problems with overflow. In the presence of collinear points, either or both of al and
a2 may be zero. To detect proper intersections in these cases, the test would have to
be written along the lines of:

if (al != 0.0f &% a2 != 0.0f && al*a2 < 0.0f) ... // for floating-point variables
if ((al | a2) !=0 & al ~ a2 < 0) ... // for integer variables

Finally, note that for some applications it is worthwhile to test if the bounding
boxes of AB and CD overlap before proceeding with one of these segment intersec-
tion tests. This is especially true for determining intersection of line segments in 3D,
for which the involved computations are more expensive.

5.1.10 Closest Points of a Line Segment and a Triangle

The closest pair of points between a line segment PQ and a triangle ABC is not
necessarily unique. When the segment is parallel to the plane of the triangle, there
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(a) (b)

Figure 5.11 The closest pair of points between a line segment and a triangle can always be
found either (a) between an endpoint of the segment and the triangle interior or (b) between
the segment and an edge of the triangle.

may be an infinite number of pairs equally close. However, regardless of whether the
segment is parallel to the plane or not it is always possible to locate points such that
the minimum distance occurs either (a) between an endpoint of the segment and the
interior of the triangle or (b) between the segment and an edge of the triangle. These
two cases are illustrated in Figure 5.11.

Case (a) can occur only if the projection of a segment endpoint onto the suppor-
ting plane of the triangle lies inside the triangle. However, even when a segment
endpoint projects inside the triangle an edge of the triangle may provide a closer
point to the segment. Thus, the closest pair of points can be found by computing the
closest pairs of points between the entities

segment PQ and triangle edge AB,

segment PQ and triangle edge BC,

segment PQ and triangle edge CA,

segment endpoint P and plane of triangle (when P projects inside ABC), and
segment endpoint Q and plane of triangle (when Q projects inside ABC)

and returning the pair with the overall smallest minimum separating distance as the
result.

The number of tests required can be reduced in some cases. For example, when both
endpoints project inside the triangle no segment-edge tests are necessary, because
either endpoint projection must correspond to a closest point. When one endpoint
projects inside the triangle, only one segment-edge test is required. When both end-
points project outside the triangle, one of the segment-edge tests is not needed.
For the latter two cases, the necessary segment-edge tests can be determined by
examining which Voronoi regions the segment endpoints lie in.

Aremainingcase iswhen the segment intersects the triangle. For a transverse inter-
section, the intersection point corresponds to the closest points. When the segment
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lies in the plane of the triangle, any point on the segment in intersection with the
triangle realizes the closest points. An alternative method for determining the closest
points between a segment and a triangle, based on a vector calculus approach, is
outlined in [Eberly01] and [Schneider02].

Closest Points of Two Triangles

As for the case of determining the closest pair of points between a segment and a tri-
angle, there may be an infinite number of equally close points between two triangles.
However, the closest points between two triangles T7 and T» can always be realized in
such a way that one point lies on the boundary of one of the triangles. Consequently,
a pair of closest points between two triangles can be found by computing the closest
points between segment and triangle for all six possible combinations of an edge
from one triangle tested against the other triangle. The pair of points having the least
(squared) distance then corresponds to the closest pair of points of minimum global
distance.

Segment-triangle distance tests are fairly expensive, and thus a better realization
is that the closest pair of points between T7 and T, can be found to occur either
on an edge from each triangle (Figure 5.12a) or as a vertex of one triangle and a
point interior to the other triangle (Figure 5.12b). The problem now becomes that
of computing the closest points among all pairs of edges, one from each triangle,
and the closest point on the opposite triangle for each vertex of each triangle (when
said vertex projects interior to the other triangle). In all, six vertex-triangle tests and
nine edge-edge tests are required. Out of all pairs of closest points, the one with the
overall smallest distance corresponds to the globally closest pair of points between
the triangles.

If the triangles are not known a priori to be disjoint, an additional test is required to
rule out the intersection of the two triangles. When intersecting, the distance between

(a) (b)

Figure 5.12 The closest pair of points between two triangles can be realized (a) as lying on
an edge from either triangle or (b) as a vertex of one triangle and a point interior to the other
triangle.
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5.2

5.2.1

the triangles is trivially zero, but the closest points are not likely to be well defined
because there may be infinitely many (for example, if the triangles are parallel and
overlapping).

Testing Primitives

The testing of primitives is less general than the computation of distance between
them. Generally, a test will indicate only that the primitives are intersecting, not
determine where or how they are intersecting. Therefore, these intersection tests are
often much faster than tests returning additional information.

Separating-axis Test

An extremely useful tool for implementing various intersection tests is the separating-
axis test. It follows from the separating hyperplane theorem, a fundamental result of
convex analysis. This theorem states that given two convex sets A and B, either the
two sets are intersecting or there exists a separating hyperplane P such that A is on
one side of P and B is on the other.

The separating-axis test follows intuitively from the theorem, because two con-
vex objects cannot “curve” around each other. Thus, when they are not intersecting
there will be a gap between them into which a plane can be inserted to separate the
two objects. When either or both objects are concave, a plane would in general no
longer be sufficient to separate the nonintersecting objects. Instead, a curved sur-
face would be required to separate the objects. When the objects are intersecting, no
surface — curved or not — can be inserted between the objects to separate them.

Given a hyperplane P separating A and B, a separating axis is a line L perpendicular
to P. It is called a separating axis because the orthogonal projections of A and B
onto L result in two nonoverlapping intervals (Figure 5.13). Because the two intervals
do not overlap, the conclusion is that the geometries must be disjoint. Because a
separating axis exists if and only if a separating hyperplane exists, either can be tested
for. However, in practice it turns out to be better to test for separation on an axis, in
that it results in a less expensive test.

For performing a separating-axis test, it is worth noting that many collision
primitives — such as segments, AABBs, OBBs, k-DOPs, and spheres — are sym-
metrical in the sense that they have a center point C, which always projects into the
middle of the projection interval of their projection onto an axis. Given a potentially
separating axis L, an efficient separation test of two symmetrical objects A and B is
therefore to compute the halfwidth, or radii, of their projection intervals and compare
the sum of them against the distance between their center projections. If the sum is
less than the distance between the center projections, the objects must be disjoint.
An example is given in Figure 5.14, in which A and B correspond to a circle and an
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(@) (b)

Figure 5.13 (a) Two convex objects, A and B, separated by a hyperplane P (one of many
possible hyperplanes). Stated equivalently, A and B are nonoverlapping in their projection
onto the separating axis L (which is perpendicular to P). (b) The same convex objects are in an
intersecting situation and therefore not separable by any hyperplane.

rA

d

Figure 5.14 Two objects are separated if the sum of the radius (halfwidth) of their projections
is less than the distance between their center projections.

oriented rectangle (or, equivalently, a sphere and an OBB, as seen from the side).
First, for each object, a supporting point along L is obtained; that is, a point most
distant from the object center along either direction of L (in that the projections are
symmetrical, the direction does not matter; there will be a point equally distant in
both directions). The two object radii, 74 and rp, are then obtained by computing the
distance between the projections onto L of the object centers and their respective
most distant points. The distance d between the center projections is also computed.
Given these computed quantities, the objects are now separated if r4 + 3 < d.
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The separating-axis test applies even when an object is not symmetric — as in the
case of an arbitrary convex hull, for instance — but the test would have to be modified
to project the hull vertices onto the axis in order to find the projection intervals.

Separating axes are easy to find by inspection. However, for an implementation
it is important to be able to automatically limit an infinite number of potentially sep-
arating axes to just a few axes tested. For convex polyhedra, it is possible to drastically
reduce the number of axes to test. Ignoring ordering, two polyhedral objects may
come into contact in six different ways with respect to their features. They can meet
face-face, face-edge, face-vertex, edge-edge, edge-vertex, or vertex-vertex. Because
vertices can be considered part of the edges, the combinations involving vertices are
subsumed by the same situations involving edges. This reduces the contact situations
to three essentially different combinations: face-face, face-edge, and edge-edge.

For the face-face and face-edge cases, it is sufficient to test the face normals of both
objects as potential separating axes. For the edge-edge case, the potential separating
axis to be tested corresponds to the cross product of the two edges. The reason the
cross product is used for the separating-axis test in the edge-edge case can be justified
by considering what happens when two objects come into contact edge to edge. The
points on the edges closest to each other form the feet of a perpendicular between
the two edges. Because this perpendicular is the cross product of the edges, it is the
correct candidate to test as a separating axis. In summary, to test the separability of
two polyhedral objects the following axes must be tested.

® Axes parallel to face normals of object A
® Axes parallel to face normals of object B

e Axes parallel to the vectors resulting from the cross products of all edges in
A with all edges in B

As soon as a separating axis is found, a test can immediately exit with“no intersection.”
If all axes are tested, with no separating axis found, the objects must be intersecting.

For two general polytopes with the same number of faces (F) and edges (E) there
are 2F + E? potential separating axes. Because the number of separating axes is
quadratic in the number of edges, a separating-axis test may be infeasible for objects
of moderate to high complexity. However, it is possible to speed up a separating-axis
test by caching the last successful separating axis and testing it first on a subsequent
query, in the hope of getting an early nonintersection exit thanks to spatial and
temporal coherency of the objects between queries.

When two polytopes are colliding, the separating-axis test can also assist in com-
puting contact information. Instead of exiting early when an overlap is detected on
an axis, all axes are tested for overlap. After all axes have been tested, the axis with
the least (normalized) overlap can be used as the contact normal, and the overlap can
be used to estimate the penetration depth. With some extra work, contact points can
also be computed with the help of the separating axis. For those interested in reading
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further, the separating-axis test was suggested for the collision detection of oriented
bounding boxes by [Larcombe95].

5.2.1.1 Robustness of the Separating-axis Test

A potential problem with the separating-axis test is robustness in the case of a sep-
arating axis being formed by the cross product of an edge from each object. When
these two edges become parallel, the result is the zero vector and all projections onto
this axis, and sums of these projections, are therefore zero. Thus, if the test is not
carefully crafted, a zero vector may incorrectly be interpreted as a separating axis.
Due to the use of floating-point arithmetic, this problem may occur even in the case
of a near-zero vector for two near-parallel edges. In fact, the robustness problem of
the separating-axis test was encountered in Section 4.4.2 in the context of the OBB-
OBB intersection test, and a solution for the problem in that particular context can
be found there.

When possible, it is best to analyze the robustness problem in the context in which
it will occur. A generic solution to the problem is to test if the resulting cross-product
vector is a (near) zero vector, and if so attempt to deal with the problem either by
producing another axis that is perpendicular to the two vectors or by ignoring the
axis if separation on the axis can be ruled out.

The following code fragment outlines how a more robust separating-axis test for
edges AB and CD could be implemented.

// Compute a tentative separating axis for ab and cd
Vector m = Cross(ab, cd);
if (!IsZeroVector(m)) {
// Edges ab and cd not parallel, continue with m as a potential separating axis

} else {
// Edges ab and cd must be (near) parallel, and therefore lie in some plane P.
// Thus, as a separating axis try an axis perpendicular to ab and lying in P
Vector n = Cross(ab, ¢ - a);
m = Cross(ab, n);
if (!IsZeroVector(m)) {
// Continue with m as a potential separating axis

}

// ab and ac are parallel too, so edges must be on a line. Ignore testing
// the axis for this combination of edges as it won't be a separating axis.
// (Alternatively, test if edges overlap on this line, in which case the
// objects are overlapping.)
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5.2.2

(a) (b) (c)

Figure 5.15 lllustrating the three sphere-plane tests. (a) Spheres intersecting the plane. (b)
Spheres fully behind the plane. (c) Spheres intersecting the negative halfspace of the plane.
Spheres testing true are shown in gray.

The IsZeroVector() function tests if its argument is a vector with a magnitude
sufficiently close to zero (according to some tolerance value; see Section 11.3.1).
Widening the tolerance intervals and treating near-parallel edges as parallel may
result in near-intersections being interpreted as intersections. Overall, this is much
more attractive than the alternative: two intersecting objects falsely reported as
nonintersecting due to the projection onto a zero-vector separating axis, for example.

A related source of robustness errors is when the vectors used in the cross product
have a large magnitude, which may result in additional loss of precision in the calcu-
lations involving the cross product. If a bound on the magnitude of the input vectors
it not known, it is prudent to normalize them before computing the cross product to
maintain precision.

Testing Sphere Against Plane

It is possible to test a sphere against a plane in several ways. This section describes
three such tests: testing if the sphere intersects the plane, if the sphere lies fully behind
the plane, and if the sphere intersects the negative halfspace of the plane. Figure 5.15
illustrates these three scenarios.

Let a sphere S be specified by a center position C and aradius r, and let a plane 7 be
specified by (n - X) = d, where n is a unit vector; that is, |n|| = 1. To determine if the
sphere is intersected by the plane, the plane equation can be evaluated for the sphere
center. Because n is unit, the resulting value corresponds to the signed distance of
the sphere center from the plane. If the absolute value of the distance is within the
sphere radius, the plane intersects the sphere:

// Determine whether plane p intersects sphere s
int TestSpherePlane(Sphere s, Plane p)
{

// For a normalized plane (|p.n| = 1), evaluating the plane equation
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// for a point gives the signed distance of the point to the plane

float dist = Dot(s.c, p.n) - p.d;

// If sphere center within +/-radius from plane, plane intersects sphere
return Abs(dist) <= s.r;

To determine if the sphere lies fully behind (inside the negative halfspace of)
plane m, the test changes to:

// Determine whether sphere s is fully behind (inside negative halfspace of) plane p
int InsideSpherePlane(Sphere s, Plane p)
{

float dist = Dot(s.c, p.n) - p.d;

return dist < -s.r;

If instead the negative halfspace of the plane is to be considered solid for the test
with the sphere, the test changes to:

// Determine whether sphere s intersects negative halfspace of plane p
int TestSphereHalfspace(Sphere s, Plane p)
{

float dist = Dot(s.c, p.n) - p.d;

return dist <= s.r;

5.2.3 Testing Box Against Plane

Let a plane P be given by (n - X) = d. Testing if a box B intersects P can also be
accomplished with the separating-axis test. Here, only the axis parallel to the plane
normal n need be tested. Because the plane extends indefinitely, there are no edges
with which to form edge-edge axis combinations. Axes corresponding to the face
normals of the box can be eliminated from testing because the infinite extent of the
plane means the plane will never sit fully outside one of the box faces unless it is
parallel to the face, a case already handled by the plane normal axis.

Consider first the case of B being an OBB, given by the usual representation of
a center C; local coordinate axes ug, uy, and uy; and three scalars ¢y, e, and e,
(making the OBB sides 2¢; wide for 0 < i < 2). Points R in the OBB are given by
R =C £ auy £ aquy £ aruy, where |g;] < ¢;. Similarly, the eight vertices V;,
0 <i <7, of the OBB are given by V; = C £ epup & e1u3 % epun.
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In that any line L parallel to n serves as a separating axis, a good choice is to have
L go through the box center, giving L as L(t) = C + tn. The box center C projects
onto L at t = 0. Because the OBB is symmetrical about its center, the projection onto
L results in a symmetric interval of projection [C — rn, C 4 r n], centered at C, with
a halfwidth (or radius) of r. Testing if B intersects P now amounts to computing the
radius r of the projection interval and checking if the distance of the center point of
B to Pisless than r.

Because points of the OBB farthest away from its center are the vertices of the OBB,
the overall maximum projection radius onto any vector n will be realized by one of
the vertices. Thus, it is sufficient to consider only these when computing the radius
r. The projection radii ; of the eight vertices are given by

ri=V;—C)-n=(CxeugEeu £eu —C) -n=(teyuy£eiu; £eow) - n.

Due to the distributive properties of the dot product, this expression can be
written as

r; = £(egug - n) & (e1uq - n) £ (eouy - n).

The maximum positive radius r is obtained when all involved terms are positive,
corresponding to only positive steps along n, which is achieved by taking the absolute
value of the terms before adding them up:

7 = |egup - n| + |eruy - n| + |eauz - .
Because the extents are assumed positive, r can be written as
r=eyplug-nl+ejlu;-nl+elup-nf.
When the separating-axis vector n is not a unit vector, r instead becomes
r=(elup-n|+elu-n|+eluz-nl)/|n.

The signed distance s of C from P is obtained by evaluating the plane equation
for C, giving s = n - C — d. Another way of obtaining s is to compute the distance
u of P from C, s = —u. Recall that Pisn - X = d, where d = Q - n for some point
Q on the plane. As all points on P project to a single point on L, it is sufficient to
work with the projection of Q onto L. The distance u can therefore be computed as
u=(Q—-C -n=Q-n—C-n=d—C-n, which up to a sign change is equivalent
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Figure 5.16 Testing intersection of an OBB against a plane.

to the evaluation of the plane equation for the box center. Figure 5.16 illustrates the
quantities used in the test.

Because the intersection between the OBB B and the plane P occurs when
—r < s < r, or equivalently when |s| < r, there is now sufficient information to
implement the test.

// Test if OBB b intersects plane p
int TestOBBP1ane(0OBB b, Plane p)
{
// Compute the projection interval radius of b onto L(t) = b.c +t * p.n
float r = b.e[0]*Abs(Dot(p.n, b.u[0])) +
b.e[1]*Abs (Dot(p.n, b.u[1])) +
b.e[2]*Abs (Dot(p.n, b.u[2]));
// Compute distance of box center from plane
float s = Dot(p.n, b.c) - p.d;
// Intersection occurs when distance s falls within [-r,+r] interval
return Abs(s) <= r;

It is not necessary for n to be normalized for the test to work. If n is nonunit, both
rand s will be a factor ||n|| larger, which does not affect the test.

Other tests can be easily implemented in a similar vein. For example, the OBB falls
inside the negative halfspace of the plane if s < —r. If r < s, the OBB lies fully in
the positive halfspace of the plane. For an OBB given as B = C + kovo + k1v1 + koo,
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0 < ko, k1, ko < 1, the radius r of the OBB is instead obtained by r = (|vo - n| +
[v1 - n|+|v2 - n])/2. For an axis-aligned box B, the local axes ug, u1, and u, are known
in advance, and thus the code can be simplified accordingly.

/] Test if AABB b intersects plane p
int TestAABBPlane(AABB b, Plane p)

{

// These two lines not necessary with a (center, extents) AABB representation
Point ¢ = (b.max + b.min) * 0.5f; // Compute AABB center
Point e = b.max - c; // Compute positive extents

// Compute the projection interval radius of b onto L(t) = b.c +t * p.n
float r = e[0]*Abs(p.n[0]) + e[1]*Abs(p.n[1]) + e[2]*Abs(p.n[2]);

// Compute distance of box center from plane

float s = Dot(p.n, c) - p.d;

// Intersection occurs when distance s falls within [-r,+r] interval
return Abs(s) <= r;

This test is equivalent to finding an AABB vertex most distant along the plane
normal and making sure that vertex and the vertex diagonally opposite lie on opposite
sides of the plane.

5.2.4 Testing Cone Against Plane

Let a plane be given by (n- X) = d, where d = —P - n for a point P on the plane and n
is unit. Let a cone be specified by its tip T, normalized axis direction d, height 4, and
a bottom radius r (Figure 5.17). The cone is intersecting the negative halfspace of the
plane if any point of the cone lies inside the negative halfspace; that is, if there is a
point X of the cone for which (n - X) < d. For a cone only two points must be tested
for this condition.

® The tip T of the cone

e The point Q on the circular endcap of the cone, farthest in the direction of —n

For the second test, Q must be located. Thanks to the format the cone is given in, Q
is easily obtained by stepping from the tip along the direction vector to the circular
bottom endcap and down the endcap toward the plane:

Q=T+hv+rm.
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Figure 5.17 lllustrating the variables involved in the intersection test of a cone against a
plane or halfspace.

The vector m is given by m = (n x v) x v.

If n x v is zero, the cone axis is parallel to the plane normal, in which case,
Q = T + hv is the correct point to test against the halfspace. However, in this case
m is also zero and thus it is not necessary to handle this case specially.

Often cones are specified by giving the halfangle « at the cone apex, rather than
the bottom radius r. In that tana = r/h, in these cases r is obtained as » = htan «.
Giving r rather than « is clearly a better representation for this test.

If the intersection test is against the plane itself and not a halfspace, the computa-
tion of Q must be changed to lie farthest in the direction of n in the case T lies behind
the plane. The test for intersection now becomes testing that T and Q lie on different
sides of the plane, indicated by (n - T) — d and (n - Q) — d having different signs. Of
these, (n - T) — d has already been computed to determine which side of the plane
T lies on.

Testing Sphere Against AABB

Testing whether a sphere intersects an axis-aligned bounding box is best done by com-
puting the distance between the sphere center and the AABB (see Section 5.1.3.1) and
comparing this distance with the sphere radius. If the distance is less than the radius,
the sphere and AABB must be intersecting. To avoid expensive square root operations,
both distance and radius can be squared before the comparison is made without
changing the result of the test. Using the function SqDistPointAABB() defined in
Section 5.1.3.1, the implementation becomes:

// Returns true if sphere s intersects AABB b, false otherwise
int TestSphereAABB(Sphere s, AABB b)
{

// Compute squared distance between sphere center and AABB
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5.2.6

float sqDist = SqDistPointAABB(s.c, b);

// Sphere and AABB intersect if the (squared) distance
// between them is less than the (squared) sphere radius
return sqDist <= s.r * s.r;

For collision handling, it is often useful to have the point on the AABB clos-
est to the sphere center returned, in which case the test can be written using
ClosestPtPointAABB() instead:

/] Returns true if sphere s intersects AABB b, false otherwise.
// The point p on the AABB closest to the sphere center is also returned
int TestSphereAABB(Sphere s, AABB b, Point &p)

{
// Find point p on AABB closest to sphere center
ClosestPtPointAABB(s.c, b, p);
// Sphere and AABB intersect if the (squared) distance from sphere
// center to point p is less than the (squared) sphere radius
Vector v = p - s.c;
return Dot(v, v) <= s.r * s.r;

}

Note that testing whether the sphere is fully outside one or more faces of the
AABB is not a sufficient test for determining intersection between the sphere and the
AABB. For example, a sphere may be in a nonintersecting position just outside an
edge of an AABB but not lie fully outside either of the two AABB faces meeting at
the edge, as illustrated in Figure 5.18.

Testing Sphere Against OBB

Testing a sphere against an oriented bounding box is almost identical to testing against
an axis-aligned bounding box, substituting the call to ClosestPtPointAABB() for a
call to ClosestPtPoint0BB():

// Returns true if sphere s intersects 0BB b, false otherwise.
// The point p on the 0BB closest to the sphere center is also returned
int TestSphereOBB(Sphere s, OBB b, Point &p)
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Figure 5.18 A sphere that does not lie fully outside any face plane of an AABB but never-
theless does not intersect the AABB.

{
// Find point p on 0BB closest to sphere center
ClosestPtPointOBB(s.c, b, p);
// Sphere and 0BB intersect if the (squared) distance from sphere
// center to point p is less than the (squared) sphere radius
Vector v = p - s.c;
return Dot(v, v) <= s.r * s.r;

}

5.2.7 Testing Sphere Against Triangle

The test for intersection between a sphere and a triangle follows the same pattern as
testing a sphere against a box. First, the point P on the triangle closest to the sphere
center is computed. The distance between P and the sphere center is then compared
against the sphere radius to detect possible intersection:

// Returns true if sphere s intersects triangle ABC, false otherwise.
// The point p on abc closest to the sphere center is also returned
int TestSphereTriangle(Sphere s, Point a, Point b, Point c, Point &p)
{

// Find point P on triangle ABC closest to sphere center

p = ClosestPtPointTriangle(s.c, a, b, c);
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5.2.8

// Sphere and triangle intersect if the (squared) distance from sphere
// center to point p is less than the (squared) sphere radius

Vector v = p - s.c;

return Dot(v, v) <= s.r * s.r;

To avoid an expensive square root operation, the squared distances are compared
in the code.

Testing Sphere Against Polygon

Testing whether a sphere intersects a polygon could be done analogously to the
last few tests: computing the closest point on the polygon to the sphere center and
comparing the distance between these two points to the sphere radius. The closest
point on a polygon to a given point P can be computed by triangulating the polygon
and computing the closest point to P for each triangle, and returning the point closest
to P as the result. This is not very efficient for large polygons, however, as n—2 triangle
tests would have to be performed for a polygon with n vertices.
An alternative method is to perform the following tests in turn:

1. Test if the sphere intersects the plane of the polygon. Exit with false if not.
2. Test each edge of the polygon to see if it pierces the sphere. Exit with true if so.

3. Project the sphere center onto the plane of the polygon. Perform a point-in-
polygon test (see Section 5.4.1) to see if this point is inside the polygon. If so, exit
with true. Otherwise, exit with false, as the sphere does not intersect the polygon.

The following code fragment illustrates how the test can be implemented.

// Test whether sphere s intersects polygon p
int TestSpherePolygon(Sphere s, Polygon p)

{

// Compute normal for the plane of the polygon

Vector n = Normalize(Cross(p.v[1] - p.v[0], p.v[2] - p.v[0]));
// Compute the plane equation for p

Plane m; m.n = n; m.d = -Dot(n, p.v[0]);

// No intersection if sphere not intersecting plane of polygon
if (!TestSpherePlane(s, m)) return 0;

// Test to see if any one of the polygon edges pierces the sphere
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for (int k = p.numVerts, i =0, j =k - 1; i < k; j =i, i++) {

}

float t;

Point q;

// Test if edge (p.v[j], p.v[i]) intersects s

if (IntersectRaySphere(p.v[jl, p.v[i]l - p.v[jl, s, t, q) && t <= 1.0f)
return 1;

// Test if the orthogonal projection q of the sphere center onto m is inside p
Point q = ClosestPtPointPlane(s.c, m);
return PointInPolygon(q, p);

5.2.9

As an optimization, for steps 2 and onward it is possible to project the sphere and
polygon into the principal plane where the polygon has the largest area and treat the
problem as the 2D test of a circle against a polygon. This reduces the overall number
of arithmetic operations required for the test.

Testing AABB Against Triangle

The test of a triangle T intersecting a box B can be efficiently implemented using a
separating-axis approach ([Eberly01], [Akenine-M®&ller01]). There are 13 axes that
must be considered for projection:

1. Three face normals from the AABB
2. One face normal from the triangle

3. Nine axes given by the cross products of combination of edges from both

As before, as soon as a separating axis is found the test can immediately exit with
a“no intersection”result. If all axes are tested and no separating axis is found, the box
and the triangle must be intersecting. It has been suggested that the most efficient
order in which to perform these three sets of tests is 3-1-2 [Akenine-Moller01].

The same 13 axis tests apply to both OBBs and AABBs. However, for an AABB
(because the local axes of the box are known) some optimizations can be made to
speed up the runtime calculations required for the test. Here, only the AABB test is
presented, but to better illustrate the similarities — as well as to facilitate the AABB-
specific optimizations — the AABB is assumed to be given in a form commonly
used for OBBs. That is, by a center C; local axes up = (1,0,0), u; = (0,1,0), and
u; = (0,0,1); and extents e, e1, and e,. The triangle it is tested against is given by
points Vo = (vox, Doy, v0z), V1 = (V1x, 01y, 012), and Vo = (vay, 02y, 022).
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The three face normals (up, u1, up) from the AABB are trivially tested by computing
the AABB of the triangle and testing B and the AABB of the triangle for overlap. If
the two AABBs do not intersect, neither do B and T. Testing the axis parallel to the
triangle face normal corresponds to testing if the AABB intersects the plane of the
triangle. As this test was described in Section 5.2.3, it is not further elaborated on
here. Remaining is testing the nine axes corresponding to the cross products of the
three edge directions from B and the three edge directions from T.

As with most separating-axis tests, the computations are simplified by moving one
object (the symmetrical one, if present) to the origin. Here, the box center is moved
to align with the origin, resulting in the following variable updates: Vy < V, — C,
Vi« Vi—C,Vy <« Vo —C,and C <« (0,0, 0). Let the triangle edges be given by fy =
Vi — Vo = (fou, foy, foo), 1 = Vo — Vi = (fix, fiy, f12), and fo = Vo — Vo = (fox, foy, foo)-
The nine axes considered as separating axes can then be specified as a; = u; x f;.
Because ug, uy, and uy have a simple form, these axes simplify as follows:

agy = wxfy, = (1,0,0)xfy = (0, —fo fo,)
an = wxfy = (1,000 x5 = (0, —fu fry)
ap = wxfHh = (1,00 xf = (0,~ffo)
ap = wxfy = (0L,0) xfy = (fo, 0, —for)
an = wmxf; = (01L0)xf = (fiz0 —fir)
ap = wxfh = (0L0)xfr = (f,0 —fn)
ayp = wxfy, = (0,01 xfy = (—fo,for0)
a = wxfy = 0,0)xf; = (—fi,fi, 0)
ay = wxfh = (0,01 xf = (—fyfx0)

Recall that the projection radius of a box with respect to an axis n is given by
r=eglug-n|+erlur-nf+efuy-nl.
In the case of n = ag, this simplifies to

7 =eg|ug - ago| + €1 [ug - agg| + €2 [uy - agy| &
r=e9|0] + e [—ago:| + €2 |aooy| &

r=er|fo| +exfoy-

Similarly, simple expressions for the AABB projection radius are easily obtained for
the remaining a;; axes. In all cases, the projection interval of the box is simply [, r].
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Projecting T onto a given axis n results in the projection interval [min(po,
p1, p2), max(po, p1, pg)], where py, p1, and p, are the distances from the origin to the
projections of the triangle vertices onto n. For n = aqy this gives:

po = Vo - ago = Vo - (0, —foz, foy) = —voyfor + vozfoy = —v0y (012 — 0z) + Vo2 (V1 — oy)
= —0oy01z + Vo:V1y

p1=Vi-ag = Vi (0, —fo, foy) = —v1yfor + v1foy = —01, (01 — v02) + V12 (V1) — Voy)
= U1y00z — 01200y = Po

p2=Va-ag = Va2 - (0, —foz, fo) = —v2yfor + V2:foy = —02, (01, — V02) + 022 (V1) — Voy)

If the projection intervals [—r, 7] and [min(po, p1, p2), max(po, p1, p2)] are disjoint
for the given axis, the axis is a separating axis and the triangle and the AABB do not
overlap.

For this axis, n = ago, itholds that py = p;1 and the projection interval for the triangle
simplifies to [min(po, p»), max(po, p2) | The triangle projection intervals simplify in the
same manner for all nine projection axes, as they all contain one zero component.
Here, the AABB and triangle projection intervals are therefore disjoint if max(po, p2) <
—r or min(py, p2) > r. If min() and max() operations are available as native floating-
point instructions on the target architecture, an equivalent expression that avoids one
(potentially expensive) comparison is max(— max(po, p2), min(po, p2)) > r. The latter
formulation is especially useful in an SIMD implementation (see Chapter 13 for more
on SIMD implementations).

The following code fragment illustrates how this test can be implemented.

int TestTriangleAABB(Point v0, Point vl, Point v2, AABB b)

{

float p0, pl, p2, r;

// Compute box center and extents (if not already given in that format)
Vector ¢ = (b.min + b.max) * 0.5f;

float e0 = (b.max.x - b.min.x) * 0.5f;

float el = (b.max.y - b.min.y) * 0.5f;

float e2 = (b.max.z - b.min.z) * 0.5f;

// Translate triangle as conceptually moving AABB to origin

v0 = v0 - c;

vl = vl - c;

v2 = v2 - c;

// Compute edge vectors for triangle
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Vector f0 = vl - v0, fl =v2 - vl, f2 = v0 - v2;

// Test axes a00..a22 (category 3)

// Test axis a00

p0 = v0.z*vl.y - v0.y*vl.z;

p2 = v2.z*(vl.y - v0.y) - v2.z*(vl.z - v0.z);

r = el * Abs(f0.z) + e2 * Abs(f0.y);

if (Max(-Max(p0, p2), Min(p0, p2)) > r) return 0; // Axis is a separating axis
// Repeat similar tests for remaining axes a0l..a22

// Test the three axes corresponding to the face normals of AABB b (category 1).
/] Exit if...

/!l ... [-e0, e0] and [min(v0.x,v1.x,v2.x), max(v0.x,vl.x,v2.x)] do not overlap
if (Max(v0.x, vl.x, v2.x) < -e0 || Min(v0.x, vl.x, v2.x) > e0) return 0;

/l ... [-el, el] and [min(v0.y,vl.y,v2.y), max(v0.y,vl.y,v2.y)] do not overlap
if (Max(v0.y, vl.y, v2.y) < -el || Min(v0.y, vl.y, v2.y) > el) return 0;

!l ... [-e2, e2] and [min(v0.z,vl.z,v2.z), max(v0.z,vl.z,v2.z)] do not overlap
if (Max(v0.z, vl.z, v2.z) < -e2 || Min(v0.z, vl.z, v2.z) > e2) return 0;

// Test separating axis corresponding to triangle face normal (category 2)
Plane p;

p.n = Cross(f0, f1);
p.d = Dot(p.n, v0);
return TestAABBPlane(b, p);

5.2.10

Note that there are robustness issues related to the tests of categories 2 (in com-
puting the face normal for a degenerate or oversized triangle) and 3 (the cross product
of two parallel edges giving a zero vector). See Section 5.2.1.1 for a discussion of what
has to be done to cover these cases in a fully robust implementation.

The topic of triangle-AABB overlap testing is discussed in [Voorhies92]. A test of
arbitrary polygons against an AABB is given in [Green95].

Testing Triangle Against Triangle

Many algorithms have been suggested for detecting the intersection of two triangles
ABC and DEF. The most straightforward test is based on the fact that in general when
two triangles intersect either two edges of one triangle pierce the interior of the other
or one edge from each triangle pierces the interior of the other triangle (Figure 5.19).
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(b)

Figure 5.19 In the general case, two triangles intersect (a) when two edges of one triangle
pierce the interior of the other or (b) when one edge from each pierces the interior of the
other.

A triangle-triangle test can therefore be implemented in terms of (up to) six edge-
triangle tests. If an edge of one triangle intersects the other triangle, the triangles
intersect. If all six tests fail, they are not intersecting.

The case in which the triangles are coplanar, or one or both triangles are degenerate
(with two or more coincident vertices, turning the triangles into lines or points), is not
handled correctly by this test. In fact, none of the suggested algorithms for triangle-
triangle intersection handle these cases by default: they all rely on theirs being handled
as special cases.

A second approach is to apply the separating-axis test. For intersecting two trian-
gles, 11 separating axes must be tested: one axis parallel to the face normal for each of
the two triangles, plus nine combinations of edges, with one edge from each triangle.
For each axis, the triangles are projected onto the axis and the projection intervals
are tested for overlap. If the projection intervals are found disjoint on any axis, the
triangles are nonintersecting and the test can immediately exit. However, when the
projection intervals overlap on all 11 axes the triangles must be intersecting.

A test similar in spirit to the separating-axis test is the interval overlap method
suggested by [Moller97b]. However, it is much less expensive than the previous two
tests. As a first step, it tests if the two face normals act as separating axes. This is done
by testing, for both triangles, whether the vertices of one triangle lie fully on one side
of the plane of the other triangle. If so, the triangles are nonintersecting. If not, at this
point, the planes of the triangles must be intersecting in aline L, L(t) = P+t d, where
d = n; x ny is the cross product of the two triangle normals n; and n,. Furthermore,
this line must also be intersecting both triangles. The scalar intersection intervals
between each triangle and L are now computed (these correspond to the intersection
points marked with black dots in Figure 5.19). Now, only if these scalar intervals
intersect do the triangles intersect. As an optimization, instead of directly computing
the triangle intersection intervals with L the intervals are computed and intersected on
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the principal coordinate axis most parallel with L. To summarize, the interval overlap
method proceeds as follows.

1. Compute the plane equation of triangle 1. Exit with no intersection if the vertices
of triangle 2 are all on the same side of this plane.

2. Compute the plane equation of triangle 2. Exit with no intersection if the vertices
of triangle 1 are all on the same side of this plane.

3. Compute the line L of intersection between the two planes.

4. Determine which principal coordinate axis is most parallel with the intersection
line L.

5. Compute scalar intersection intervals for each triangle with L, as projected onto
this principal axis.

6. The triangles intersect if the intersection intervals overlap; otherwise, they do not.

C code for this test is publicly available for download on the Internet.

A test of roughly the same time complexity as the interval overlap method, but
conceptually easier, is the penetration method used in the ERIT package of inter-
section tests [Held97]. It tests if the second triangle straddles the plane of the first
triangle, exiting with “no intersection” if not. Otherwise, the line segment realizing
this intersection is computed. This segment is then tested for intersection and con-
tainment against the first triangle, to determine the final intersection status of the
two triangles. This penetration method can be summarized as follows.

1. Compute the plane equation of triangle 1. Exit with no intersection if the vertices
of triangle 2 are all on the same side of this plane.

2. Compute the intersection between triangle 2 and the plane of triangle 1. This is a
line segment in the plane of triangle 1.

3. Test if the line segment intersects or is contained in triangle 2. If so, the triangles
intersect; otherwise, they do not.

As an optimization to step 3, Held suggests projecting the line segment and triangle
2 to the principal plane the triangle is most parallel with and solving the intersection
as a 2D triangle/line-segment test.

The final method mentioned here, similar to the interval overlap method, is pre-
sented in [Devillers02]. The first two steps are identical, but then the Devillers method
relies on bringing the two triangles into a canonical form to simplify the interval over-
lap test on the line L of intersection between the two planes. The canonical form is
achieved by cyclical permutation of the triangle vertices so that the vertex that lies
alone on one side of the plane of the other triangle is the first vertex of each triangle
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(that is, vertices A and D). The remaining vertices are also swapped to ensure that
A and D lie above the plane of the other triangle (viewing the other triangle in its
counterclockwise order).

After the triangles have been brought into the canonical form, the edges incident
to A and D (that is, AB and AC, and DE and DF, respectively) are now guaranteed to
intersect the line L of intersection between the two planes. Furthermore, the overlap
of the intersection intervals on L can now be determined through two scalar triple
product tests on the vertices, without explicitly computing the intervals themselves.

Overall, the logic for Devillers’test is more involved than the other methods pre-
sented here, but if implemented correctly the authors suggest the resulting code
becomes somewhat faster as well as more robust. Refer to the original presentation
for full implementational details.

Intersecting Lines, Rays, and (Directed) Segments

Tests involving lines, rays, and segments are frequently used, for example, to simulate
bullets fired or for testing line of sight. Line tests are sometimes used instead of more
complicated queries. For example, the contact of a hand or foot of a player character
against the environment or the contact of a vehicle wheel against the ground can often
be efficiently modeled with a simple line test. The following sections explore efficient
tests of lines, rays, and segments against various common collision primitives.

Intersecting Segment Against Plane

Let a plane P be given by (n - X) = d and a segment by the parametric equation
S(t) =A+t(B—A)for0 <t <1 (Figure 5.20). The ¢ value of intersection of the
segment with the plane is obtained by substituting the parametric equation for X in
the plane equation and solving for t:

n-A+t(B—-A)) =d (substituting S(¢) = A+t(B —A) for X in (n-X) =d)
n-A+tn-(B-A)=d (expanding the dot product)
tn-(B—A)=d—-n-A (moving scalar term to RHS)
t=({d-—-n ~A)/(n -(B—A)) (dividing both sides by n - (B — A) to isolate t)

The expression for t can now be inserted into the parametric equation for the seg-
ment to find the actual intersection point Q:

Q:A+[(d—n-A)/(n~(B—A))](B—A).
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Bw

Figure 5.20 Intersecting the segment AB against a plane.

This can now be implemented as follows.

int IntersectSegmentPlane(Point a, Point b, Plane p, float &t, Point &q)

{
// Compute the t value for the directed line ab intersecting the plane
Vector ab = b - a;
t = (p.d - Dot(p.n, a)) / Dot(p.n, ab);
// If t in [0..1] compute and return intersection point
if (t >= 0.0f && t <= 1.0f) {
qg=a+t*ab;
return 1;
}
// Else no intersection
return 0;
}

Note that this code does not explicitly handle division by zero. Assuming IEEE-
754 floating-point arithmetic, it does still give the correct result in the case of the
denominator being zero. Refer to Section 11.2.2 on infinity arithmetic for details of
how to correctly deal with division-by-zero errors without having to explicitly test for
them.

If the plane is not explicitly given, but only implicitly specified by three (non-
collinear) points on the plane, the test can be written in the following manner
instead.
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// Intersect segment ab against plane of triangle def. If intersecting,

// return t value and position q of intersection

int IntersectSegmentPlane(Point a, Point b, Point d, Point e, Point f,
float &t, Point &q)

{

Plane p;

p.n = Cross(e - d, f - d);

p.d = Dot(p.n, d);

return IntersectSegmentPlane(a, b, p, t, q);
}

5.3.2 Intersecting Ray or Segment Against Sphere

Let a ray be given by R(t) = P + td, t > 0, where P is the ray origin and d a
normalized direction vector, |[d|| = 1. If R(f) describes a segment rather than a ray,
then 0 < t < fyax. Let the sphere boundary be defined by (X — C) - (X — C) = 12,
where C is the sphere center and r its radius. To find the t value at which the ray
intersects the surface of the sphere, R(¢) is substituted for X, giving

(P+td—C)-(P+td—C) =r2

Letm =P — C, then:

m+td)-(m+td) =r’ < (substitutingm = P — C)
d-d)f+2m-d)t+@m-m)=r’ & (expanding the dot product)
2 4+2m-d)t+@m-m)—r>=0 (simplifyingd - d = 1;

canonical form for quadratic equation)

This is a quadratic equation in t. For the quadratic formula t* + 2bt + ¢ = 0, the
solutions are given by t = —b + /b2 — c. Here, b=m -d and ¢ = (m - m) — 2.

Solving the quadratic has three outcomes, categorized by the discriminant d =
b> —c. If d < 0, there are no real roots, which corresponds to the ray missing the
sphere completely. If d = 0, there is one real (double) root, corresponding to the
ray hitting the sphere tangentially in a point. If d > 0, there are two real roots
and the ray intersects the sphere twice: once entering and once leaving the sphere
boundary. In the latter case, the smaller intersection ¢ value is the relevant one, given
by t = —b — ~/b?> — c. However, it is important to distinguish the false intersection
case of the ray starting outside the sphere and pointing away from it, resulting in an
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(b) (© (d) (e

Figure 5.21 Different cases of ray-sphere intersection: (a) ray intersects sphere (twice) with
t> 0, (b) false intersection with t < 0, (c) ray intersects sphere tangentially, (d) ray starts inside
sphere, and (e) no intersection.

(a)

intersection value of t < 0. This case is illustrated in Figure 5.21, along with all other

ray-sphere intersection relationships.
The following code implements the ray-sphere intersection test.

// Intersects ray r = p + td, |d| = 1, with sphere s and, if intersecting,
// returns t value of intersection and intersection point q
int IntersectRaySphere(Point p, Vector d, Sphere s, float &t, Point &q)

{

Vector m = p - s.c;

float b = Dot(m, d);

float ¢ = Dot(m, m) - s.r * s.r;

// Exit if r's origin outside s (c > 0) and r pointing away from s (b > 0)
if (c > 0.0f & b > 0.0f) return 0;

float discr = b*b - c;

// A negative discriminant corresponds to ray missing sphere

if (discr < 0.0f) return 0;

// Ray now found to intersect sphere, compute smallest t value of intersection
t = -b - Sqrt(discr);

// If t is negative, ray started inside sphere so clamp t to zero

if (t < 0.0f) t = 0.0f;

q=p+t*d;

return 1;

For intersecting a directed segment AB against a sphere, the same code can be
used by setting P = Aand d = (B — A) / |IB — All. On intersection, it is important to
verify that t < ||B — Al| so that the detected intersection does not lie beyond the end
of the segment.

To just test if the ray intersects the sphere (but not when or where), the code can
be optimized to not have to perform a potentially expensive square root operation.
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Making early exits as soon as possible, the code becomes:

// Test if ray r = p + td intersects sphere s
int TestRaySphere(Point p, Vector d, Sphere s)
{
Vector m = p - s.c;
float ¢ = Dot(m, m) - s.r * s.r;
// If there is definitely at least one real root, there must be an intersection
if (c <= 0.0f) return 1;
float b = Dot(m, d);
// Early exit if ray origin outside sphere and ray pointing away from sphere
if (b > 0.0f) return 0;
float disc = b*b - c;
// A negative discriminant corresponds to ray missing sphere
if (disc < 0.0f) return 0;
// Now ray must hit sphere
return 1;

If d is not normalized, the quadratic equation to solve becomes (d - d)t* +
2(m - d)t + (m - m) — > = 0. For a quadratic equation such as this one, of the
form at? 4+ 2bt 4 ¢ = 0, the solutions are given by

B —bEb% —ac

a

t

with the discriminant d = b* — ac.

5.3.3 Intersecting Ray or Segment Against Box

Recalling the definition of a slab as being the space between a pair of parallel planes,
the volume of a rectangular box can be seen as the intersection of three such slabs
at right angles to one another. Now, just as a point is inside the box if and only if it
lies inside all three slabs a segment intersects the box if and only if the intersections
between the segment and the slabs all overlap. If the intersections of the segment
with the slabs do not overlap, the segment cannot lie inside the slabs at the same
time, and therefore cannot be intersecting the volume formed by the intersection of
the slabs. The same principle also applies for the intersection of a ray or a line with
a box. The intersection and nonintersection of a ray against a 2D box, formed as the
intersection of an x slab and a y slab, is illustrated in Figure 5.22.
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Figure 5.22 Ray R; does not intersect the box because its intersections with the x slab and
the y slab do not overlap. Ray R, does intersect the box because the slab intersections overlap.

A test for intersecting a ray against a box therefore only needs to compute the
intersection intervals of the ray with the planes of the slabs and perform some simple
comparison operations to maintain the logical intersection of all intersection intervals
along the ray. All that is required is to keep track of the farthest of all entries into a
slab, and the nearest of all exits out of a slab. If the farthest entry ever becomes farther
than the nearest exit, the ray cannot be intersecting the slab intersection volume and
the test can exit early (with a result of nonintersection).

The intersection intervals of the ray with the slabs are obtained by inserting the
parametric equation of the ray, R(t) = P + td, into the plane equations of the slab
planes, X - n; = d;, and solving for t, giving t = (d — P - n;) /(d - m;). For an AABB, two
components of the normal are zero, and thus given P = (py, p,, p.) and d = (d, d;, d.)
the expression simplifies to, for example, t = (d — p,) /d, for a plane perpendicular to
the x axis, where d simply corresponds to the position of the plane along the x axis.
To avoid a division by zero when the ray is parallel to a slab, this case is best handled
separately by substituting a test for the ray origin being contained in the slab. The
following code is an implementation of the test of a ray against an AABB.

// Intersect ray R(t) = p + t*d against AABB a. When intersecting,
// return intersection distance tmin and point q of intersection
int IntersectRayAABB(Point p, Vector d, AABB a, float &tmin, Point &q)

{

tmin = 0.0f; /] set to -FLT MAX to get first hit on line
float tmax = FLT_MAX; // set to max distance ray can travel (for segment)
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// For all three slabs
for (int i = 0; i < 3; i++) {
if (Abs(d[i]) < EPSILON) {
// Ray is parallel to slab. No hit if origin not within slab
if (p[i] < a.min[i] || p[i] > a.max[i]) return 0;
} else {
// Compute intersection t value of ray with near and far plane of slab
float ood = 1.0f / d[i];
float t1 = (a.min[i] - p[i]) * ood;
float t2 = (a.max[i] - p[i]l) * ood;
// Make t1 be intersection with near plane, t2 with far plane
if (tl > t2) Swap(tl, t2);
// Compute the intersection of slab intersection intervals
if (t1 > tmin) tmin = tl1;
if (t2 > tmax) tmax = t2;
// Exit with no collision as soon as slab intersection becomes empty
if (tmin > tmax) return 0;
}
}
// Ray intersects all 3 slabs. Return point (q) and intersection t value (tmin)
g=p+d* tmin;
return 1;

If the same ray is being intersected against a large number of boxes, the three
divisions involved can be precomputed once for the ray and then be reused for all tests.
Asafurther optimization, the outcome of the statement if (tl > t2) Swap(tl, t2)
is also completely predetermined by the signs of the components of the ray direction
vector. It could therefore be removed by determining in advance which one of eight (or
four for a 2D test) alternative routines to call, in which the effects of the if statements
have been folded into the surrounding code.

Note that the presented ray-boxintersection test is a special case of the intersection
test of a ray against the Kay—Kajiya slab volume, described in Section 4.6.1. Increasing
the number of slabs allows an arbitrarily good fit of the convex hulls of objects to be
achieved. The Kay-Kajiya test is, in turn, really just a specialization of the Cyrus—Beck
clipping algorithm [Cyrus78]. A Cyrus-Beck-like clipping approach is also used in
Section 5.3.8 for the intersection of a ray or segment against a convex polyhedron.

If the problem is just to test if the segment intersects with the box, without deter-
mining the intersection point an alternative solution is to use the separating-axis
test. Without loss of generality, a coordinate system can be chosen in which the box
is centered at the origin and oriented with the coordinate axes. For an AABB, the
centering is accomplished by translating the segment along with the AABB to the
origin. For an OBB, the segment endpoints can be transformed from world space into
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the OBB space, after which both can be translated to the origin in the same way as
for the AABB. Assuming the OBB is given by a center point C; a halfwidth extent
vector e = (ep, €1, €2); and local coordinate axes ug, uj, and u; then a point P in world
space can be expressed in the OBB coordinate system as the point (x,y, z), where
x=P-C-u,y=P—-C)-u,andz= P - C) - uy.

Let the segment be described by a midpoint M = (m,, m,, m,) and endpoints
M —d and M + d, where d = (d,, d,, d) is a direction vector for the segment. The
halflength of the segment is || d . Projecting the segment onto some separating axis
v = (vy, vy, ;) through the origin results in a projection interval centered at a signed
distanceds; = (M-v) / Iv]| away from the origin (along v), with a radius (or halflength)
of r; = |d - v| / ||vl|. Letting r, denote the projection interval radius of the box onto
the vector v, v acts as a separating axis if and only if |ds| > , + 75 (Figure 5.23).

For an OBB specified by three orthogonal unit vectors ug, u;, and u, and three
halflength extents ey, e1, and ey, the projection interval radius 7, is given by

n=(eolup-vl+elu-vi+eluy-vl))/[v].

By substituting up = (1,0, 0), u; = (0,1,0), and u, = (0,0, 1), the corresponding
expression for an AABB is given by

= (eo ol +e1 [0y +e2lv:)/ IVl

—

./

Figure 5.23 Testing intersection between a segment and an AABB using a separating-
axis test.
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Table 5.1 The six separating axes for testing intersection between a segment and an AABB.

v; ds ry rs |ds| > rp +rs
(1,0,0) My e |d. | Imy| > eo + |du]
(0,1,0) my el |dy | |my| > e1 + |dy|
(0,0,1) m; e |d. | Im| > ez + |d; |
ax (1,00 | O~ ma)/ [l | ol +ealaD/[al | 0 | It —mdy| = er o] +ex
dx(0,1,0) | (mzde —md)!||d]| | (eo|dz]| +e2|de)/ | d] 0 |mzdy — myd;| > eo |d:| + e |ds]
ax 0,01 | mdy—ma ) [al | ol e d/Jal | 0 | Iy — ] = eold, | +erfa

There are six axes that must be tested as separating axes: three corresponding to

the AABB face normals (v = (1,0,0), v = (0,1,0), and v» = (0,0, 1)) and three
corresponding to cross products between the segment direction vector and the face
normals (vs =d x (1,0,0), va = d x (0,1,0), and vs = d x (0,0, 1)). Table 5.1 gives
the results of working out the expressions for ds, 1y, 15, and |d5| > 1, + 15 for these six
axes.

implementation.

The expressions for separation given in Table 5.1 directly translate into an efficient

// Test if segment specified by points p0 and pl intersects AABB b
int TestSegmentAABB(Point p0O, Point pl, AABB b)

{

Point ¢ = (b.min + b.max) * 0.5f;

Vector e = b.max - c;

Point m = (p0 + pl) * 0.5f;

Vector d = pl - m;
m=m- c;

// Try world coordinate axes as separating axes

float adx = Abs(d.x);
if (Abs(m.x) > e.x + adx) return 0;
float ady = Abs(d.y);
if (Abs(m.y) > e.y + ady) return 0;
float adz = Abs(d.z);
if (Abs(m.z) > e.z + adz) return 0;

// Add in

// Box center-point

// Box halflength extents

// Segment midpoint

// Segment halflength vector
// Translate box and segment to origin

an epsilon term to counteract arithmetic errors when segment is

// (near) parallel to a coordinate axis (see text for detail)

adx += EPSILON; ady += EPSILON; adz += EPSILON;
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/! Try cross products of segment direction vector with coordinate axes
if (Abs(m.y * d.z - m.z * d.y) > e.y * adz + e.z * ady) return 0;

if (Abs(m.z * d.x - m.x * d.z) > e.x * adz + e.z * adx) return 0;

if (Abs(m.x * d.y - m.y * d.x) > e.x * ady + e.y * adx) return 0;

// No separating axis found; segment must be overlapping AABB

return 1;

534

As written, the expressions for e, d, and m all have a factor 0.5 that can be removed,
allowing the first five lines of initial setup code to be simplified to:

Vector e = b.max - b.min;
Vector d = pl - p0;
Point m = p0 + pl - b.min - b.max;

Remaining to address is the robustness of the code for when the segment direction
vector d is parallel to one of the coordinate axes, making the three cross products give
a zero vector result. If the segment does not intersect the AABB, the first three if tests
will correctly detect this. If the segment does intersect, the latter three if statements
correspond to 0 > 0 tests. To avoid rounding errors causing the axis to be incorrectly
interpreted as separating, a small epsilon term can be added to the adx, ady, and adz
values to bias the comparison, similar to what was done for the OBB-OBB test in
Chapter 4.

Intersecting Line Against Triangle

The intersection of lines (as well as rays and segments) against triangles is a very
common test. For this reason, this test is discussed in detail in this and the two fol-
lowing sections. Starting with the test involving lines, let a triangle ABC and a line
through the points Pand Q be given. The line PQ intersects ABC if the point R of inter-
section between the line and the plane of ABC lies inside the triangle (Figure 5.24).
One solution to the intersection problem is therefore to compute R and perform a
point-in-triangle test with it. Note that if ABC is arranged counterclockwise from
a given viewing direction R is inside ABC if R lies to the left of the triangle edges
AB, BC, and CA (where the edges are considered as directed line segments). Simi-
larly, if ABC is arranged clockwise R is inside ABC if R is to the right of all triangle
edges.

Instead of explicitly computing R for use in the sidedness test, the test can be
performed directly with the line PQ against the triangle edges. Consider the scalar
triple products:

u=[PQ PC PB]
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Figure 5.24 Intersecting the line through P and Q against the triangle ABC.

v =[PQ PA PC]
w = [PQ PB PA]

If ABC is counterclockwise, for PQ to pass to the left of the edges BC, CA, and
AB the expressions u > 0, v > 0, and w > 0 (respectively) must be true. Similarly,
when ABC is clockwise the scalar triple products must be nonpositive for PQ to pass
to the right of the edges. For a double-sided triangle, which is both clockwise and
counterclockwise depending on from which side it is viewed, PQ passes on the inside
if all three scalar triple products have the same sign (ignoring zeroes).

For obtaining the intersection point with ABC, it can be shown that u, v, and w are
proportional to u*, v*, and w*:

u* = ku = [PR PC PB]
v* = kv =[PR PA PC]
w* = kw = [PR PB PA),

where k = [[PR|| /|IPQ].

Here, u*, v*, and w* are proportional to the volumes of the tetrahedra RBCP, RCAP,
and RABP. As these tetrahedra all have the same height (as shown in Section 3.4 on
barycentric coordinates), the volumes are accordingly proportional to the areas of
their base triangles RBC, RCA, and RAB. It follows that u*, v*, and w* (and more
importantly, u, v, and w) therefore can be directly used to compute the barycentric
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coordinates of R. It is now straightforward to derive the code for testing a line PQ
against a counterclockwise triangle ABC and computing the barycentric coordinates
of the intersection point, if any.

//Given line pg and ccw triangle abc, return whether line pierces triangle. If
//so, also return the barycentric coordinates (u,v,w) of the intersection point
int IntersectLineTriangle(Point p, Point q, Point a, Point b, Point c,

float &u, float &v, float &w)

{
Vector pq = q - p;
Vector pa = a - p;
Vector pb = b - p;
Vector pc = ¢ - p;
// Test if pg is inside the edges bc, ca and ab. Done by testing
// that the signed tetrahedral volumes, computed using scalar triple
// products, are all positive
u = ScalarTriple(pg, pc, pb);
if (u < 0.0f) return 0;
v = ScalarTriple(pq, pa, pc);
if (v < 0.0f) return 0;
w = ScalarTriple(pq, pb, pa);
if (w < 0.0f) return 0;
// Compute the barycentric coordinates (u, v, w) determining the
// intersection point r, r = u*a + v*b + w*c
float denom = 1.0f / (u + v + w);
u *= denom;
v *= denom;
w *= denom; /[l w=1.0f - u - v;
return 1;
}

For robustness, the case in which PQ lies in the plane of ABC must be handled
separately. PQ is in the plane of ABC when u = v = w = 0, which would result in a
division-by-zero error if left unhandled.

The code can be optimized further by rearranging the terms in the triple scalar
products’expressions so that a cross product is shared between two of them, turning
the middle section of code into:

Vector m = Cross(pq, pc);
u = Dot(pb, m); // ScalarTriple(pg, pc, pb);
if (u < 0.0f) return 0;
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v = -Dot(pa, m); // ScalarTriple(pq, pa, pc);
if (v < 0.0f) return 0;

w = ScalarTriple(pq, pb, pa);

if (w < 0.0f) return 0;

For a double-sided test the same code would instead read:

Vector m = Cross(pq, pc):

u = Dot(pb, m); // ScalarTriple(pq, pc, pb);
v = -Dot(pa, m); // ScalarTriple(pg, pa, pc);
if (!SameSign(u, v)) return 0;

w = ScalarTriple(pq, pb, pa);

if (!SameSign(u, w)) return 0;

It is also possible to recast the arithmetic of this test as

Vector m = Cross(pq, p);

u = Dot(pq, Cross(c, b)) + Dot(m, c - b);
v = Dot(pq, Cross(a, c)) + Dot(m, a - c);
w = Dot(pq, Cross(b, a)) + Dot(m, b - a);

or equivalently as

Vector m = Cross(pq, q);
float s = Dot(m, c - b);
float t = Dot(m, a - c);

u = Dot(pq, Cross(c, b)) + s;
v = Dot(pgq, Cross(a, c)) + t;
w = Dot(pq, Cross(b, a)) - s - t;

The three cross products C x B, A x C, and B x A are constant for a given tri-
angle, as are the vectors ¢ = ¢ — b and e; = a — c. If these are stored with the
triangle, at runtime only one cross product and five dot products need to be evalu-
ated. Because the remaining cross product only depends on values from the line, it
only has to be evaluated once even if the line is tested against many triangles. This
last formulation is equivalent to performing the intersection test with the line PQ
and the triangle edges expressed as lines using Pliicker coordinates [Amanatides97].
Brief but good introductions to Pliicker coordinates are given in [Erickson97] and
[Shoemake98]. Although a Pliicker coordinate formulation results in slightly fewer
floating-point operations (assuming no special dot or cross-product instructions are
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5.3.5

available), in practice the extra memory accesses incurred are likely to make it slower
than the scalar triple product solution. In addition, the higher memory overhead of the
Pliicker coordinate approach is unappealing. Finally, note that the triangle face normal
n = (B—A) x (C — A) can be recovered from the three stored cross products as
n=—(CxB)—(AxC)—(BxA).

This type of test can be extended into a segment test by explicitly computing the
intersection t value of L(t) = P + t(Q — P) with the plane of ABC once the line
PQ has been found intersecting ABC, discarding an intersection unless 0 < t < 1.
An alternative approach for intersecting a segment against a triangle is given in
Section 5.3.6.

Determining directly in 3D whether a line or a segment intersects with the interior
of a triangle by computing the sidedness of the line against the triangle edges is
overall the most robust way of performing a triangle intersection test. Section 11.3.3
discusses the reasons for this inherent robustness.

The approach of using triple scalar products to determine if the intersection takes
place outside an edge can also be applied to arbitrary convex polygons, but for effi-
ciency it is better to test the point of intersection between the line and the plane
against the polygon interior. The triple scalar method does, however, extend nicely
to intersection against quadrilaterals, as shown in the following section.

Intersecting Line Against Quadrilateral

The triple scalar method described in the previous section can be used almost unmod-
ified for computing the intersection point R of a line with a quadrilateral ABCD.
Assume ABCD is convex and given counterclockwise. A point inside ABCD must
then be either inside the triangle ABC or inside the triangle DAC.

Because the edge CA is shared between both triangles, if this edge is tested first
it can be used to effectively discriminate which triangle R must not lie inside. For
example, if R lies to the left of CA, R cannot lie inside DAC, and thus only ABC has
to be tested, with only two additional edges to test against. If instead R lies to the
right of CA, only DAC must be tested, in that R cannot lie inside ABC. Again, only
two additional edges must be tested. The case of R lying on CA can be arbitrarily
assigned to either triangle. Whether R lies to the left or to the right of CA, in both
cases only three edges are tested in all. In terms of floating-point operations, the cost
ofintersecting a line against a quadrilateral is therefore the same as that of intersecting
against a triangle!

For this intersection test, it is not possible to return the barycentric coordinates
of the intersection point directly. Additionally, to which one of the two triangles
the coordinates relate would have to be specified or, alternatively, the coordinates
would always have to be given with respect to, say, ABC, even if the intersection
point lies inside DAC. In the following sample implementation, the intersection
point is computed inside the function and returned instead of the point’s barycentric
coordinates.
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// Given line pg and ccw quadrilateral abcd, return whether the line
// pierces the triangle. If so, also return the point r of intersection

int IntersectLineQuad(Point p, Point q, Point a, Point b, Point c, Point d, Point &r)

{
Vector pq = q - p;
Vector pa = a - p;
Vector pb = b - p;
Vector pc = ¢ - p;
// Determine which triangle to test against by testing against diagonal first
Vector m = Cross(pc, pq):
float v = Dot(pa, m); // ScalarTriple(pq, pa, pc);
if (v >= 0.0f) {
// Test intersection against triangle abc
float u = -Dot(pb, m); // ScalarTriple(pg, pc, pb);
if (u < 0.0f) return 0;
float w = ScalarTriple(pq, pb, pa);
if (w < 0.0f) return 0;
// Compute r, r = u*a + v*b + w*c, from barycentric coordinates (u, v, w)
float denom = 1.0f / (u + v + w);
u *= denom;
v *= denom;
w *= denom; // w=1.0f - u - v;
r = u*a + v*b + w*c;
} else {
// Test intersection against triangle dac
Vector pd = d - p;
float u = Dot(pd, m); // ScalarTriple(pg, pd, pc);
if (u < 0.0f) return 0;
float w = ScalarTriple(pq, pa, pd);
if (w < 0.0f) return 0;
vV = -v;
// Compute r, r = u*a + v*d + w*c, from barycentric coordinates (u, v, w)
float denom = 1.0f / (u + v + w);
u *= denom;
v *= denom;
w *= denom; // w=1.0f -u - v;
r = u*a + v*d + w*c;
}
return 1;
}

This particular intersection method can also be used for testing against a concave
quadrilateral, assuming the diagonal fully interior to the quadrilateral is used for the
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5.3.6

first test. One way of effectively accomplishing this is to determine the interior diag-
onal during preprocessing and outputting either of its end vertices as the first vertex,
thus making the diagonal CA the interior diagonal. Self-intersecting quadrilaterals,
however, cannot be directly tested with this method.

Intersecting Ray or Segment Against Triangle

Compared to the method presented in the previous section, a slightly different
approach to intersecting a ray or line segment against a triangle is described in
[Moller97a]. Recall that points (of the plane) of the triangle ABC are given by
T(u,v,w) = uA + vB + wC, where (4,v,w) are the barycentric coordinates of
the point such that u + v + w = 1. T is inside ABC if and only if its barycen-
tric coordinates satisfy 0 < u,v,w < 1. Alternatively, this may also be written as
Tw,w)=A+v(B—A)+w(C—A),withu =1 —v—w. Tis now inside ABCifv > 0,
w>0,andv+w <1.

Let a directed line segment between the two points P and Q be defined paramet-
rically as R(t) = P+ t(Q — P), 0 < t < 1. By setting T (v, w) equal to R(¢) it is possible
to solve for t, v, and w to later verify if these are within the bounds required for an
intersection:

T(v,w) = R(t) & (original expression)
A+vB—-A)+w(C—-A)=P+t(Q—P) < (substituting parameterized expressions)
P-QDt+B-Ap+(C-Aw=P-A (rearranging terms)

This is a 3 x 3 system of linear equations, and thus it can be written in matrix
notation as

SIS IR

[(P-Q (B-A) (C—A)]|: }=[(P—A)],

where the vectors are given as column vectors. Now ¢, v, and w can be solved for
using Cramer’s rule:

t=det[P—A) (B—-A) (C—A)]/det[(P-Q) B—-A) (C-A)]
v=det[P-Q) (P-A) (C-A)]/det[P-Q B-A) ([C-A4)]
w=det[P-Q) (B—-A) (P-A)]/det[P-Q) B-A) (C-A)]
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Asdet[a b | =a- (b x ¢), the algebraic identities for scalar triple products
allow these expressions to be simplified to

t=P—-A) -n/d
v=(C—A)-eld

where

n=B-A) x (C—A)
d=P-0Q)-n
e={P—Q) x (P—A).

Note that if d < 0 the segment points away from the triangle, and if d = 0 the
segment runs parallel to the plane of the triangle.
The following code implements this variant of segment-triangle intersection.

// Given segment pq and triangle abc, returns whether segment intersects

// triangle and if so, also returns the barycentric coordinates (u,v,w)

// of the intersection point

int IntersectSegmentTriangle(Point p, Point q, Point a, Point b, Point c,
float &u, float 8&v, float &w, float &t)

{
Vector ab = b - a;
Vector ac = ¢ - a;
Vector qp = p - q;

// Compute triangle normal. Can be precalculated or cached if
// intersecting multiple segments against the same triangle
Vector n = Cross(ab, ac);

// Compute denominator d. If d <= 0, segment is parallel to or points
// away from triangle, so exit early

float d = Dot(gp, n);

if (d <= 0.0f) return 0;

// Compute intersection t value of pq with plane of triangle. A ray
// intersects iff 0 <= t. Segment intersects iff 0 <= t <= 1. Delay
// dividing by d until intersection has been found to pierce triangle
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Vector ap = p - a;

t = Dot(ap, n);

if (t < 0.0f) return 0;

if (t > d) return 0; // For segment; exclude this code line for a ray test

// Compute barycentric coordinate components and test if within bounds
Vector e = Cross(qp, ap);

v = Dot(ac, e);

if (v < 0.0f || v > d) return 0;

w = -Dot(ab, e);

if (w < 0.0f || v + w > d) return 0;

// Segment/ray intersects triangle. Perform delayed division and
// compute the last barycentric coordinate component

float ood = 1.0f / d;

t *= ood;

v *= ood;

w *= ood;

u=1.0f -v-w;

return 1;

This formulation differs slightly from the one given in [Méller97a] because as a
byproduct it computes the normal n of the triangle ABC, which is often useful to
have.

Another way of looking at this test is as consisting of first computing the intersec-
tion point S between the segment and the plane of the triangle. This point is then
tested for containment in the triangle through the computation of its barycentric
coordinates with respect to the triangle (as described in Section 3.4). Some of the
calculations in computing S and its barycentric coordinates can be shared, including
those for the normal of the triangle plane. These calculations can also be precomputed
and stored with the triangle.

When precomputation is allowed, the method can be further optimized by com-
puting and storing plane equations for the plane of the triangle as well as for what
could be considered the“edge planes”of the triangle (the three planes perpendicular
to the triangle plane, through each of the edges, as shown in Figure 5.25). By scaling
the edge plane equations so that they report a distance of one for the opposing tri-
angle vertex (not on the edge plane), the evaluation of the edge plane equations for
S directly give the barycentric coordinates of S (with respect to the opposing triangle
vertex). Note that it is only necessary to store two of the three edge planes, as the third
barycentric coordinate is directly obtained from the other two. The segment-triangle
test can now be implemented in four plane equation evaluations (plus a few stray
operations), exemplified by the following code.
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Figure 5.25 The “edge planes” of triangle ABC perpendicular to the plane of ABC and
passing through ABC's edges.

struct Triangle {
Plane p; // Plane equation for triangle plane
Plane edgePlaneBC; // When evaluated gives barycentric weight u (for vertex A)
Plane edgePlaneCA; // When evaluated gives barycentric weight v (for vertex B)

}s

// Given segment pq and precomputed triangle tri, returns whether segment intersects
// triangle. If so, also returns the barycentric coordinates (u,v,w) of the
// intersection point s, and the parameterized intersection t value
int IntersectSegmentTriangle(Point p, Point q, Triangle tri,
float &u, float &v, float &w, float &t, Point &s)

// Compute distance of p to triangle plane. Exit if p lies behind plane
float distp = Dot(p, tri.p.n) — tri.p.d;
if (distp < 0.0f) return 0;

// Compute distance of q to triangle plane. Exit if q lies in front of plane
float distq = Dot(q, tri.p.n) — tri.p.d;
if (distq >= 0.0f) return 0;

// Compute t value and point s of intersection with triangle plane
float denom = distp — distq;

t = distp / denom;

s=p+t* (q-p);

// Compute the barycentric coordinate u; exit if outside 0..1 range
u = Dot(s, tri.edgePlaneBC.n) — tri.edgePlaneBC.d;
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if (u < 0.0f || u > 1.0f) return 0;
// Compute the barycentric coordinate v; exit if negative

v

= Dot (s, tri.edgePlaneCA.n) — tri.edgePlaneCA.d;

if (v < 0.0f) return 0;
// Compute the barycentric coordinate w; exit if negative

w

=1.0f —u - v;

if (w < 0.0f) return 0;

// Segment intersects tri at distance t in position s (s = u*A + v*B + w*(C)
return 1;

5.3.7

By multiplying with denom throughout, it is possible to defer the (often expensive)
division until the segment has been found actually intersecting the triangle.
For a triangle ABC, the triangle structure tri can be initialized as follows.

Triangle tri;

Vector n = Cross(b — a, ¢ — a);

tri.p = Plane(n, a);

tri.edgePlaneBC = Plane(Cross(n, ¢ — b), b);
tri.edgePlaneCA = Plane(Cross(n, a — c), c);

To have the edge planes compute the barycentric coordinates of the point for
which they are evaluated, they must be scaled to return a distance of one for the
opposing triangle vertex (not on the plane).

tri.edgePlaneBC *= 1.0f / (Dot(a, tri.edgePlaneBC.n) — tri.edgePlaneBC.d);
tri.edgePlaneCA *= 1.0f / (Dot(b, tri.edgePlaneCA.n) — tri.edgePlaneCA.d);

The triangle record is now completely initialized and can be stored. Note that
no triangle vertices are required for performing the intersection test. This triangle
record requires 12 floating-point components, compared to the nine floating-point
components required for storing the three vertices of the triangle as used by the initial
method.

Intersecting Ray or Segment Against Cylinder

An infinite cylinder of any orientation can be specified by a line, defined by two points
P and Q and by a radius r. If X denotes a point on the surface of the cylinder, the
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Figure 5.26 The line, ray, or segment specified by points A and B is intersected against the
cylinder given by points P and Q and the radius r.

cylinder surface can be stated as satisfying the implicit equation

V—wW)-v—w)—r>=0, where v=X—-P, d=Q—-P, and w:%d.

This equation simply states that when taking the vector v from P to a point X
and subtracting w (the component of v parallel to d) the resulting vector (which is
perpendicular to d, the direction of the cylinder) must have a length equal to r for X
to be on the cylinder surface. The equation has been squared to avoid a square root
term, which simplifies further processing.

The intersection of a line L(t) = A + t (B — A), defined by the points A and B
(Figure 5.26), with the cylinder can be found by substituting L(t) for X in the previous
equation and solving for t. Writingv = L(f) =P = (A—P)+t(B—A)asv=m+tn,
withm = A — P and n = B — A, after some manipulation the equation turns into

(n-n— (Z'_?2>t2+2(m~n—%>t+m'm— (n;:j)z—rzzo.

The repeated division by d - d can be eliminated by multiplying both sides by d - d,
giving

(d-d)m-n) — (n-d)?)*+2((d-d)(m-n) — (n-d)(m-d)) ¢+ (d-d)((m - m) —r?)
—(m-d)?=0.
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Note that although multiplying the original quadratic equation by d - d removes
the need for an often expensive division this may have undesirable effects on the
overall robustness of the solution (due to the size of the intermediary terms). Ideally,
the cylinder direction is given as a unit vector d, in which case all d - d terms dis-
appear. (In fact, if d is unit the cylinder surface can be more succinctly defined as
(vxd)-(vxd) =r>)

In either case, both equations are quadratic equations in t on the form at? +
2bt + ¢ = 0. For the latter formulation, the terms are:

a=(d-d)(n-n)— (n-d)?
b=(d-d)(m-n)— (n-d)(m-d)
c=(d-d)((m-m)—r?—(m-d)>.

These terms can be rewritten using Lagrange’s identity as

a=(dxmn)-(dxn)
b= (dxm)-(dxn)
c=(dxm)-(dxm)—r3d-d),

thus revealing that a = 0 indicates that d and n are parallel and that a is always
positive (although small errors may make it negative when working with floating-
point arithmetic). The sign of ¢ indicates whether A lies inside (¢ < 0) or outside
(¢ > 0) the surface of the cylinder. Solving for f gives

‘o b+ Vb2 —ac

a

The sign of the discriminant b? — ac determines how many real roots the quadratic
has. If negative, there are no real roots, which corresponds to the line not intersecting
the cylinder. If positive, there are two real roots, the smaller of which being the
parameterized value at which the line enters and the larger when it exits the cylinder.
When the discriminant is zero, there is a single root signifying that the line is touching
the cylinder tangentially in a single point at parameterized value ¢.

To detect intersection against a finite cylinder rather than an infinite cylinder, inter-
sections beyond the endcap planes through P and Q and perpendicular to d must
not be treated as intersections with the cylinder. Unless the (directed) line query
points away from the endcap plane, an intersection test against the plane must be
performed to detect a potential intersection with the side of the finite cylinder. Given
a valid t, L(t) lies outside the plane through P if (L(t) — P) - d < 0, or equivalently
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if (m-d)+t(n-d) < 0. When L(#) lies outside the cylinder, if n - d < 0, L points
away from or runs parallel to the P endcap. Only whenn-d > 0 must an intersection
test against the P endcap be performed. Let the endcap plane through P be given
by (X — P) - d = 0. Inserting L() for X and solving gives the intersection with the
plane occuring at t = —(m - d) /(n - d). The intersection point lies within the endcap
if (L(t) —P) - (L(t) — P) <72

Similarly, L(¢) lies outside the plane through Q if (L(t) — P)-d > d - d, or if
(m-d)+t(n-d) > d-d. With L() outside the cylinder on the Q side, an intersection
test against the Q endcap must only be performed whenn-d < 0. Whenn-d > 0
there is no intersection with the cylinder. The intersection with the endcap plane
through Q, (X — Q) -d =0, occurs at t = ((d - d) — (m - d))/(n -d), and the inter-
section point with the plane lies within the endcap if (L(t) — Q) - (L(H) — Q) < 2.
The following code sample illustrates how the preceding derivation can be used
to implement the test of a segment against a finite cylinder.

// Intersect segment S(t)=sa+t(sb-sa), 0<=t<=1 against cylinder specifiedby p, q and r
int IntersectSegmentCylinder(Point sa, Point sb, Point p, Point q, float r, float &t)

{

Vector d = g — p, m=sa —p, n = sh — sa;
float md = Dot(m, d);
float nd = Dot(n, d);
float dd = Dot(d, d);

// Test if segment fully outside either endcap of cylinder

if (md < 0.0f & md + nd < 0.0f) return 0; // Segment outside 'p' side of cylinder
if (md > dd & md + nd > dd) return 0; // Segment outside 'q' side of cylinder
float nn = Dot(n, n);

float mn

Dot(m, n);

float a = dd * nn — nd * nd;

float k

Dot(m, m) — r * r;

float ¢ = dd * k — md * md;
if (Abs(a) < EPSILON) {

}

// Segment runs parallel to cylinder axis

if (¢ > 0.0f) return 0; // 'a' and thus the segment lie outside cylinder
// Now known that segment intersects cylinder; figure out how it intersects
if (md < 0.0f) t = -mn / nn; // Intersect segment against 'p' endcap
else if (md > dd) t = (nd - mn) / nn; // Intersect segment against 'q' endcap
else t = 0.0f; // 'a' lies inside cylinder

return 1;

float b = dd * mn — nd * md;
float discr = b *b —a * c;
if (discr < 0.0f) return 0; // No real roots; no intersection
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t

= (-b - Sqrt(discr)) / a;

if (t < 0.0f || t > 1.0f) return 0; // Intersection lies outside segment
if (md + t * nd < 0.0f) {

// Intersection outside cylinder on 'p' side

if (nd <= 0.0f) return 0; // Segment pointing away from endcap
t = -md / nd;

// Keep intersection if Dot(S(t) - p, S(t) - p) <= r*2

return k + 2 * t * (mn + t * nn) <= 0.0f;

} else if (md + t * nd > dd) {

}

// Intersection outside cylinder on 'q' side

if (nd >= 0.0f) return 0; // Segment pointing away from endcap
t = (dd — md) / nd;

/! Keep intersection if Dot(S(t) - q, S(t) - q) <= r*2

return k + dd -2 *md + t * (2 * (mn — nd) + t * nn) <= 0.0f;

// Segment intersects cylinder between the endcaps; t is correct
return 1;

5.3.8

With minor adjustments, the same approach can be used to intersect a ray (not a
segment) against the finite cylinder. The intersection against a capsule, rather than a
cylinder, is performed in a comparable manner by replacing the intersection with the
endcap planes with intersection against hemispherical endcaps. Tests for intersecting
lines, rays, and segments with a cylinder have previously been described in [Shene94],
[Cychosz94], and [Held97].

Intersecting Ray or Segment Against Convex Polyhedron

To intersect a segment S(t) = A+t (B—A), 0 <t <1, against a convex polyhedron
it turns out that a convenient representation for the polyhedron is to describe it as
the intersection of a set of halfspaces [Haines91b]. For such a format, the segment
intersects the polyhedron if there exists some value for ¢, 0 < t < 1, for which S(¢) lies
inside all halfspaces. An efficient way of determining if this is the case is simply to
clip the segment against each halfspace, trimming away the portion of the segment
that lies outside the halfspace. If during this clipping process the segment becomes
zero length, the segment cannot intersect the polyhedron and the process can stop
with a result of “no intersection.” After the segment has been intersected against all
halfspaces, what remains of the segment must be the intersection of the segment and
the polyhedron.

The clipping process can be implemented as keeping track of the segment defined
over the interval t5y < t < t,q, Where t5g and tg are initially set to 0 and 1,
respectively, but are adjusted as the segment is intersected against the planes defining
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the halfspaces. (To intersect a ray against the intersection volume, #,,;; would instead
initially be set to +o0. For a line, additionally #4,; would be initially set to —o0.)

Now recall that for a segment S(f) = A+t (B—A),0 <t <1,andaplanen-X =d
the intersection of the segment and the plane is givenby t = (d —n-A) / (n-(B-A)).
Thus, the plane faces the segment if the denominator n- (B — A) is negative, and if the
denominator is positive the plane faces away from the segment. When the denomina-
tor is zero, the segment is parallel to the plane. When the plane faces the segment, the
computed ¢ is the parameterized value corresponding to the point at which the seg-
ment is entering the halfspace. As a consequence, if t is greater than tzs; the segment
must be clipped by setting tg; to the current value of . When the plane faces away
from the segment, ¢ corresponds to the parameterized value at the point the segment
is exiting the halfspace. Therefore, if ¢ is less than #t, tass must be set to the current
value of t. If ever tj;ss < tfirst, the segment has disappeared and there is no intersection.

The segment running parallel to the plane must be handled as a special case. If the
segment lies outside the halfspace, parallel to the defining plane, the segment cannot
beintersecting the polyhedron and the test can immediately return”no intersection.”If
the segment lies inside the halfspace, the plane can simply be ignored and processing
may continue with the next plane. To determine whether the segment lies inside or
outside the halfspace, either endpoint of the segment may be tested against the plane
by insertion into the plane equation, the sign of the result determining the sidedness
of the point.

Figure 5.27 gives a 2D illustration of how a ray is clipped against a number of half-
spaces and how the logical intersection of the ray being clipped against each halfspace
forms the part of the ray that overlaps the intersection volume. The following function
implements the test just described.

// Intersect segment S(t)=A+t(B-A), 0<=t<=1 against convex polyhedron specified
// by the n halfspaces defined by the planes p[]. On exit tfirst and tlast

// define the intersection, if any

int IntersectSegmentPolyhedron(Point a, Point b, Plane p[], int n,

{

float &tfirst, float &tlast)

// Compute direction vector for the segment
Vector d = b — a;
// Set initial interval to being the whole segment. For a ray, tlast should be
// set to +FLT MAX. For a line, additionally tfirst should be set to —FLT MAX
tfirst = 0.0f;
tlast = 1.0f;
// Intersect segment against each plane
for (int i = 0; i < n; i++) {
float denom = Dot(p[i].n, d);
float dist = p[i].d - Dot(p[i].n, a);
/] Test if segment runs parallel to the plane
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Figure 5.27 The intersection of a ray (or segment) against a convex polyhedron (defined as
the intersection of a set of halfspaces) is the logical intersection of the ray clipped against all
halfspaces. (lllustration after [Haines91b].)

if (denom == 0.0f) {
// If so, return "no intersection” if segment lies outside plane
if (dist > 0.0f) return 0;
} else {
// Compute parameterized t value for intersection with current plane
float t = dist / denom;
if (denom < 0.0f) {
// When entering halfspace, update tfirst if t is larger
if (t > tfirst) tfirst = t;
} else {
// When exiting halfspace, update tlast if t is smaller
if (t < tlast) tlast = t;
}
// Exit with "no intersection" if intersection becomes empty
if (tfirst > tlast) return 0;

}

// A nonzero logical intersection, so the segment intersects the polyhedron
return 1;



5.4

5.4.1

5.4 Additional Tests 201

Overall, this problem is very similar to that of the intersecting of a segment against
a box defined as the intersection of three slabs (as in Section 5.3.3). Because a box
is just a special case of a convex polyhedron, this code could also be used for the
segment-box test.

Additional Tests

This section describes a number of tests and computations that do not directly fit into
the classifications of the earlier sections but are still either commonly encountered or
illustrate a technique that can be applied to related problems.

Testing Point in Polygon

Alarge number of approaches exist for testing the containment of a point in a polygon.
An excellent survey of point-in-polygon methods is given in [Haines94]. An addi-
tional method, based on quadrant testing, is presented in [Weiler94]. An approach
based on a CSG representation of the polygon is described in [Walker99]. A good
survey is also given in [Huang97].

Most point-in-polygon tests required in real-time collision detection applications
can be limited to involve convex polygons only. Whereas the point containment
for concave n-gons may require O(n) time, the special structure of convex polygons
allows a fast point-containment test to be performed in O(logn) time, through an
interval-halving approach.

Assume a convex 11-gon is given counterclockwise by the vertices Vo, V4,. .., V,_1.
By testing whether the query point P is to the left or right of the directed line through
Vo and Vi, k = [n/2], half the polygon can be excluded from further tests. The
procedure is repeated, with the value of k adjusted accordingly until P either has been
found to lie outside the polygon (right of the directed line through Vj and V3, or left
of the one through V and V,,_1) or between the directed lines through V and Vi and
through Vj and Vi41. In the latter case, P is contained in the polygon if P also lies to
the left of the directed line through Vj and Vi41.

As an example, consider the eight-sided convex polygon of Figure 5.28. Initially, P
is tested against the directed line A through V and V}, dividing the polygon in half
vertex-wise. Because P lies to the left of A, the right polygon half is discarded and
the left half is now processed in the same manner. Next, P is tested against the line
B, followed by a test against C. At this point, P lies between the lines through two
consecutive vertices, and thus a final test is performed against the directed line D
through these two vertices, here confirming that P indeed lies inside the polygon.

By using the predicate TriangleIsCCW(), which determines if the triangle speci-
fied by three points is defined counterclockwise, this test can be efficiently imple-
mented as follows.
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Figure 5.28 A binary search over the vertices of the convex polygon allows the containment
test for P to be performed in O(log n) time (here using four sidedness tests, A through D).

// Test if point p lies inside ccw-specified convex n-gon given by vertices v[]
int PointInConvexPolygon(Point p, int n, Point v[])

{

// Do binary search over polygon vertices to find the fan triangle
/! (v[0], v[low], v[high]) the point p lies within the near sides of
int Tow = 0, high = n;
do {
int mid = (low + high) / 2;
if (TriangleIsCCW(v[0], v[mid], p))
Tow = mid;
else
high = mid;
} while (low + 1 < high);

// If point outside last (or first) edge, then it is not inside the n-gon
if (Tow == 0 || high == n) return 0;

// p is inside the polygon if it is left of
// the directed edge from v[low] to v[high]
return TriangleIsCCW(v[low], v[high], p);
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Figure 5.29 Shooting rays from four different query points. An odd number of boundary
crossings indicates that the query point is inside the polygon.

This point containment test is similar in structure to the one presented in
[Preparata85], where a point interior to the n-gon fills the role played here by the
vertex V.

Another O(n) test that works for concave polygons is based on shooting a ray
from the point along some direction (commonly the positive x axis) and counting
the number of times it crosses the polygon boundary. If the ray crosses the boundary
once, the point must be inside the polygon. If it crosses twice, the point must be
outside, with the ray first entering and then exiting the polygon. In general, the point
will be inside the polygon for an odd number of crossings and outside for an even
number of crossings. This test, commonly referred to as the crossings test, is illustrated
in Figure 5.29.

Some care must be exercised to properly handle cases where the ray passes through
a polygon vertex or coincides with an edge of the polygon. If not dealt with correctly,
multiple crossings could be detected in these cases, giving an incorrect crossings
count. In practice, this problem can be dealt with effectively by arranging the tests
performed so as to treat vertices on the ray as lying infinitesimally above the ray.
Several variations on the crossings test are presented in [Haines94].

Testing Point in Triangle

The case of testing whether a point is contained in a triangle comes up frequently
enough that it is worth studying separately from point-in-polygon tests. Two effec-
tive solutions to the point-in-triangle problem have already been presented: one
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for unprocessed triangles in Section 3.4 (on barycentric coordinates) and one for
preprocessed triangles in Section 5.3.6.

A third solution is to take the triangle ABC and the query point P in the plane
of the triangle and translate both so that P lies at the origin. The test now becomes
that of checking if the origin is contained in the translated triangle (which will still
be referred to as ABC throughout).

P lies inside ABC if and only if the triangles PAB, PBC, and PCA are all either
clockwise or counterclockwise. Because P is at the origin, this is now equivalent to
testing if the cross products u = B x C, v = C x A, and w = A x B all point
in the same direction; thatis, if u-v > 0 and u - w > 0. Implemented, this test
becomes:

// Test if point P lies inside the counterclockwise triangle ABC
int PointInTriangle(Point p, Point a, Point b, Point c)

{
// Translate point and triangle so that point lies at origin
a-=p;b-=p;c-=p;
// Compute normal vectors for triangles pab and pbc
Vector u = Cross(b, c);
Vector v = Cross(c, a);
// Make sure they are both pointing in the same direction
if (Dot(u, v) < 0.0f) return 0;
// Compute normal vector for triangle pca
Vector w = Cross(a, b);
// Make sure it points in the same direction as the first two
if (Dot(u, w) < 0.0f) return 0;
// Otherwise P must be in (or on) the triangle
return 1;
}

If cross products are more expensive than dot products, Lagrange’s identity allows
this test to be written in terms of just five dot products.

// Test if point P lies inside the counterclockwise 3D triangle ABC
int PointInTriangle(Point p, Point a, Point b, Point c)
{
// Translate point and triangle so that point lies at origin
a-=p;b-=p;c-=p;
float ab = Dot(a, b);

float ac = Dot(a, c);
float bc = Dot(b, c);
float cc = Dot(c, c);
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/| Make sure plane normals for pab and pbc point in the same direction
if (bc * ac — cc * ab < 0.0f) return 0;

// Make sure plane normals for pab and pca point in the same direction
float bb = Dot(b, b);

if (ab * bc — ac * bb < 0.0f) return 0;

// Otherwise P must be in (or on) the triangle

return 1;

Note the strong similarities between this function and the function Barycentric()
of Section 3.4.

In 2D, this test becomes even simpler. Without loss of generality, assume the
triangle ABC is defined counterclockwise. Then, the point P lies inside the triangle
if and only if P lies to the left of the directed line segments AB, BC, and CA. These
tests are easily performed with the help of the 2D pseudo cross product, as defined
in Chapter 3. That is, given the function

// Compute the 2D pseudo cross product Dot (Perp(u), v)
float Cross2D(Vector2D u, Vector2D v)

{
}

return u.y * v.x — u.x * v.y;

the test of P lying to the left of the segment AB becomes a call to this function with
the arguments P — A and B — A, followed by a test to see if the result is positive. The
entire test then becomes:

// Test if 2D point P lies inside the counterclockwise 2D triangle ABC
int PointInTriangle(Point2D p, Point2D a, Point2D b, Point2D c)

{

// If P to the right of AB then outside triangle
if (Cross2D(p — a, b — a) < 0.0f) return 0;

// If P to the right of BC then outside triangle
if (Cross2D(p — b, ¢ — b) < 0.0f) return 0;

// If P to the right of CA then outside triangle
if (Cross2D(p — c, a — ¢) < 0.0f) return 0;

// Otherwise P must be in (or on) the triangle
return 1;
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If it is not known whether the triangle is clockwise or counterclockwise, the same
approach can still be used. Containment of P in ABC is then indicated by P lying on
the same side of all edges of the triangle. That is, either P lies to the left of all edges
or to the right of all edges. If neither is true, P is not contained in the triangle. In
terms of implementation, the code must be changed to test that the 2D pseudo cross
products all have the same sign.

// Test if 2D point P lies inside 2D triangle ABC
int PointInTriangle2D(Point2D p, Point2D a, Point2D b, Point2D c)

{

float pab = Cross2D(p — a, b — a);

float pbc = Cross2D(p — b, ¢ — b);

// If P left of one of AB and BC and right of the other, not inside triangle
if (!SameSign(pab, pbc)) return 0;

float pca = Cross2D(p — ¢, a — c);

// If P left of one of AB and CA and right of the other, not inside triangle
if (!SameSign(pab, pca)) return 0;

// P left or right of all edges, so must be in (or on) the triangle

return 1;

Because the value returned by Cross2D(p — a, b — a) is twice the signed area
of the triangle PAB (positive if PAB is counterclockwise, otherwise negative), yet
another version of this test is to compute the areas of PAB, PBC, and PCA and see if
their sum exceeds that of the area of ABC, in which case P lies outside ABC. To save
on computations, the area of ABC could be stored with the triangle. As with the 3D
test, this test can be optimized by storing plane equations for each edge that have
been normalized to compute the barycentric coordinates of the query point.

5.4.3 Testing Point in Polyhedron

There are several available methods for testing if a point lies inside a given polyhedron.
How the polyhedron is specified and whether it is convex or concave determine which
methods are appropriate in a given situation. This section outlines a few different
approaches, some of which are discussed in more detail in Chapters 8 and 9.

The simplest test is when the polyhedron is convex and given implicitly as the
intersection volume of a number of halfspaces. In this case, the point lies inside the
polyhedron if it lies inside each halfspace.

// Test if point p inside polyhedron given as the intersection volume of n halfspaces
int TestPointPolyhedron(Point p, Plane *h, int n)
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for (int i = 0; i < n; i++) {

// Exit with 'no containment' if p ever found outside a halfspace
if (DistPointPlane(p, h[i]) > 0.0f) return 0;

// p inside all halfspaces, so p must be inside intersection volume

return 1;

{

}
}
54.4

If the polyhedron is given as a set of vertices without any connectivity information,
the GJK method described in Chapter 9 serves as an efficient point containment
approach. Only a convex polyhedron can be given in this format.

If the polyhedron is given as a closed mesh, one approach is to first build a solid-
leaf BSP tree (see Chapter 8) from the mesh. Then, given this BSP tree if a point query
on the tree ends up in a solid leaf the point is inside the polyhedron (otherwise, it is
not). This method works for both convex and concave polyhedra.

A method that works with a polyhedron given either as a mesh or as an intersection
of halfspaces is to shoot a ray from the tested point in any direction (typically along
a major axis, such as the +x axis) and count the number of faces intersected. If an
odd number of faces is intersected, the point lies inside the polyhedron; otherwise,
the point lies outside it. Due to floating-point classification errors, this method has
robustness issues when a ray strikes (near) an edge or a vertex. To avoid dealing with
the degeneracies of these cases, one effective approach is simply to recast the ray,
although care must be taken not to hit an edge or vertex again. This method also
works for both convex and concave polyhedra.

With a custom prebuilt data structure such as the Dobkin-Kirkpatrick hierar-
chical structure (see Section 9.3.1), a point containment query can be performed
in O(log n) time.

Intersection of Two Planes

Let two planes, 71 and 75, be given by the plane equationsn; - X = dy and ny - X = db.
When the planes are not parallel, they intersect in a line L, L = P + td. As L lies
in both planes, it must be perpendicular to the normals of both planes. Thus, the
direction vector d of L can be computed as the cross product of the two plane normals,
d = n; xny (Figure 5.30). If d is the zero vector, the planes are parallel (and separated)
or coincident; otherwise, they are intersecting.

For L to be fully determined, a point P on the line must also be given. One way of
obtaining a point on the line is to express the point as being in a plane perpendicular
to d. Such a plane is spanned by n; and ny, and thus P is given by P = kin; + kynp
for some values of k; and k,. Furthermore, P must lie on both 71 and m», and thus it
must satisfy both plane equations. Substituting this expression for P (in place of X)
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Figure 5.30 The intersection of two planes.

in the plane equations forms a 2 x 2 system of linear equations.

ny - (king + kony) = dy
n, - (king + kony) = dy.

By virtue of the linearity of the dot product, this is equivalent to

ki(ng -ng) +ko(ng - np) =dy
ki(ni - mp) + ko(np - mp) = do,

which can be solved for k; and k; (by Cramer’s rule, for example) to give the solution

ki = (di(ny - ny) — do(ny - my))/denom

ky = (d2(ny - ny) — dq(ng - ny))/denom,
where
denom = (ny - ny)(nz - ny) — (ny - n2)2-
A direct implementation of these expressions gives the following code.

// Given planes pl and p2, compute line L = p+t*d of their intersection.
// Return 0 if no such line exists
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int IntersectPlanes(Plane pl, Plane p2, Point &p, Vector &d)
{

// Compute direction of intersection line

d = Cross(pl.n, p2.n);

// If d is zero, the planes are parallel (and separated)
// or coincident, so they're not considered intersecting
if (Dot(d, d) < EPSILON) return 0;

float d11 = Dot(pl.n, pl.n);
float d12 = Dot(pl.n, p2.n);
float d22 = Dot(p2.n, p2.n);

float denom = d11*d22 - d12*d12;

float k1 = (pl.d*d22 - p2.d*d12) / denom;
float k2 = (p2.d*d1l - pl.d*d12) / denom;
p = kl*pl.n + k2*p2.n;

return 1;

This code can be optimized by realizing that the denominator expression is really
just the result of applying Lagrange’s identity to (ny x np) - (n; x np). The denominator
is therefore equivalent to

denom = d - d.
Using the vector identity
ux (vxw)=(u-wyv-—(v-whu,
the expression for P = kinj + kpn, can also be further simplified as follows.

P=kn +kn & (original expression)
P =[(di(nz - m) — do(ny - mp))my + (do(nq - my) — di(ny - mo))no/denom <
(substituting ki and k)
P denom = (di(na - mp) — da(ny - m))ny + (da(ny - my) — di(ng - mp))my &
(multiplying both sides by denom)
P denom = (di(ny - np)ny — do(ny - mp)ny) + (do(ng - ny)ny — di(ng - np)ny) &

(distributing scalar multiply)
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P denom = di((ny - ng)ng — (nq - np)ny) + dr((ny - ny)ny — (ng - m)my) &
(gathering similar terms)
P denom = di(ny x (n1 x np)) +do(ny x (N X ny)) &
(rewriting using vector identity)
P denom = di(ny x (n1 x np)) — da(ng X (N1 X np)) &
(changing sign to make inner cross products equal)
P denom = (diny — dony) x (ng x np) & (gathering similar terms)
P = (diny — dony) x d/denom
(substituting d for my x ny; dividing by denom on both sides)

The final terms in the expression of the line L = P + td are therefore

P = (d1n2 — d2n1) X d/(d . d)

d=n; x n,.
The implementation now becomes:

// Given planes pl and p2, compute line L = p+t*d of their intersection.
// Return 0 if no such line exists
int IntersectPlanes(Plane pl, Plane p2, Point &p, Vector &d)
{
// Compute direction of intersection line
d = Cross(pl.n, p2.n);

// If d is (near) zero, the planes are parallel (and separated)
// or coincident, so they're not considered intersecting

float denom = Dot(d, d);

if (denom < EPSILON) return 0;

// Compute point on intersection line
p = Cross(pl.d*p2.n - p2.d*pl.n, d) / denom;
return 1;

It should be noted that when it is known that the plane normals have been nor-
malized (that is, |In;]| = [Inz|| = 1), the division by the denominator is not required
in either formulation.
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5.4.5 Intersection of Three Planes

Given three planes w1, 7y, and 73, there are five essentially different intersection
configurations possible, as illustrated in Figure 5.31.

1. All three planes are parallel (possibly coplanar) to one another.

2. Two planes are parallel and the last plane transversally cuts through the first two
planes, forming two parallel intersection lines.

3. All three planes intersect in a single line.

4. The planes pairwise intersect in a line, forming three parallel lines of inter-
section.

5. The three planes intersect in a point.

Let the planes be defined as 7y:n1 - X = dq, mp:np - X = dy, and w3:n3 - X = ds. The
last case (5) can then be identified by n; - (ny x n3) = 0. Other cases can be identified
in similar ways. When the planes intersect in a unique point X = (x1,x2, x3), this
point can be solved for by considering the plane equations as a 3 x 3 system of linear
equations:

n1~X=d1
HQ'XZdz
113-X=d3.

This system can be solved either using Gaussian elimination or in terms of determi-
. T T

/ _ X x X _ Y Y Y
nants and Cramer’s rule. By letting m; = [ nj n; n; ] , My = [ n; n, n; ] ,

Figure 5.31 The five essentially different intersection configurations of three planes.
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T , ,
andmgz =[ n{ n} nj |, Cramer’srule gives the solution as

X1 = | d m; mjs ’/ | m; mp; mjs |
Xy = ’ m, d ms |/’ m; mp; mjs ‘
X3 = ’ m; mp d |/| m; mp mjs |,

whered=[ d dy ds ]T.
By selecting the most appropriate expressions for evaluation — in order to share
as much computation as possible — the scalar triple products simplify to

x1 = d - u/denom
X, = mgy - V/denom
X3 = —my - V/denom,

where u = my x mz, v=m, x d, and denom = m; - u.
The following code implements this solution for three planes.

// Compute the point p at which the three planes pl, p2 and p3 intersect (if at all)
int IntersectPlanes(Plane pl, Plane p2, Plane p3, Point &p)
{

Vector ml = Vector(pl.n.x, p2.n.x, p3.n.x);
Vector m2 = Vector(pl.n.y, p2.n.y, p3.n.y);
Vector m3 = Vector(pl.n.z, p2.n.z, p3.n.z);

Vector u = Cross(m2, m3);

float denom = Dot(ml, u);

if (Abs(denom) < EPSILON) return 0; // Planes do not intersect in a point
Vector d(pl.d, p2.d, p3.d);

Vector v = Cross(ml, d);

float ood = 1.0f / denom;

p.x = Dot(d, u) * ood;

p.y = Dot(m3, v) * ood;

p.z = -Dot(m2, v) * ood;

return 1;

An alternative approach is to solve for X using the formula

di(ny x n3) + dr(n3 x ny) + dz(ng x ny)

X =
n; - (N X ng)

7
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as suggested by [Goldman90]. This formula can be obtained by realizing that X can
be expressed as a linear combination of the directions of the lines of intersection of
the planes,

X =a(n; x n3) +b(nz x nq) + c(ng x ny),

for some a, b, and c. Inserting this point in each of the three plane equations gives

n; - (a(ny x n3) +b(nz x n1) +c(ng x my)) =dy
n; - (a(ny x n3) + b(nz x ny) +c(ny x ny)) =do

n; - (a(ny x n3) + b(nz x n1) + c(ng x ny)) = ds,

which simplify to

n- ll(nz X 1‘13) = d1
n -b(nz xny) =dp

n; - c(n X ny) =ds,

from which a, b, and ¢ are easily solved. Inserting the obtained values for a, b, and ¢
gives the original formula. Some simple manipulation allows the formula for X to be
further simplified to

X — di(ny x n3) +nq x (dsny — dong)

7

n; - (N X ng)

which in code becomes:

// Compute the point p at which the three planes pl, p2 and p3 intersect (if at all)
int IntersectPlanes(Plane pl, Plane p2, Plane p3, Point &p)
{

Vector u = Cross(p2.n, p3.n);

float denom = Dot(pl.n, u);

if (Abs(denom) < EPSILON) return 0; // Planes do not intersect in a point
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)

= (pl.d * u + Cross(pl.n, p3.d * p2.n — p2.d * p3.n)) / denom;

return 1;

5.5

The good news here is that both approaches presented are really generic solvers for
3 x 3 systems of linear equations. They are not limited to computing the intersection
point of three nonparallel planes.

Dynamic Intersection Tests

So far, the described tests have involved what amounts to static objects: the inter-
section of two objects at a given point in time. A problem with static testing is that
as the object movement increases between one point in time and the next so does
the likelihood of an object simply jumping past another object. This unwanted phe-
nomenon is called tunneling. Figure 5.32a illustrates this case with a moving sphere
tunneling past a rectangular obstruction.

The ideal solution is to have the object move continuously along its path of motion,
describing the motion parametrically over time, and solving for the point in time
where the distance to some other object becomes zero. Figure 5.32b illustrates this
continuous swept test. However, although solving the time of collision is feasible for
simple motion and simple objects dealing with arbitrary motion and complex objects
is a much more challenging problem. In fact, it is too expensive to address in most
real-time applications.

A compromise is to sample the path of the object and perform several static object
tests during a single object movement. Figure 5.32c shows how the movement of
the sphere can be subdivided into smaller steps, performing a static object-object
test at each sample point.

Tunneling can be avoided, in part, by making sure the moving object overlaps itself
from one sample point to the next. However, as indicated by the black triangle in
part (c) of the drawing there are still places where small or narrow objects may be
tunneled past. To fully address the tunneling problem, the objects would also have to
be extended in size so that all samples would together fully cover the volume formed
by the continuously swept object.

The drawback with sampling is that, worst case, no collision occurs and all n
sample points along the movement path have to be tested, resulting in an O(n)
time complexity. Note that for the sampling method it is not really the time that
should be subdivided and sampled but the object motion. Subdividing the object
motion to maintain object overlap is not a trivial problem for other than the simplest
motions.

In many cases, objects can be assumed to be moving piecewise linearly; that is,
only translating between positions, with immediate rotational changes at the start
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Figure 5.32 Dynamic collision tests. (a) Testing only at the start point and endpoint of an
object’s movement suffers from tunneling. (b) A swept test finds the exact point of collision,
but may not be possible to compute for all objects and movements. (c) Sampled motion
may require a lot of tests and still exhibit tunneling in the region indicated by the black
triangle.

or end of a movement. Thus, for two objects A and B, the movement of object B
can be subtracted from object A. Now object B is stationary and any intersection
test needs to consider only a moving object (A) against a stationary object (B). That
is, the test is effectively considering the objects’ movement relative to each other. If
an intersection point is computed, the movement of B must be added back into the
computed intersection point to obtain actual world coordinates rather than object-
relative coordinates. In the following sections, first two generic methods to dynamic
tests are explored, followed by a number of specific methods addressing common
intersection problems.

Interval Halving for Intersecting Moving Objects

Somewhere halfway between the sampling method and performing a continuous
swept test lies a method based on performing a recursive binary search over the
object movement to find the time of collision, if any. Consider again the problem
of a sphere S moving at high speed past a stationary object. Let S be at position A,
its movement described by the vector v. Start by forming a bounding sphere that
fully encloses the sphere at A and at A + v and test this sphere for collision against
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(a)

(b)

Figure 5.33 A few steps of determining the collision of a moving sphere against a stationary
object using an interval-halving method.

other objects. If there is no collision, S can clearly move unobstructed to its end
destination. However, if a collision is detected, halve the movement and recursively
test the first half in the same manner, and if no collision is detected during the first
half perform the same recursive test for the second half. If a collision has not been
ruled out before the movement becomes less than some preset minimum motion, a
collision can be assumed and the recursion is terminated.

Figure 5.33a illustrates the procedure of interval halving at the point where the
initial sphere encompassing the complete movement has been found colliding with
an object. At this point, the midpoint of the movement is computed, and a recursive
call is issued for each half of the movement of S. In the first recursive call, the sphere
B; bounding the motion of S from its starting point to the movement midpoint is
found not to be colliding with any object, and the recursion terminates with no
collision. The procedure continues with the second recursive call, finding that the
sphere B, bounding the second half does intersect with an object. A new midpoint
of the current half-interval is computed, and the two halves of the interval are again
recursed over (Figure 5.33b). The sphere Bz bounding the half corresponding to the
first subinterval is also found colliding with an object, and thus again the movement
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interval is recursed over. In this example, the recursion eventually terminates with
an intersection. Interval halving for the case of a moving sphere against a stationary
sphere can be implemented as follows.

// Intersect sphere sO moving in direction d over time interval t0 <=t <= t1, against
// a stationary sphere sl. If found intersecting, return time t of collision
int TestMovingSphereSphere(Sphere s0, Vector d, float t0, float t1, Sphere sl, float &t)

{

// Compute sphere bounding motion of sO during time interval from t0 to tl
Sphere b;

float mid = (t0 + t1) * 0.5f;

b.c = s0.c + d * mid;

b.r = (mid — t0) * Length(d) + sO.r;

// If bounding sphere not overlapping sl, then no collision in this interval
if (!TestSphereSphere(b, s1)) return 0;

// Cannot rule collision out: recurse for more accurate testing. To terminate the
// recursion, collision is assumed when time interval becomes sufficiently small
if (tl - t0 < INTERVAL EPSILON) {

t = t0;

return 1;

}

// Recursively test first half of interval; return collision if detected
if (TestMovingSphereSphere(s0, d, t0, mid, sl, t)) return 1;

// Recursively test second half of interval
return TestMovingSphereSphere(s0, d, mid, tl, sl, t);

In general, this algorithm will terminate in O(log #) time. However, there are cases
inwhichitwill not. One worst-case scenario for this algorithm occurs when the sphere
is moving parallel to a surface, just slightly farther away from it than the preset distance
used to terminate the recursion. In this instance, both subintervals are recursed over at
each step of the algorithm, causing the sphere movement to be subdivided in many
small steps, with each step being tested for collision. A tighter bounding volume,
such as an OBB, would exhibit better behavior in this situation. OBBs, however, can
be quite expensive. In some scenes, architectural scenes in particular, an AABB may
serve as a good substitute, as it aligns well with floors and walls, which tend to be
aligned at 90 degrees to each other as well as being aligned to the world coordinate
system.

The interval-halving method trivially adapts to handling complex objects with
both objects under arbitrary motion. Let MaximumObjectMovementOverTime() be a
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function taking an object and a time interval as arguments. As a result, it computes
the maximum length of the paths taken by points on the surface of the object during its
movement over the time interval. Furthermore, letMinimumObjectDistanceAtTime ()
be a function taking two objects and a time value as arguments. Its function result
is the smallest distance between the surfaces of the objects at the given time. Given
these two functions, the generic implementation of the interval-halving method now
becomes:

// Test collision between objects a and b moving over the time interval
// [startTime, endTime]. When colliding, time of collision is returned in hitTime
int IntervalCollision(Object a, Object b, float startTime, float endTime, float &itTime)

{

// Compute the maximum distance objects a and b move over the time interval
float maxMoveA = MaximumObjectMovementOverTime(a, startTime, endTime);

float maxMoveB = MaximumObjectMovementOverTime(b, startTime, endTime);

float maxMoveDistSum = maxMoveA + maxMoveB;

// Exit if distance between a and b at start larger than sum of max movements
float minDistStart = MinimumObjectDistanceAtTime(a, b, startTime);

if (minDistStart > maxMoveDistSum) return 0;

// Exit if distance between a and b at end larger than sum of max movements
float minDistEnd = MinimumObjectDistanceAtTime(a, b, endTime);

if (minDistEnd > maxMoveDistSum) return 0;

// Cannot rule collision out: recurse for more accurate testing. To terminate the
// recursion, collision is assumed when time interval becomes sufficiently small
if (endTime — startTime < INTERVAL_EPSILON) {
hitTime = startTime;
return 1;
}
// Recursively test first half of interval; return collision if detected
float midTime = (startTime + endTime) * 0.5f;
if (IntervalCollision(a, b, startTime, midTime, hitTime)) return 1;
// Recursively test second half of interval
return IntervalCollision(a, b, midTime, endTime, hitTime);

For convex polygonal objects, after having located the closest time just before initial
contact a subsequent separating-axis test can provide a collision normal to be used
for collision response (given by the separating axis itself). The separating-axis test can
also be used to determine the collision of moving convex objects directly, as explained
in the next section.
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Separating-axis Test for Moving Convex Objects

For nonrotating convex polygonal or polyhedral objects moving with constant veloc-
ity, a modification of the separating-axis test (as described in Section 5.2.1) can be
used to determine the time of intersection of the objects, if any. First note that for
two moving objects, A and B, the velocity of A can be subtracted off from B, thus
effectively treating the problem as that of intersecting the stationary object A against
the moving object B.

Now, if the objects are initially intersecting, the first time of contact is at time t = 0.
Otherwise, the objects are disjoint. If disjoint, consider the intervals of projection of
A and B onto some arbitrary line L. Clearly, collision may occur only if the projection
interval of B moves toward the interval of A and eventually overlaps it.

Note that just immediately before a first time of contact between the A and B
projection intervals A and B must be separated along some axis. Then, too, just
immediately after a last time of contact they must again be separated along some
axis. Thus, the first and last time of contact can be determined by projection onto the
same separating axes as used for a stationary separating-axis test.

Consequently, to determine whether B intersects A it is sufficient to compute for
each potential separating axis the times at which the projected intervals start and end
intersection. The start and end times are computed using simple linear operations
and correspond to the initial and final contact, respectively, of the objects. Because
the objects can only overlap if they overlap simultaneously on all separating axes, the
nonemptiness of the intersection of the time intervals determined by the first and
last times of contact determines the collision result between the objects. Let ¢4, track
the largest of all times corresponding to the first time of contact on a separating axis.
Let tj, track the smallest of all times corresponding to the last time of contact on
a separating axis. After all axes have been tested, the objects intersect if and only if
tirst < tuast- If sometime during the test tg, > #,5, NO intersection is possible and a
result of “no intersection” can be immediately returned.

The technique of using the separating-axis test with moving objects was indepen-
dently described by [Gomez99] for AABBs, and in more detail by [Levine00] for the
general case. A concrete example of the described method is given in Section 5.5.8
for the intersection of moving AABBs.

Intersecting Moving Sphere Against Plane

Let a plane 7 be specified by n - X = d, where n is a unit vector. Let a sphere S be
specified by a center C and a radius 7, and let v be the direction vector for S such that
the sphere center movement is given by C(t) = C + tv over the interval of motion
0 <t < 1. The signed distance from the plane of a point R is (n - R) — d. Therefore,
the sphere initially overlaps the plane if |(n - C) —d| < r.

The sphere’s movement relative to the plane can be categorized by considering
the sign of n - v and what side of the plane the sphere starts on. If (n - v) > 0, the



220 Chapter 5 Basic Primitive Tests

Figure 5.34 Intersecting the moving sphere specified by center C, radius r, and movement
vector v against the plane n - X = d is equivalent to intersecting the segment S(t) = C + tv
against the plane displaced by r along n (here positive r, in that C lies in front of the plane).

sphere is moving away from the plane, assuming it lies in front of the plane. When
the sphere lies behind the plane, it instead indicates the sphere moving toward the
plane. Clearly, for (n - v) < 0 the exact opposite holds. In that the sign of (n- C) —d
indicates what side of the plane the sphere is on, a more succinct statement is that
the sphere is moving away from the plane when (n - v)(n - C — d) > 0 and toward it
when (n-v)(n - C —d) < 0 (that is, when the signs of the two subexpressions agree
and disagree, respectively). When (n - v) = 0, the sphere is moving parallel to the
plane.

Assume the sphere is moving toward the plane. To find the time f of first contact
between them, a straightforward approach is to displace the plane toward the sphere
center by the sphere radius r and then consider the problem as that of determining
the intersection of the segment S(t) = C +tv, 0 < t < 1, with the displaced plane
(Figure 5.34). Solving for ¢, if t is found to be within the segment interval ¢ is the time
at which the sphere collides with the plane.

Again, the sign of (n - C) — d must be examined, now to see how the plane should
be displaced. If the term is positive, the displaced plane is given by (n- Q) =d +r
and the first point on the sphere to touch the plane at time ¢ of initial contact is
Q = C(t) — rn. If the term is negative, (n - Q) = d — r describes the displaced plane
and Q = C(t) + rn gives the first point of contact.

It is now possible to solve for f as follows:

n-X)=dtr & (plane equation for plane displaced either way)
n-(C+tv)y=d+tr & (substituting S(t) = C + tv for X)
Mn-O)+tn-v)y=dxr & (expanding dot product)
t=(Er—(n-0) —d)/(n-v) (solving for t)

When 0 <t <1, the sphere touches the plane at time ¢, with point of contact Q.
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Note that the terms (n-C) —d and n-v, needed to determine if the sphere is moving
toward the plane, reoccur in the expression for t and should not be recalculated in an
implementation. This intersection test can now be implemented as follows.

// Intersect sphere s with movement vector v with plane p. If intersecting
// return time t of collision and point q at which sphere hits plane
int IntersectMovingSpherePlane(Sphere s, Vector v, Plane p, float &t, Point &q)
{
// Compute distance of sphere center to plane
float dist = Dot(p.n, s.c) - p.d;
if (Abs(dist) <= s.r) {
// The sphere is already overlapping the plane. Set time of
// intersection to zero and q to sphere center
t = 0.0f;
q=s.c;
return 1;
} else {
float denom = Dot(p.n, v);
if (denom * dist >= 0.0f) {
// No intersection as sphere moving parallel to or away from plane
return 0;
} else {
// Sphere is moving towards the plane

// Use +r in computations if sphere in front of plane, else -r
float r = dist > 0.0f ? s.r : -s.r;

t = (r - dist) / denom;

gq=s.ct+t*v-r*p.n;

return 1;

Here, the t value returned on a successful intersection may lie beyond the [0, 1]
interval. When this happens, t corresponds to the future time at which the sphere
would intersect the plane assuming the same motion. It is left to the caller to test ¢
for inclusion in the [0, 1] interval.

Just testing whether a moving sphere intersects a plane without computing where
the sphere strikes the plane is done with much less effort. The sphere intersects the
plane if it starts and ends on different sides of the plane or if it overlaps the plane at
its start or end positions. This test can be implemented as follows.
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/| Test if sphere with radius r moving from a to b intersects with plane p
int TestMovingSpherePlane(Point a, Point b, float r, Plane p)

{

// Get the distance for both a and b from plane p
float adist = Dot(a, p.n) - p.d;

float bdist
// Intersects if on different sides of plane (distances have different signs)
if (adist * bdist < 0.0f) return 1;

// Intersects if start or end position within radius from plane

if (Abs(adist) <= r || Abs(bdist) <= r) return 1;

// No intersection

return 0;

Dot(b, p.n) - p.d;

This test also assumes the plane has been normalized; that is, |n| = 1.

5.5.4 Intersecting Moving AABB Against Plane

Let a plane 7 be specified by (n - X) = d, where n is a unit vector. Let an AABB B be
specified by a center C; local axis vectorsug = (1,0, 0), u; = (0,1, 0), anduz = (0,0, 1);
and extents ey, e1, and e,. Let v be the direction vector for B such that the box center
movement is given by C(t) = C + tv over the interval of motion 0 <t < 1.

Consider the plane normal n as a separating axis. The projection radius of B with
respect to an axis n is given by

r=eplup-n|l+elur-nl+elup-nl.
Because ug, uy, and uy are fixed, this simplifies to
r=e|ng + e ny| + e nl.

Note that the magnitude of the projected radius remains constant as B moves. The
test now proceeds equivalently to the moving-sphere-against-plane test. The signed
distance from the plane of a point R is (n - R) — d. Consequently, the AABB initially
overlaps the plane if (n - C) — d| < r.If (n - v) > 0, the AABB is moving away from
the plane. When (n - v) = 0, the AABB is moving parallel to the plane.

Displacing the plane toward the AABB by r changes the plane to (n - X) = d +r.
When the AABB is moving toward the plane, the first point on the AABB to touch
the plane is Q = C(t) — rn, where C(t) is the position of the AABB at the time it first
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touches the plane. The condition for Q to be on the plane is (n - Q) = d. Solving for
tgivest = (r+d— (n- C))/(n -v). If 0 < t < 1, the AABB touches the plane at
time t, with point of contact Q. Unlike the moving-sphere-against-plane test, for an
AABB there will not necessarily be a unique point of contact, as the contact region
might be an edge or a face of the AABB. Due to the format used for the AABB in the
preceding presentation, the test for an OBB is identical, except for the computation of
7, which now involves the axes corresponding to the orientation of the OBB instead
of the world axes.

Intersecting Moving Sphere Against Sphere

Let two spheres Sy and S; be given with radii 7y and 1y, respectively. Their cor-
responding movements are given by the two movement vectors vy and v;. The
parameterized movement of the sphere centers can therefore be described by the
expressions Py(t) = Cp + tvy and P1(t) = C; + tvy over the time interval 0 < t < 1.
The vector d between the sphere centers at time ¢ is given by

d(t) = (Cy + tvg) — (C1 + tvy) = (Cy — C1) + t(vy — vy).

Assuming the spheres do notinitially touch, they first come in contact when the length
of d equals the sum of their radii: (d(f) - d(t))'"> = ry + 1. To avoid the square root
expression, both sides of the equivalence can be squared, giving d(¢)-d(t) = (rp+71)°.
To solve for t, let s = Cy — C1, v =vy — vy, and r = 1y + 1, then:

d@t)-d(t) = (o +n)* & (original expression)
(s+tv)-(s+tv)=r’< (substituting d(t) = s +tv)
(s-8)+2(v-8)t+ (v- V)P =1’ & (expanding dot product)

v-VE+2v-s)t+(s-s—r) =0 (canonic form for quadratic equation)

This is a quadratic equation in t. Writing the quadratic in the form at? + 2bt 4 ¢ = 0,
witha=v-v,b=v-s,andc=s-s5 — 12 gives the solutions for t as

P b+ Vb?2 —ac

a

The discriminant d = b*> — ac determines how many real-valued roots the quadratic
has. If d < 0, it has no real-valued roots, meaning the spheres will not intersect. If
d = 0, there is one real root and the spheres become tangential at time t. If d > 0,
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there are two real roots, with the spheres coming in first contact at the smaller time ¢
then interpenetrating for awhile to stop penetrating at the larger time t. The first time
of contact is for

When implementing this test, it is necessary to verify that the spheres do not overlap at
the start of the movement. Otherwise, it would fail to correctly deal with, say, a smaller
sphere remaining fully inside a larger sphere, because the condition of the spheres
coming into contact will never be satisfied in this case. One way of implementing
this test is:

int TestMovingSphereSphere(Sphere s0, Sphere sl, Vector v0, Vector vl, float &t)

{

Vector s = sl.c - s0O.c; // Vector between sphere centers

Vector v = vl - v0; // Relative motion of sl with respect to stationary sO
float r = sl.r + sO.r; // Sum of sphere radii

float ¢ = Dot(s, s) — r * r;

if (c < 0.0f) {

}

// Spheres initially overlapping so exit directly
t = 0.0f;
return 1;

float a = Dot(v, v);

if (a < EPSILON) return 0; // Spheres not moving relative each other

float b = Dot(v, s);

if (b >= 0.0f) return 0; // Spheres not moving towards each other

float d =b *b —a * c;

if (d < 0.0f) return 0; // No real-valued root, spheres do not intersect

t = (-b — Sqrt(d)) / a;
return 1;

An alternative description of this particular approach can be found in [Gomez99].
Another approach to the problem is to express it in terms of one solved earlier. First,
the problem (Figure 5.35a) is turned into that of a moving sphere versus a stationary
sphere, by subtracting v, off the movement of both (Figure 5.35b). Because the spheres
first come in contact when d(t) = ry + ry, growing the radius of one while shrinking
the radius of the other by the same amount does not affect the time of contact. It is
therefore possible to turn the moving sphere into a point and the second stationary
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Figure 5.35 Recasting the moving sphere-sphere test as a ray intersection test. (a) The original
problem of intersecting a moving sphere against a moving sphere. (b) Transforming problem
into a moving sphere versus a stationary sphere. (c) Reduced to a ray test against a stationary

sphere of larger radius.

sphere into one with a combined radius of 1y + 11 (Figure 5.35¢). The problem now
becomes that of intersecting a ray with a static sphere, for which a routine was given
in Section 5.3.2. The implementation is now straightforward.

int TestMovingSphereSphere(Sphere s0, Sphere sl, Vector v0, Vector vl, float &t)

{
// Expand sphere sl by the radius of sO

sl.r += sO.r;
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(a)

(b)

Figure 5.36 lllustrating Nettle’s method for intersecting a moving sphere against a triangle.

// Subtract movement of sl from both sO and sl, making sl stationary

Vector v = v0 — v1;

// Can now test directed segment s = sO.c + tv, v = (v0-v1)/||v0-v1|| against
// the expanded sphere for intersection

Point q;

float vlien = Length(v);

if (IntersectRaySphere(s0.c, v / vlen, sl1, t, q)) {

}

return t <= vlen;

return 0;

5.5.6 Intersecting Moving Sphere Against Triangle

(and Polygon)

Let a sphere S be specified by a center C and a radius r, and let v be the direction
vector for S such that the sphere center movement is given by C(t) = C +t v over the
interval of motion 0 < t < 1. Let T be a triangle and n be the unitized normal to this
triangle.

A simple test, both conceptually and computationally, for intersecting the sphere
against the triangle is suggested in [Nettle00]. Without loss of generality, assume the
sphere is in front of the plane of triangle T, moving so as to end up behind the plane.
In this situation, the first point on the sphere to come in contact with the plane is
D = C — rn. Now intersect the directed segment D +tv, 0 < t < 1, against the
plane; let P be the intersection point. If P lies inside the triangle, then f is the desired
time of intersection and P the point of contact (Figure 5.36a).

For the case in which P lies outside the triangle, let Q be the point on the triangle
closest to P. If the moving sphere hits the triangle at all, then Q is the point it will hit
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first (as the circular cross section of the sphere, as it moves through the plane, will be
centered at P).

To determine whether the sphere hits Q, instead of moving the sphere toward the
triangle a ray Q — ¢ v can be cast “in reverse” from Q toward the sphere. If this ray
does not hit the sphere or if t does not lie in the range of zero to one, then the sphere
does not hit Q and there is no intersection. If the ray hits the sphere at some point R,
with 0 <t <1, then the point R on the sphere will first come into contact with point
Q of the triangle, at time ¢ (Figure 5.36b).

Unfortunately, this test is not robust. When the sphere is moving parallel to the
plane of the triangle, there is no intersection between the movement vector and the
plane and the algorithm breaks.

However, this is not always a problem as, for example, when all triangles inter-
sected against are part of a mesh such that all exposed triangle edges are always
shared with another triangle. A moving sphere will then always hit a neighboring
triangle before it has a chance to fail detecting intersection with a triangle it is moving
parallel to. Of course, collision response relating to sliding in the plane of the triangle
must also be adapted to handle this situation.

A more robust, but also more expensive, method is first to perform a sphere-
against-plane test (either as just described, or as per Section 5.5.3). If there is an
intersection, the point P of earliest contact is tested for containment in 7T, just as
in Nettle’s approach. If P lies inside T, the earliest intersection has been found
and the test can exit. Otherwise, a test of the moving sphere against each trian-
gle edge is performed. This is equivalent to testing the directed segment C + v,
0 <t <1, against the edges turned into cylinders of radius r (see Section 5.3.7).
If one or more intersections against the curved surface (only) of the cylinders
are detected, the closest one corresponds to the earliest intersection, which is
returned.

Assuming that no intersection has been detected up to this point, the ray is inter-
sected against the spheres of radius r centered on the vertices of the triangle. Again,
if there are one or more intersections the closest one is returned. If no sphere is inter-
sected, this corresponds to the original sphere not intersecting the triangle. Note that
for the ray-cylinder tests no intersection against the endcaps is necessary: if there is
an intersection between the sphere and the triangle, the ray will intersect the spheres
at the vertices before it can strike an endcap. The last bit of the test, as given in Section
5.3.7, can therefore be omitted.

Overall, this approach is perhaps best seen conceptually as a ray test against the
solid volume V resulting from sweeping T with S, forming the Minkowski sum T & S
of T and S (as described in Section 3.11), but with the three individual component
tests performed either as ray tests or as sphere tests (depending on what is more
appropriate). The next section describes how to apply the Minkowski sum approach
to the problem of intersecting a moving sphere against an AABB.

This second, more robust, method is suggested in [Schroeder01], with corrections
in [Akenine-Moller02]. Both of the approaches described in this section generalize
to intersections against arbitrary polygons in a straightforward way.
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5.5.7 Intersecting Moving Sphere Against AABB

Letasphere Sbe specified by a center C and aradius r, and let d be the direction vector
for S, such that the sphere center movement is given by C(t) = C+t d over the interval
of motion 0 <t < 1. Let B be an AABB. Intersecting the moving sphere S against the
box B is equivalent to intersecting the segment L(t) = C +td, 0 <t < 1, against the
volume V that results after sweeping B with S (that is, against the Minkowski sum
of Band S,V = B@® ), as illustrated in Figure 5.37. The latter test can be efficiently
performed without forming V, as demonstrated next.

Let E be the AABB given by expanding the faces of B outward by a distance equiv-
alent to the sphere radius r. This is the tightest AABB bounding V, differing from V'
only in the lack of spherically beveled edges. Now, intersect L against E. If L does not
intersect E, then clearly S does not intersect B. Otherwise, let P = L(t) denote the
point where L intersects E at time t.

If P lies in a face Voronoi region of B, then nothing more is needed: S intersects B
at time t when the sphere center is at point P. However, if P lies in an edge or vertex
Voronoi region, further tests are required to determine whether L passes through the
beveled region of V not present in E, thus missing V, or whether L intersects V on one
of its beveled edges or vertices at some later time t/, t <t < 1.

When P lies in an edge Voronoi region of B, L must additionally be intersected
against the capsule of radius r determined by the edge. If and only if L intersects the
capsule does S intersect B. The intersection of L and the capsule corresponds to the
actual intersection of S and B.

/d

V =S®B

Figure 5.37 A 2D illustration of how the test of a moving sphere against an AABB is trans-
formed into a test of a line segment against the volume resulting after sweeping the AABB
with the sphere (forming the Minkowski sum of the sphere and the AABB).
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The last consideration is when P lies in a vertexVoronoi region. In this case, L must
additionally be intersected against all three capsules of radius  determined by the
edges coincident to the vertex. If L does not intersect one of the capsules, S does
not intersect B. Otherwise, the intersection of S with B occurs at the smallest time
t at which L intersects one of the edge capsules. As a potential speedup, L can be
tested against a sphere K of radius r centered at the vertex. If L intersects K, and
the intersection point lies in the vertex Voronoi region, then this intersection point
provides the answer and the capsules do not have to be tested against. However,
if the intersection point between L and K lies outside the vertex Voronoi region (or
if L does not intersect K at all), the sphere test was in vain and the three cylinders
must be intersected anyway. The following code fragment illustrates how to efficiently
determine which Voronoi region P is contained in and which edges must be tested

for the edge and vertex region cases.

int IntersectMovingSphereAABB(Sphere s, Vector d, AABB b, float &t)
{
// Compute the AABB resulting from expanding b by sphere radius r
AABB e = b;
e.min.x -= s.r; e.min.y -= s.r; e.min.z -= s.r;
e.max.x += s.r; e.max.y += s.r; e.max.z += s.r;

// Intersect ray against expanded AABB e. Exit with no intersection if ray
// misses e, else get intersection point p and time t as result
Point p;
if (!IntersectRayAABB(s.c, d, e, t, p) || t > 1.0f)
return 0;

// Compute which min and max faces of b the intersection point p lies
// outside of. Note, u and v cannot have the same bits set and

// they must have at least one bit set among them

int u=0, v=0;

if (p.x < b.min.x) u |= 1;
if (p.x > b.max.x) v |= 1;
if (p.y < b.min.y) u |= 2;
if (p.y > b.max.y) v |[= 2;
if (p.z < b.min.z) u |= 4;
if (p.z > b.max.z) v |= 4;

// 'Or' all set bits together into a bit mask (note: here u +v == u | v)
intm=u+ v;

// Define line segment [c, c+d] specified by the sphere movement
Segment seg(s.c, s.c + d);
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// If all 3 bits set (m == 7) then p is in a vertex region
if (m==7) {

}

// Must now intersect segment [c, c+d] against the capsules of the three

// edges meeting at the vertex and return the best time, if one or more hit

float tmin = FLT_MAX;

if (IntersectSegmentCapsule(seg, Corner(b, v), Corner(b, v * 1), s.r, &t))
tmin = Min(t, tmin);

if (IntersectSegmentCapsule(seg, Corner(b, v), Corner(b, v * 2), s.r, &t))
tmin = Min(t, tmin);

if (IntersectSegmentCapsule(seg, Corner(b, v), Corner(b, v » 4), s.r, &t))
tmin = Min(t, tmin);

if (tmin == FLT_MAX) return 0; // No intersection

t = tmin;

return 1; // Intersection at time t == tmin

/! If only one bit set in m, then p is in a face region
if ((m& (m- 1)) ==0) {

}

// Do nothing. Time t from intersection with
// expanded box is correct intersection time
return 1;

// p is in an edge region. Intersect against the capsule at the edge
return IntersectSegmentCapsule(seg, Corner(b, u * 7), Corner(b, v), s.r, &t);

}

// Support function that returns the AABB vertex with index n
Point Corner(AABB b, int n)

{

Point p;
p.x = ((n & 1) ? b.max.x : b.min.x);
p.y = ((n & 1) ? b.max.y : b.min.y);
p.z = ((n & 1) ? b.max.z : b.min.z);
return p;

5.5.8

This test also works for performing the same intersection against an OBB: by
expressing the sphere center C and the movement vector d in the local coordinate
system of the OBB the problem is effectively reduced to that of a moving sphere
against an AABB.

Intersecting Moving AABB Against AABB

Because an AABB is an instance of a convex polyhedron, the problem of determining
intersection between two moving AABBs, A and B with corresponding velocities v4
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o

djjps = a.min[i] - b.max[i]

dju; = a.max[i] — b.minl[i]

Figure 5.38 lllustrating the distances the projection of box B travels to reach first and last
contact with the projection of the stationary box A when B is moving toward A.

and v, can be solved using the moving version of the separating-axis test as described
in Section 5.5.2.

The problem is first cast into that of a stationary box A and a moving box B by
subtracting the velocity of A from B, giving the relative velocity v = vz — va. Figure
5.38 illustrates, given B moving toward A, the distances df; and dj that B must
cover to reach first and last contact with A. The times to first and last contact, ¢
and t;,5¢, are then easily obtained by dividing these distances by the speed with which
B is moving toward A. These times are obtained for all three principal axes, and the
largest tg,; and smallest t,5; correspond to the intersection of the times the boxes
overlap on the three axes, if at all. If the projections of the boxes are ever found to be
nonintersecting and moving apart on an axis, the test can immediately exit with “no
intersection.” A full implementation of this test follows.

// Intersect AABBs 'a' and 'b' moving with constant velocities va and vb.
// On intersection, return time of first and last contact in tfirst and tlast
int IntersectMovingAABBAABB(AABB a, AABB b, Vector va, Vector vb,

float &tfirst, float &tlast)

// Exit early if 'a' and 'b' initially overlapping
if (TestAABBAABB(a, b)) {

tfirst = tlast = 0.0f;

return 1;

// Use relative velocity; effectively treating 'a' as stationary
Vector v = vb - va;
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// Initialize times of first and last contact
tfirst = 0.0f;
tlast = 1.0f;

// For each axis, determine times of first and last contact, if any
for (int i = 0; i < 3; i++) {

}

if (v[i] < 0.0f) {

if (b.max[i] < a.min[i]) return 0; // Nonintersecting and moving apart
if (a.max[i] < b.min[i]) tfirst = Max((a.max[i] - b.min[i]) / v[i], tfirst);
if (b.max[i] > a.min[i]) tlast = Min((a.min[i] - b.max[i]) / v[i], tlast);
}
if (v[i] > 0.0f) {
if (b.min[i] > a.max[i]) return 0; // Nonintersecting and moving apart
if (b.max[i] < a.min[i]) tfirst = Max((a.min[i] - b.max[i]) / v[i], tfirst);
if (a.max[i] > b.min[i]) tlast = Min((a.max[i] - b.min[i]) / v[i], tlast);

}

// No overlap possible if time of first contact occurs after time of last contact
if (tfirst > tlast) return 0;

return 1;

A solution similar to the one presented here is given in [Gomez99].

5.6 Summary

In this chapter, a large number of different tests and queries have been discussed
in quite some detail. These include closest-point calculations (which directly allow
the distance between the two query objects to be found); heterogeneous intersection
tests (such as between a sphere and an OBB); intersections involving lines, rays, and
line segments (against triangles, for example); and point containment tests (for both
polygons and polytopes), to name a few. In addition to static intersection tests, meth-
ods for performing dynamic tests have also been described, including the powerful
generalization of the separating-axis test.

Even though this chapter has covered a wide variety of tests, readers will inevitably
make note of specific tests that were excluded from coverage. As mentioned at the start
of the chapter, the intent behind the provided spectrum of tests and the mathematical
detail given is to allow the readers themselves to derive these other tests using the
ideas presented herein. Being able to derive tests from scratch is important because
there are not many sources that cover intersection tests to a great extent, and even
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those that do are unlikely to cover the particular tests the reader requires. One notable
exception to the lack of comprehensive sources for intersection tests is [Schneider02],
which is a treasure trove of geometrical tests of all types and an excellent supplement
to this chapter. [Eberly01] and [Bergen03] are also good references, albeit not as
comprehensive. Individual articles on specific tests can also be found in the five-
volume book series Graphic Gems [Glassner90], [Arvo91], [Kirk92], [Heckbert94],
and [Paeth95].
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Chapter 6

Bounding Volume
Hierarchies

Wrapping objects in bounding volumes and performing tests on the bounding
volumes before testing the object geometry itself can result in significant perfor-
mance improvements. However, although the tests themselves have been simplified,
the same number of pairwise tests are still being performed. The asymptotic time
complexity remains the same and the use of bounding volumes improves the situa-
tion by a constant factor. By arranging the bounding volumes into a tree hierarchy
called a bounding volume hierarchy (BVH), the time complexity can be reduced to
logarithmic in the number of tests performed.

The original set of bounding volumes forms the leaf nodes of the tree that is this
bounding volume hierarchy. These nodes are then grouped as small sets and enclosed
within larger bounding volumes. These, in turn, are also grouped and enclosed within
other larger bounding volumes in a recursive fashion, eventually resulting in a tree
structure with a single bounding volume at the top of the tree. Figure 6.1 shows a
small AABB hierarchy constructed from five objects.

With a hierarchy in place, during collision testing children do not have to be exam-
ined if their parent volume is not intersected. The same bounding volume hierarchies
are also used, for instance, in scene graphs and ray tracing and for view-frustum
culling.

Comparing bounding volume hierarchies with spatial partitioning schemes (see
Chapter 7), the main differences are that two or more volumes in a BVH can cover the
same space and objects are generally only inserted in a single volume. In contrast, in
a spatial partitioning scheme the partitions are disjoint and objects contained in the
spatial partitioning are typically allowed to be represented in two or more partitions.

It is important to note that the bounding volume of a parent node does not neces-
sarily need to enclose the bounding volumes of its child nodes. Although it is often
easier to construct hierarchies in which this parent-child property holds true, the
parent bounding volume needs to enclose only the object primitives contained in the
subtrees of its children.

235
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6.1

6.1.1

>
.

: : c D

Figure 6.1 A bounding volume hierarchy of five simple objects. Here the bounding volumes
used are AABBs.

One approach to creating hierarchies is to have designers or artists manually create
them as part of their modeling hierarchies. However, creating trees manually is not
ideal. First, designers tend to think functionally rather than spatially. Consequently,
it is likely that, for instance, all nuts and bolts across a large mechanical design
are grouped under the same node. Such a grouping is not good from a collision
detection perspective. Second, the hierarchy is also likely to be either too shallow
or too deep in the wrong places. The designer’s modeling hierarchy has been —
and arguably should be — constructed for easy editing and not to enable efficient
intersection queries. Although designers could theoretically adjust their hierarchies
to be more spatially oriented and better suited to collision queries, this is unlikely to
be an effective use of their time. A better solution is to automate, where possible, the
generation of hierarchies from the provided models. Such automation is not always
a trivial process and there are many issues to consider, as the next section will show.

Hierarchy Design Issues

There are many ways to construct a bounding volume hierarchy. The next section
outlines a number of desired characteristics for good hierarchies. A generic cost func-
tion to aid the cost comparison of queries for various hierarchical schemes is found in
Section 6.1.2. Finally, Section 6.1.3 discusses the question of what tree degree might
provide the best hierarchy.

Desired BVH Characteristics

Similar to bounding volumes, several desired properties for bounding volume
hierarchies have been suggested [Kaplan85] [Kay86] [Hubbard96]:

® The nodes contained in any given subtree should be near each other. Without explic-
itly defining nearness, the lower down the tree the nodes are the nearer they
should be to each other.
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® Each node in the hierarchy should be of minimal volume.
® The sum of all bounding volumes should be minimal.

o Greater attention should be paid to nodes near the root of the hierarchy. Pruning a
node near the root of the tree removes more objects from further consideration
than removal of a deeper node would.

o The volume of overlap of sibling nodes should be minimal.

® The hierarchy should be balanced with respect to both its node structure and its
content. Balancing allows as much of the hierarchy as possible to be pruned
whenever a branch is not traversed into.

For real-time applications, games especially, an important addition to the previous
list is the requirement that the worst-case time for queries not be much worse than
the average-case query time. This requirement is particularly important for console
games, for which a fixed frame rate is usually required (typically 60 fps).

Additionally, itis desired that the hierarchy can be automatically generated without
user intervention. For real-time applications, most hierarchies are usually generated
in a preprocessing step and not at runtime. For games, excessive waiting for precom-
puted structures to build can have a detrimental impact on level construction and
design. Therefore, although precomputation makes the construction less time signif-
icant algorithms of quadratic complexity and above are still likely to be too slow even
for preprocessing use. If a hierarchy is constructed at runtime, building the hierarchy
should also pay for itself in that the time taken for construction should be less than
the time saved by using the hierarchy.

Finally, a very important factor often glossed over in treatments of collision detec-
tion is the total memory requirement for the data structures used to represent the
bounding volume hierarchy. For example, console games roughly allocate a tenth
of the available memory for collision data. Whereas the built-in memory for next-
generation console systems will increase for each generation, the ratio allocated for
collision detection data is likely to remain roughly constant because the memory
requirements for other systems (such as rendering, animation, and Al) also are likely
to grow proportionally. These memory constraints set hard limits on all considered
collision detection systems.

Cost Functions

Several people have come up with expressions to identify the various parts con-
tributing to the expected cost of bounding volume hierarchy queries. A cost formula
first presented in [Weghorst84] and adapted for bounding volume hierarchies by
[Gottschalk96] and subsequently refined in [Klosowski98] and [He99] is

T = NyCy + NpCp + NyCy + Co.
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6.1.3

Here, T is the total cost of intersecting the two hierarchies, Ny is the number of
BV pairs tested for overlap, Cy is the cost of testing a pair of BVs for overlap, Np is
the number of primitive pairs tested, Cp is the cost of testing a primitive pair, Ny
is the number of nodes that need to be updated, Cy is the cost of updating each
such node, and, where necessary, Co is the cost of a one-time processing (such as a
coordinate transformation between objects).

Of these variables, for instance, Ny and Np are minimized by making the bounding
volume fit the object as tightly as possible. By making the overlap tests as fast as
possible, Cy and Cp are minimized. Unfortunately, making the bounding volume
tighter typically increases the time to perform the overlap test. At the same time, a
tighter bounding volume is likely to result in fewer intersection tests. In general, the
values are so intrinsically linked that minimizing one value often causes another to
increase. Finding a compromise among existing requirements is a challenge in all
collision detection systems.

Tree Degree

An interesting question is that of what degree or branching factor to use in the tree
representing the bounding volume hierarchy. What is better, a binary, ternary, d-ary
(for some d), or a tree with any number of children at a node? A tree of a higher
degree will be of smaller height, minimizing root-to-leaf traversal time. At the same
time, more work has to be expended at each visited node to check its children for
overlap. The opposite holds for a low-degree tree: although the tree will be of greater
height, less work is spent at each node. In terms of size, a d-ary tree of # leaves has
(n — 1)/(d — 1) internal nodes for a total of (nd — 1)/(d — 1) nodes in the tree. Clearly
the larger the degree the fewer internal nodes are needed to form the tree.

The question of what degree to use is a difficult one and no definitive answer has
been forthcoming. Looking at actual usage, it appears binary trees are by far the most
common hierarchical representation. An important reason is that binary trees are
easier to build and, to some extent, to represent and traverse than other trees. For
instance, when building a tree top-down, to partition the set of objects into two sub-
sets only a single splitting plane has to be found. Partitioning m objects into just two
(nonempty) partitions can be done in 2"~! — 1 ways, and the corresponding expres-
sions grow exponentially (and therefore prohibitively) with an increasing number of
partitions.

Analytical arguments have also been put forth in support of the choice of binary
trees [Klosowski98] [Konecny98]. The actual cost of a collision query depends on
what descent rules are used when traversing the hierarchies. For instance, given
a balanced d-ary tree of n leaves, the “descend A before B” and “descend A and B
simultaneously” rules (both described later on) have costs proportional to f(d) =
dlog,(n) and f(d) = d*log,(n), respectively. The former minimizes for d = 2.718,
and the latter for d = 2, suggesting the use of a binary or possibly ternary tree as
optimal. Empirical results also appear to be in support of the choice d = 2, but
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these are not conclusive — especially because few experiments seem to have been
conducted with higher-degree trees.

Platform-architectural issues also play a significant role in what type of trees per-
form well. Ideally, trees should be laid out in memory so that nodes occur linearly
in memory during traversal. The issue of cache-efficient tree structures is revisited in
Chapter 13.

Building Strategies for Hierarchy Construction

As the number of possible trees grows exponentially in terms of the number of ele-
ments in the input set, an exhaustive search for the best tree is infeasible. This rules
out finding an optimal tree. Instead, heuristic rules are used to guide the construction,
examining a few alternatives at each decision-making step, picking the best alterna-
tive. Arriving at a suboptimal solution is not necessarily a problem, as there is usually
a very large number of trees that are not too far from optimal.

There are three primary categories of tree construction methods: top-down, bottom-
up, and insertion methods (Figure 6.2). Top-down (or divisive) methods proceed by
partitioning the input set into two (or more) subsets, bounding them in the chosen
bounding volume, then recursing over the bounded subsets. Thanks to the ease with
which they can be implemented, top-down methods are by far the most popular.
However, they do not generally result in the best possible trees.

Top-down

() @
- @B -0 O
(a) @ ® © D
@

Bottom-up
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v @O OWEOO® W®E O

Insertion . .
-0 -0 -0 O
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Figure 6.2 A small tree of four objects built using (a) top-down, (b) bottom-up, and
(c) insertion construction.
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6.2.1

Bottom-up (or agglomerative) methods start with the input set as the leaves of the
tree and then group two or more of them to form a new (internal) node, proceeding
in the same manner until everything has been grouped under a single node (the root
of the tree). Although bottom-up methods are likely to produce better trees than the
other methods, they are also more difficult to implement.

Insertion methods build the hierarchy incrementally by inserting objects one
at a time into the tree. The insertion position is chosen so as to minimize some
cost measurement for the resulting tree. Insertion methods are considered on-line
methods, whereas both top-down and bottom-up methods are considered off-line
methods in that they require all primitives to be available before construction starts.
A benefit of on-line methods is that they allow updates to be performed at runtime.
Very little research has been done on insertion methods for constructing collision
detection hierarchies.

As noted earlier, even though most hierarchy construction takes place during a
preprocessing stage, it is still important to find fast construction methods. Any algo-
rithms of O(1n?) complexity and above are likely to be too slow for building hierarchies
from a larger number of primitives.

To simplify the presentation, in the following sections the discussion has primarily
been limited to binary trees. The same methods typically also apply to n-ary or even
general trees.

Top-down Construction

A top-down method can be described in terms of a recursive procedure. It starts out by
bounding the input set of primitives (or objects) in a bounding volume. These primi-
tives are then partitioned into two subsets. The procedure is now called recursively to
form subhierarchies for the two subsets, which are then connected as children to the
parent volume. The recursion stops when the input set consists of a single primitive
(o, if elected, earlier than that), at which point the procedure just returns after cre-
ating the bounding volume for the primitive. The following code fragment illustrates
how top-down construction can be implemented.

// Construct a top-down tree. Rearranges object[] array during construction
void TopDownBVTree (Node **tree, Object object[], int numObjects)

{

assert(numObjects > 0);

const int MIN OBJECTS PER_LEAF = 1;

Node *pNode = new Node;

*tree = pNode;

// Compute a bounding volume for object[0], ..., object[numObjects - 1]
pNode->BV = ComputeBoundingVolume (&object[0], numObjects);
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if (numObjects <= MIN_OBJECTS PER _LEAF) {
pNode->type = LEAF;
pNode->numObjects = numObjects;
pNode->object = &object[0]; // Pointer to first object in leaf
} else {
pNode->type = NODE;
// Based on some partitioning strategy, arrange objects into
// two partitions: object[0..k-1], and object[k..numObjects-1]
int k = PartitionObjects(&object[0], numObjects);
// Recursively construct left and right subtree from subarrays and
// point the left and right fields of the current node at the subtrees
TopDownBVTree (& (pNode->left), &object[0], k);
TopDownBVTree (& (pNode->right), &object[k], numObjects - k);

Apart from the selection of what bounding volume to use, only a single guiding
criterion controls the structure of the resulting tree: the choice of how the input set
is partitioned into two subsets. As a set of n elements can be partitioned into two
nonempty subsets in 2"~! — 1 ways, it is clear that only a small subset of all partitions
can reasonably be considered.

To simplify the partitioning, the set is usually divided into subsets using a split-
ting hyperplane. As it is not possible to guarantee selecting a splitting plane that
does not cut across any primitives, any straddling primitives must be dealt with
when partitioning the set. One solution is to split the primitive into two, assign-
ing the parts to their respective subsets. Splitting of primitives allows the child
bounding volumes to be smaller, minimizing their overlap, possibly completely elim-
inating it. A drawback with splitting straddling primitives is that any split primitives
can again become subject to splitting, potentially giving rise to a huge increase of
primitives.

A perhaps more common solution is not to split the primitive but to let the position
of its centroid with respect to the splitting plane determine which subset it goes in.
Using the centroid to determine which subset to assign the primitive to attempts to
minimize the overlap between the sibling bounding volumes. This way, the bounding
volume will be extended in width by half the width of the primitive. If the primitive
had instead been arbitrarily assigned to either subset, in the worst case the bounding
volume for the subset could have been extended by the full width of the primitive.

6.2.1.1 Partitioning Strategies

A simple partitioning method is the median-cut algorithm. Here, the set is divided in
two equal-size parts with respect to their projection along the selected axis, resulting
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in a balanced tree. The median cut is just one possible strategy. Going back to the list
of desired properties given earlier, other possible partition strategies are:

e Minimize the sum of the volumes (or surface areas) of the child volumes. The proba-
bility of an intersection between a bounding volume and either of the two child
volumes can be expected to be proportional to their volume. Thus, minimiz-
ing the sum of the volumes effectively minimizes the likelihood of intersection.
For a ray query, the probability of a ray striking a bounding volume is instead
proportional to the bounding volume’s surface area.

e Minimize the maximum volume (surface area) of the child volumes. Whereas the
previous strategy can result in one volume much larger than the other, this
approach attempts to make the volumes more equal in size by making the larger
volume as small as possible. This results in a more balanced query, improving
worst-case behavior.

e Minimize the volume (surface area) of the intersection of the child volumes. This
strategy helps decrease the probability of both children being overlapped and
traversed into. Depending on the bounding volume used, the intersection can
be complex to construct and even to approximate.

e Maximize the separation of child volumes. Separating children, even when
not overlapping, can further decrease the likelihood of both children being
traversed into.

e Divide primitives equally between the child volumes. This strategy is the median-
cut algorithm mentioned at the start of the section. Its strength lies in giving
the most balanced hierarchy possible.

e Combinations of the previous strategies.

Partitioning stops and a node is considered a leaf when some particular stop
criterion is reached. Common stop criteria are:

® The node contains just a single primitive, or less than some k primitives.
® The volume of the bounding volume has fallen below a set cut-off limit.
® The depth of the node has reached a predefined cut-off depth.

Partitioning can also fail early, before a stop criterion triggers, for instance when:

o All primitives fall on one side of the split plane.

® One or both child volumes end up with as many (or nearly as many) primitives as the
parent volume.

® Both child volumes are (almost) as large as the parent volume.
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These failure conditions can also be treated as stopping criteria. Before stopping,
however, it is reasonable to try other partitioning criteria. For instance — for a box-
based tree — after failing to split along the longest side, first the next longest side and
then the shortest side can be tested. Only if all three fail would splitting stop. Stopping
early with k rather than just one primitive per leaf node has the benefit of using less
memory. Unfortunately, during leaf-leaf tests instead of a single primitive-primitive
test now O(k?) tests must be performed.

The choice of a partitioning plane is usually further broken down in two steps.
First an axis is selected, and then a position along this axis. These choices are
covered next.

6.2.1.2 Choice of Partitioning Axis

Out of an infinite number of possible axes, somehow a single axis must be selected
as the partitioning axis. Theoretically, it is possible to apply an iterative optimization
method (for example, hill climbing) to locate the best possible axis. Practically, such
an approach is usually too expensive even for a preprocessing step. Consequently, the
search must be limited to a small number of axes from which the best one is picked.
Common choices of axes for inclusion in this limited set are:

1. Local x, y, and z coordinate axes. These are usually included as they are easy to
perform operations with. They also form an orthogonal set, guaranteed to cover
widely different directions.

2. Axes from the intended aligned bounding volume. The local axes of item 1 correspond
to the face normals of an AABB. Some bounding volumes, such as k-DOPs, have
additional fixed axes that also form a natural choice for partitioning axes.

3. Axes of the parent bounding volume. If the hierarchy is built of OBBs, the defining axes
of the bounding OBB of the current set under partitioning are good candidate axes.
Even if the hierarchy is built from, say, spheres (which do not have any apparent
associated axes), a temporary OBB could still be computed for the parent’s data
set, from which splitting axes candidates would be extracted.

4. Auxis through the two most distant points. Partitioning along the axis that goes through
the two most distant points in the input set corresponds to an attempt at minimiz-
ing the volume of the child volumes. A near-optimal approximation to the most
distant points is given by the simple O(n) heuristic implemented as the function
MostSeparatedPointsOnAABB() in Section 4.3.2.

5. Axis along which variance is greatest. Splitting along the dimension in which the
input data has the largest spread also serves to minimize the volume of the child
volumes. In an OBB hierarchy in which OBBs are covariance fitted, the axis of
largest variance simply corresponds to the axis defining the longest side of the
parent OBB.
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Even though a full optimization step is infeasible, once a partitioning axis has
been selected a small number of hill-climbing steps can be performed to improve on
the axis. One approach involves perturbing the direction of the axis, replacing the
selected axis if the perturbed axis performs better, and repeating this for as many
steps as can be afforded.

An interesting, but largely unexplored, option is to apply other statistical methods
than principal component analysis to the problem of finding partitioning axes. These
include the related methods of projection pursuit, independent component analysis, and
blind signal separation, which are all techniques for recovering unobserved individual
components from an observed mixed source. For instance, the method of projection
pursuit as a simplification can be described as a way of obtaining a direction for which
the entropy (rather than the variance) of the projected data is maximized. As entropy
is a measure of information or “interestingness,” and data clusters will have high
entropy, this direction forms a good candidate axis for partitioning the data in two or
more clusters. For an introduction to projection pursuit and independent component
analysis see [Stone98]. For blind signal separation see [Cardoso98].

6.2.1.3 Choice of Split Point

The infeasibility of optimizing over all possible axes applies to the choice of split point
as well. As there are infinitely many splitting points along the axis, again the selection
must be restricted to a small set of choices, such as:

® Median of the centroid coordinates (object median). Splitting at the object median
evenly distributes the primitives between the subsets, resulting in a balanced
tree. The median is trivially found in O(nlog n) time by sorting the points, or in
O(n) time using a more sophisticated method (see [Cormen90] for details).

® Mean of the centroid coordinates (object mean). Well-balanced trees do not nec-
essarily give the best query times. Splitting along the local axis with largest
variance, [Klosowski98] report that using the object mean outperforms using
the object median. They report splitting at the mean consistently gives smaller
volume trees, with a lower number of operations performed and better query
times as a result. The object mean is found in O(n) time.

e Median of the bounding volume projection extents (spatial median). Splitting at the
spatial median (thus splitting the volume in two equal parts) is an attractive
option, as the split point is found in constant time from examining just the
bounding volume and not its contained data. This alternative is often used
when the axis is selected from the parent volume (for example, using the
longest-side rule).

e Splitting at k evenly spaced points along the bounding volume projection extents.
Instead of spending time on what amounts to “intelligently guessing”a good
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Figure 6.3 (a) Splitting at the object median. (b) Splitting at the object mean. (c) Splitting
at the spatial median.

split position, this brute-force alternative simply tests some small number of
evenly spaced points along the axis, picking the best one.

o Splitting between (random subset of) the centroid coordinates. Similar to the previous
method, splitting between the projected centroids attempts to minimize the
number of primitives straddling the splitting plane, at the expense of projecting
and sorting the centroids.

Figure 6.3 illustrates some of these splitting choices. Instead of directly selecting
a splitting point, the subsets can be built incrementally. For instance, [Zachmann98]
splits along the axis through the two most distant points, a and b. Starting by adding
the faces associated with a and b to the two different subsets, he assigns the remaining
primitives to the subset whose bounding volume increases less with the primitive
added. If both volumes increase by the same amount or do not increase at all (due
to the primitive being fully inside the volume), the primitive is added to the set with
fewer primitives.

Top-down construction is by far the most common approach to building bounding
volume hierarchies. The advantages include ease of implementation and fast tree
construction. The disadvantage is that as critical decisions are made early in the
algorithm at a point where all information is not available the trees are typically not
as good as possible.

Bottom-up Construction

In contrast to top-down methods, bottom-up methods are more complicated to
implement and have a slower construction time but usually produce the best trees
[Omohundro89]. To construct a tree hierarchy bottom up, the first step is to enclose
each primitive within a bounding volume. These volumes form the leaf nodes of the
tree. From the resulting set of volumes, two (or more) leaf nodes are selected based
on some merging criterion (also called a clustering rule). These nodes are then bound
within a bounding volume, which replaces the original nodes in the set. This pairing
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procedure repeats until the set consists of a single bounding volume representing the
root node of the constructed tree.

Node *BottomUpBVTree(Object object[], int numObjects)
{

assert (numObjects != 0);
int i, j;

// Allocate temporary memory for holding node pointers to
// the current set of active nodes (initially the leaves)
NodePtr *pNodes = new NodePtr[numObjects];

// Form the leaf nodes for the given input objects
for (i = 0; i < numObjects; i++) {
pNodes[i] = new Node;
pNodes[i]->type = LEAF;
pNodes[i]->object = &object[i];
}
/] Merge pairs together until just the root object left
while (numObjects > 1) {
// Find indices of the two "nearest" nodes, based on some criterion
FindNodesToMerge (&pNodes[0], numObjects, &i, &j);
// Group nodes i and j together under a new internal node
Node *pPair = new Node;
pPair->type = NODE;
pPair->left = pNodes[i];
pPair->right = pNodes[j];
// Compute a bounding volume for the two nodes
pPair->BV = ComputeBoundingVolume (pNodes[i]->object, pNodes[j]->object);

// Remove the two nodes from the active set and add in the new node.

// Done by putting new node at index 'min' and copying last entry to 'max’
int min = i, max = j;

if (i > j) min = j, max = i;

pNodes[min] = pPair;

pNodes[max] = pNodes[numObjects - 1];

numObjects--;

}

// Free temporary storage and return root of tree
Node *pRoot = pNodes[0];

delete pNodes;

return pRoot;
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Following the logic of earlier sections, one of the more meaningful merging criteria
is to select the pair so that the volume of their bounding volume is minimized. A
brute-force approach for finding which two nodes to merge is to examine all possible
pairs, compute their bounding volume, and pick the pair with the smallest bounding
volume. The brute-force approach requires O(1?) time. Repeated n — 1 times to form
a full tree, the total construction time becomes O(1®).

6.2.2.1 Improved Bottom-up Construction

A more sophisticated implementation can improve on the performance of the
brute-force approach substantially. Instead of constantly recomputing the preferred
minimum volume pairings for each node, the nodes can keep track of their preferred
pairing nodes and the new volume for the pair. Then, at any given time the node with
the smallest stored volume and its stored pairing node would be the best pair of nodes
to merge. These (node, pairing node, volume)-tuples can be effectively maintained in a
data structure such as a priority queue (heap or binary search tree) sorted on volume,
allowing fast access to the minimum volume entry.

Whenever a new pair is formed, most of the stored minimum volume pairings
remain the same. Only the stored pairings involving either one of the two newly
paired nodes are affected. More importantly, when they change, the stored volume
for the pair can only increase. This allows the pairing node to be recomputed lazily,
delaying the calculation to the time the pair is extracted from the priority queue.

In effect, the algorithm becomes an iteration wherein the currently best pair is
removed from the queue. If the node has already been paired, the pair is simply
discarded and the next best pair is extracted. If not, the best pairing node for the node
is calculated. If it matches the stored pairing node, this pair must be the minimum
volume pair and they can be merged. If it does not match, the pairing node must have
been paired in an earlier step, so the node and the new pairing node are reinserted
into the priority queue under a new volume priority value.

The missing piece is how to quickly calculate the pairing node that forms the
smallest volume when paired with a given query node. Interestingly, a dynamic
bounding volume tree (in particular, the top-down incremental insertion algorithm
presented later on) is a suitable data structure for holding the bottom-up fragments
of the tree as it is constructed! Given such a structure, the pairing node is located
by searching from the top of the tree, descending into all children the query volume
intersects. When the query volume is found in the hierarchy, the pairing node is
the other child of the parent volume (that is, the sibling node). The following code
fragment demonstates how the improved algorithm can be implemented.

Node *BottomUpBVTree(Object object[], int numObjects)

{

PriorityQueue<Pair> q;
InsertionBVTree t;
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// Bound all objects in BV, forming leaf nodes. Insert leaf nodes into a
// dynamically changable insertion-built BV tree
InitializeInsertionBVTree(t, object, numObjects);

// For all nodes, form pair of references to the node and the node it pairs
// best with (resulting in the smallest bounding volume). Add all pairs to
// the priority queue, sorted on increasing volume order
InitializePriorityQueue(q, object, numObjects);

while (SizeOf(q) > 1) {
// Fetch the smallest volume pair from the queue
Pair *p = Dequeue(q);

// Discard pair if the node has already been paired
if (HasAlreadyBeenPaired(p->node)) continue;

// Recompute the best pairing node for this node to see if
// the stored pair node is still valid
Node *bestpairnode = ComputeBestPairingNodeUsingTree(t, p->node);
if (p->pairnode == bestpairnode) {
// The store pair node is 0K, pair the two nodes together;
// link the nodes together under a new node
Node *n = new Node;
n->left = p->node;
n->right = p->pairnode;

// Add new node to BV tree; delete old nodes as not possible to pair with
Delete(t, p->node);

Delete(t, p->pairnode);

Insert(t, n);

// Compute a pairing node for the new node; insert it into queue
Node *newbestpairnode = ComputeBestPairingNodeUsingTree(t, n);
p = Pair(n, newbestpairnode);
} else {
// Best pair node changed since the pair was inserted;
// update the pair, reinsert into queue and try again
p = Pair(p->node, bestpairnode);
}
Enqueue(q, p, VolumeOfBVForPairedNodes(p)): // Queue, pair, priority
}

return Dequeue(q)->node;

A similar approach, specifically for building sphere trees, is presented in [Omo-
hundro89].
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6.2.2.2 Other Bottom-up Construction Strategies

When grouping two objects under a common node, the pair of objects resulting in
the smallest bounding volume quite likely corresponds to the pair of objects nearest
each other. As such, the merging criterion is often simplified to be the pairing of the
query node with its nearest neighbor.

Locating the point (or object) out of a set of points closest to a given query point
is known as the nearest neighbor problem. This problem has been well studied, and
many different approaches have been suggested. For a small number of objects, a
low-overhead brute-force solution is preferred. For larger numbers, solutions based
on bucketing schemes or k-d trees are typically the most practical. A k-d tree solution
is quite straightforward to implement (see Section 7.3.7 for details). The tree can be
built top down in, on average, O(nlogn) time, for example by splitting the current
set of objects in half at the object median.

A nearest neighbor query is limited to the relevant parts of the k-d tree by keeping
track of a bound for the nearest object found so far (see Section 7.3.7). Initially, this
value is set to the distance from the query object to the root node object. As closer
objects are found, the bound is decreased accordingly. Halfspaces farther away than
the bound distance are pruned away, as they cannot possibly contain a nearer object.
When neither halfspace can be discarded, the halfspace containing the query object is
usually descended into first, as this is more likely to lead to the bound being lowered
and the search sped up.

The k-nearest neighbor problem can be solved by the same basic method just by
adding a priority queue of k objects that keeps track of the k-nearest objects seen so
far, updating the bound distance from the last (farthest) element of the queue. On
average, both search and insertion into a k-d tree can be performed in O(log n) time.
k-d trees are discussed further in Chapters 7 and 13.

With the methods presented earlier, no guarantees were made as far as tree balance
was concerned, and it is in fact easy to find input configurations that cause degenerate
trees. Tree balance can be improved by forming not just one but several pairs of closest
points during each iteration. For instance, when all possible 1/2 pairs are formed at
each iteration the resulting tree becomes balanced. This would also reduce the number
of iterations needed to form the tree, from O(n) to O(log 1), improving construction
time. As forming all possible pairs would result in a worse tree over just forming one
pair, a good compromise is to form k pairs for some small value of k.

For forming larger clusters of objects, specific clustering algorithms can be used.
One such approach is to treat the objects as vertices of a complete graph and compute
a minimum spanning tree (MST) for the graph, with edge weights set to the distance
between the two connected objects or some similar clustering measure. The MST is
then broken into components by deleting edges that are”too long,”and the remaining
set of disjoint (but internally connected) components are the object clusters.

The MST can be computed using, for instance, Prim’s algorithm or Kruskal’s algo-
rithm. Both of these are greedy algorithms, meaning that they always select to perform
the locally best-looking alternative. Greedy algorithms often perform quite well on
most problems, but they are not generally optimal. However, the MST problem is
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optimally solved using either one of these two methods. Of the two, Prim’s algo-
rithm is probably both conceptually simpler and easier to implement. It starts with
any vertex from the initial set and grows a tree from it by finding the lowest cost edge
between an unconnected vertex and the tree. This edge and the vertex are then con-
nected to the tree and the process is repeated until all vertices have been connected.
For additional details on computing MSTs, including descriptions of both Prim’s and
Kruskal’s algorithms, see [Cormen90] and the delightful book of [Skiena98].

6.2.2.3 Bottom-up n-ary Clustering Trees

One interesting method utilizing an MST calculation as a key step is the bottom-up
clustering method presented in [Garcia99]. Given a set of n bounding spheres, this
method begins by constructing the adjacency graph between the spheres. The edges
of this graph contain grouping costs (described in material to follow) between pairs
of spheres. From the graph, an MST is calculated, from which in turn a hierarchy of
spheres is constructed.

As the number of edges in the complete adjacency graph is O(n?), which would
severely impact the running time of the MST algorithm, Garcia et al. limit the number
of connections each bounded object can have to some constant number k, reduc-
ing the complexity to O(n). By using an appropriate space-partitioning strategy, the
reduction could be limited to be approximately the k-nearest neighbors and still run
in O(n) time.

A clustering function is associated with the remaining edges. Given two spheres
Si and S; — with radii r; and r;, respectively, and with a distance d;; between their
centers — Garcia et al. first define the attraction between S; and S; as a;; = ri7; / d?]
This attraction measure becomes larger the larger and closer the two spheres are,
mimicking an intuitive perception of how clusters would form.

To avoid large clusters being created early in the build process, the final clustering
function is defined as rfj/ai j» where 7;; is the radius of the smallest bounding sphere
encompassing S; and S;. This helps in penalizing the grouping of two spheres of high
attraction when their resulting bounding sphere would be very large.

Once the adjacency graph with associated edge costs has been formed, the MST
of the graph is computed. The edges of the MST are then sorted in ascending order
of cost. From the sorted edges they construct what they call a binary clustering tree
(BCT) by considering an edge at a time, combining the two nodes associated with
the edge into a new cluster. If a node is already part of a cluster, the existing cluster
is grouped into the new cluster instead of the node. As clusters are formed, they are
bounded by the smallest bounding sphere containing the bounding spheres of the
nodes. They are also assigned the cost of the connecting edge as a grouping cost.
The construction of the BCT from the MST takes O(nlog n) time.

At this point it would be possible to stop and use the resulting binary tree. However,
as described, a final step of the algorithm converts the BCT into an n-ary tree by
merging connected clusters that have similar grouping costs under a single node.
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After the MST has been calculated and the edges sorted into a list in ascending order
of weight, the weights are grouped into a set of families.

The first two weights in this list form the first family Fy. Defining #; and s; as the
mean and standard deviation of the weights in family F;, a subsequent weight w on
the list is considered belonging to the family F; if w < u; 4+ 2s;. Whenever a weight
is added to a family, the associated mean and standard deviation of the family are
updated. When a weight is found not to belong to a family, it and the next weight
on the list form a new family. This process repeats until all weights on the list have
been assigned to a family. Finally, when all families have been determined the BCT
is transformed into an n-ary tree by merging all adjacent clusters that belong to the
same family.

Incremental (Insertion) Construction

The last type of construction approach is the incremental or insertion method. Here,
the tree is built by inserting one object at a time, starting from an empty tree. Objects
are inserted by finding the insertion location in the tree that causes the tree to grow
as little as possible according to a cost metric. Normally the cost associated with
inserting an object at a given position is taken to be the cost of its bounding volume
plus the increase in volume its insertion causes in all ancestor volumes above it in
the tree.

If the object being inserted is large compared to the existing nodes, it will tend
to end up near the top of the hierarchy. Smaller objects are more likely to lie within
existing bounding volumes and will instead end up near the bottom. When the new
object is far away from existing objects it will also end up near the top. Overall, the
resulting tree will therefore tend to reflect the actual clustering in the original set of
objects.

Because the structure of a tree is dependent on the objects inserted into it and
because insertion decisions are made based on the current structure, it follows that
the order in which objects are inserted is significant. Using the objects in the order
defined by the authoring tool can result in bad hierarchies that do not reflect the actual
object clustering. Sorting the data suffers from the same problem, only more so. To
avoid degenerate behavior, the best approach seems to be to randomly shuffle the
objects before insertion.

A simple insertion method implementation would be to perform a single root-leaf
traversal by consistently descending the child for which the insertion into would be
cheaper. Then the insertion node would be selected from the visited nodes along the
traced path such that the total tree volume would be minimized. As an O(log n) search
is performed for each object inserted, the total complexity becomes O(n log 11). A more
advanced implementation would examine the entire tree, proceeding in a best-first
manner by maintaining a search front using a priority queue, descending into the
currently best node at all times. Both methods are described in [Omohundro89] in
terms of creating sphere trees.
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Insertion strategies can be as fast as or even faster than top-down methods and
could produce better results. They are considered on-line methods in the sense that
not all objects need be present when the process starts. That they are on-line methods
also allows them to be used for updating an already existing tree, making them
useful for dynamic systems. It is therefore somewhat surprising that very few collision
detection systems report using incremental construction methods.

6.2.3.1 The Goldsmith-Salmon Incremental Construction Method

An interesting algorithm for constructing bounding volume hierarchies for use in
ray tracing is described in [Goldsmith87], with improvements found in [Haines88].
As before, objects are inserted one at a time, at the position deemed most optimal.
A single path from root to leaf is traversed by descending into the child with the
smallest increase in bounding volume surface area, were the object to be inserted as
a child of it.

The reason surface area is used follows from a result of projective geometry, stating
that the average projected area of a convex 3D volume is one-fourth its surface area.
Furthermore, the conditional probability that a random ray hits a confined bound-
ing volume B if it hits a parent bounding volume A can therefore be shown to be
proportional to the ratio of their surface areas. The root volume can conveniently be
used as volume A throughout all computations, allowing the division to be avoided
by directly comparing the conditional probabilities instead.

As surface areas are only used in ratios, they only have to be given within a constant
factor, as the constant factor cancels out. For a bounding box of dimensions x, y, and
z, the area can be computed as x(y + z) + yz, and for a sphere of radius r the area can
be computed as r2.

Now when a ray hits the root volume at least an additional k intersection tests
must be performed, where k is the number of children of the root. This property also
holds for any node, not just the root. Accounting for the conditional probability that
anode is hit only if its parent is hit, the total average cost for hitting a node becomes k
times the node’s surface area divided by the surface area of the root node. Specifically,
the cost of the root node is the number of children it has, and the cost of a leaf node
is zero (as its cost was included in the cost of the parent). The total cost for a tree can
now be calculated in O(n) time as the sum of the cost of all nodes.

The tree cost can also be computed incrementally as the tree is built. This is imple-
mented by passing on an incremental “inheritance cost” to the child nodes as the
hierarchy is traversed during insertion. This cost corresponds to the increase in vol-
ume for ancestor volumes, due to the insertion of the object into the tree. To this is
then added the cost of inserting the object at the current position according to the
three different choices for insertion:

1. The object and a leaf node are paired under a new node. The incremental change to
the inheritance cost for this case is d = 2Area(new node). This case also applies
when pairing the object and the old root under a new root.
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2. The object is added as a new child to an existing node. The cost of the exist-
ing old node is ¢ = kArea(old node). The new node will have a cost of
¢ = (k + 1)Area(new node). The incremental cost is therefore d = ¢’ — ¢ =
k (Area(new node) — Area(old node)) + Area(new node).

3. The object is added lower in the tree by means of recursing into a child volume. In
this case, the number of children remains the same for the currently exam-
ined node. However, the node may change in size as a result of inserting the
object lower in the tree. The difference in cost becomes d = k (Area(new node) —
Area(old node)).

After examining the increase in cost for all available insertion alternatives, the least
expensive option is chosen at each step. It may happen that two or more subtrees
have the same increase in cost. Typically, this occurs toward the end of the con-
struction when objects lie fully within already existing bounding volumes. In this
case, Goldsmith and Salmon suggest breaking ties by inserting the object into the
bounding volume whose center it is closest to, or to use random selection.

Haines points out that a better selection rule is to apply insertion methods 1 and
2 to all available insertion alternatives and pick the one giving the best result. As a
convincing example he considers a node with two children, one large (50% of the
parent) and one quite small (1% of the parent). A new small object is added that
would cause no increase to the larger child but triple the size of the smaller child
to 3%. According to the original method, the new object would be inserted below
the larger child. However, when the root node is intersected the larger child is hit
50% of the time, and therefore the new object must also be intersected half the time.
In comparison, if the new object had been inserted below the smaller child the new
object would only be intersection tested 3% of the time. By applying both methods
1 and 2 and picking the node corresponding to the smaller value of the different
increases in cost, the better insertion position is selected.

Hierarchy Traversal

To determine the overlap status of two bounding volume hierarchies, some rule must
be established for how to descend the trees when their top-level volumes overlap. Is
the one hierarchy fully descended before the other one is? Are they both descended?
This descent rule is at the heart of the overlap code, and several alternatives are
explored ahead.

The two most fundamental tree-traversing methods are breadth-first search and
depth-first search (Figure 6.4a and b). Breadth-first search (BFS) explores nodes at
a given depth before proceeding deeper into the tree, whereas depth-first search
(DFS) proceeds into the tree, searching deeper rather than wider, backtracking up
the tree when it reaches the leaves. Pure breadth-first and depth-first traversals are
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Figure 6.4 (a) Breadth-first search, (b) depth-first search, and (c) one possible best-first search
ordering.

considered uninformed or blind search methods. Uninformed search methods do not
examine and make traversal decisions based on the data contained in the traversed
structure; they only look at the structure itself to determine what nodes to visit next.

In contrast to the uninformed methods is the group of informed search methods.
These attempt to utilize known information about the domain being searched through
heuristic rules. One such method is best-first search (Figure 6.4c). Best-first search is
a greedy algorithm that always moves to the node that scores best on some search
criterion (for example, distance to a set goal). It determines the best-scoring move
by maintaining a priority queue of nodes, expanding the currently best node (first on
the queue) and adding its children to the queue, repeating until the search fails (by
running out of nodes) or the goal is found.

DEFS seems to be the most popular choice for collision detection systems. DFS is
often enhanced by a simple heuristic to guide the search along, improving on the
basic blind DFS approach without the overhead of, say, a full best-first search.

Compared to DFS, BFS suffers from the fact that stacking all nodes during traversal
requires a substantial amount of memory. For close-proximity queries, two binary
trees with n leaves each can require stack space for as many as n> node-node pairs at
one time. BFS is primarily used in interruptible collision detection systems for which
it is important that if (or when) a query is interrupted a roughly equal amount of time
has been spent in all parts of the hierarchy.

Similarly, BFS must be well tuned to give performance improvements over a
heuristic-guided DFS-based traversal method. Any extra time spent on performing
clever node reordering and managing a priority queue is time the depth-first method
has already had in descending into child nodes.

Descent Rules

Returning to the issue of how the hierarchies are descended, given two hierarchies A
and B there are several possible traversal alternatives. For instance, one can be fully
traversed before the other, or they can be descended simultaneously. As an illustrative
example (due to [Chung98]), consider a bird (hierarchy A) weaving through the mile-
long pipes of an oil refinery (hierarchy B). Several possible descent rules present
themselves.
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® Descend A before B is descended. Fully descending into the leaves of A before
starting to descend into B can be quite bad. In terms of the example, if the bird
is somewhere in the middle of the oil refinery the leaves of the bird hierarchy will
all overlap the top volume of the refinery. This descent rule is the worst possible
choice, as hierarchy B will be recursed over as many times as there are leaves in
hierarchy A. The hierarchy for A is clearly counterproductive here, resulting in
more work than not having a hierarchy at all!

® Descend B before A is descended. Descending the larger refinery hierarchy before
descending the hierarchy of the bird is slightly better. However, the refinery
model could still contain many parts (such as nuts and bolts) quite a bit smaller
than the bird, resulting in a similar situation as before, only reversed. Many
leaves of B still end up being tested against the whole of A.

® Descend the larger volume. By dynamically determining which hierarchy is cur-
rently the larger one and descending into it, the problems with the two previous
methods are circumvented. Initially, the refinery hierarchy is descended into, but
when the small nuts and bolts parts are encountered the traversal switches over
to descend the bird hierarchy, then back again when the bird parts become
smaller than the nuts and bolts. This is one of the most effective descent rules in
that it provides the largest reduction of total volume for subsequent bounding
volume tests. As before, useful metrics for the size comparison include volume,
surface area, and the maximum dimension length.

Descend A and B simultaneously. Instead of just descending one hierarchy, both
hierarchies can be descended into at the same time. Simultaneous descent has
the benefit of more quickly traversing to the leaves, making fewer internal node-
node (as well as node-leaf) overlap tests and involving no evaluation overhead
for the descent criterion. However, in the bird-refinery example this rule will
not prune the search space as effectively as the previous rule.

Descend A and B alternatingly. The hierarchies can also be descended into in a
lock-step fashion, in which first A is descended into, then B, then A again, and so
on. This descent rule is very simple to implement, and just as with simultaneous
traversal no descent criterion need be evaluated.

Descend based on overlap. Another option is to prioritize descent to those parts
in which the hierarchies overlap more before descending parts in which there is
less overlap. The idea is that the more two bounding volumes overlap the more
likely their objects are colliding.

Combinations of the previous or other complex rules based on traversal history.

Which type of traversal is most effective depends entirely on the structure of the
data, as indicated by the refinery example. The following sections explore framework
implementations for the previous rules based on depth-first traversal. For very large
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data sets, hybrid approaches such as a grid of trees is likely to be more effective than
a single tree hierarchy. Hybrid approaches are discussed in Section 7.3.8.

Generic Informed Depth-first Traversal

Many descent rules can be handled by a simple procedure that recurses over the two
hierarchies. First, if their top bounding volumes do not overlap the procedure just
returns. If not, then if both supplied nodes are leaf nodes the low-level routine for
colliding the contained geometry is called. Otherwise, the descent rule is evaluated
and the code is recursively called for the child nodes of the hierarchy selected by the
rule to descend into. Directly translated into code, this becomes:*

// Generic recursive BVH traversal code.
// Assumes that leaves too have BVs
void BVHCollision(CollisionResult *r, BVTree a, BVTree b)
{
if (!BVOverlap(a, b)) return;
if (IsLeaf(a) &% IsLeaf(b)) {
// At leaf nodes. Perform collision tests on leaf node contents
CollidePrimitives(r, a, b);
} else {
if (DescendA(a, b)) {
BVHCollision(a->left, b);
BVHCollision(a->right, b);
} else {
BVHCollision(a, b->left);
BVHCollision(a, b->right);

In the code, the function BVOverlap() determines the overlap between two bounding
volumes. IsLeaf() returns true if its argument is a leaf node and not an internal
node. CollidePrimitives() collides all contained primitives against one another,
accumulating any reported collisions to the supplied Co11isionResult structure.
DescendA() implements the descent rule, and returns true if object hierarchy A
should be descended or false for object hierarchy B. It is important that this routine
correctly deal with cases in which the leaves of A and B have been reached, so that
an attempt to traverse into a leaf is not made. The descent rules of “descend A,”

1. The code format used here is inspired by [Gottschalk00].
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“descend B,” and “descend larger” can easily be implemented in this framework as
follows.

// 'Descend A' descent rule
bool DescendA(BVTree a, BVTree b)
{

return !IsLeaf(a);

}

// 'Descend B' descent rule
bool DescendA(BVTree a, BVTree b)
{
return IsLeaf(b);
}

// 'Descend larger' descent rule
bool DescendA(BVTree a, BVTree b)
{
return IsLeaf(b) || (!IsLeaf(a) && (Size0OfBV(a) >= Size0fBV(b)));
}

Although the recursive version of the traversal code is quite easy to read and under-
stand, it is not the most effective form of the code. An iterative version with explicit
stacking of variables avoids the overhead of the recursive function calls. More
importantly, it allows the code to exit early if just a single contact point is sought.

The iterative version follows. Note that to traverse the tree in the same order
as the recursive version of the code, pushes to the stack must be given in reverse
order.

// Non-recursive version
void BVHCollision(CollisionResult *r, BVTree a, BVTree b)
{
Stack s = NULL;
Push(s, a, b);
while (!IsEmpty(s)) {
Pop(s, a, b);

if (!BVOverlap(a, b)) continue;

if (IsLeaf(a) && IsLeaf(b)) {
// At leaf nodes. Perform collision tests on leaf node contents
CollidePrimitives(r, a, b);
// Could have an exit rule here (eg. exit on first hit)
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} else {
if (DescendA(a, b)) {
Push(s, a->right, b);
Push(s, a->left, b);
} else {
Push(s, a, b->right);
Push(s, a, b->left);

Here, the functions Push(), Pop(), and IsEmpty() implement an abstract stack data
type. Studying the flow of the nonrecursive version, it soon becomes clear that unnec-
essary work is performed in pushing a new node pair onto the stack, only for it to be
immediately popped off during the next iteration of the main loop. The redundant
work can be avoided by slightly rearranging the code to allow the last stacked values
to be assigned directly to the variables instead.

// Stack-use optimized, non-recursive version
void BVHCollision(CollisionResult *r, BVTree a, BVTree b)
{
Stack s = NULL;
while (1) {
if (BVOverlap(a, b)) {
if (IsLeaf(a) &% IsLeaf(b)) {
// At leaf nodes. Perform collision tests on leaf node contents
CollidePrimitives(r, a, b);
// Could have an exit rule here (eg. exit on first hit)
} else {
if (DescendA(a, b)) {
Push(s, a->right, b);
a = a->left;
continue;
} else {
Push(s, a, b->right);
b = b->left;
continue;
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if (IsEmpty(s)) break;
Pop(s, a, b);

All recursive traversal functions can be transformed into iterative versions in the
manner described here.

6.3.3 Simultaneous Depth-first Traversal

Simultaneous traversal cannot be directly handled by the previous framework.
Because both bounding volumes are descended into at the same time, instead of
two recursive calls there are now four for the node-node case. Code for simultaneous
traversal follows.

// Recursive, simultaneous traversal
void BVHCollision(CollisionResult *r, BVTree a, BVTree b)
{

if (!BVOverlap(a, b)) return;
if (IsLeaf(a)) {
if (IsLeaf(b)) {
// At leaf nodes. Perform collision tests on leaf node contents
CollidePrimitives(r, a, b);
// Could have an exit rule here (eg. exit on first hit)
} else {
BVHCollision(a, b->left);
BVHCollision(a, b->right);
}
} else {
if (IsLeaf(b)) {
BVHCollision(a->left, b);
BVHCollision(a->right, b);
} else {
BVHCollision(a->left, b->left);
BVHCollision(a->left, b->right);
BVHCollision(a->right, b->left);
BVHCollision(a->right, b->right);
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It is interesting to compare the number of operations involved in the various types
of traversals. As it would take two additional recursive calls for the previous meth-
ods to examine the same four node-node pairs the simultaneous traversal descends
into, simultaneous traversal can be expected to require about two-thirds the work of
the directed methods (which is strictly true only in the case in which all nodes are
visited).

Specifically, consider the worst-case scenario in which two complete binary trees
of n levels each are in a relative position such that all bounding volume leaves are
overlapping but there is no collision. For this case it can be shown that a simultaneous
traversal will perform (22¢*~1 — 1)/3 internal node-node tests and 22"~ leaf-node,
node-leaf, and leaf-leaf tests, totaling (2" — 1)/3 tests.

In comparison, the leaf-directed “descend A” and “descend B” rules perform
2"=1 _ 1 internal node-node tests and (2" — 1)2"~! leaf-node, node-leaf, and leaf-leaf
tests for a total of 22"~1 — 1 tests. The limit as n gets large between these two totals
verifies the two-thirds ratio informally stated previously.

It is more difficult to provide any specific numbers for the informed traversal
method, as the traversal pattern is completely dependent on the descent rule used.
One thing that can be said for sure is that the total number of tests performed will be
the same as for the leaf-directed traversals, as the code has the same structure and all
possible traversal paths are formed. It is difficult to say whether using a simultaneous
traversal saves anything over using a directed method such as “descend larger,”
which performs a more effective search by guiding it to where it is best needed.

Optimized Leaf-direct Depth-first Traversal

A drawback with simultaneous and heuristically guided methods is that collision tests
involving the same leaves are likely to be spread out over time. If these tests involve
some sort of transformation of the leaf data or the leaf bounding volumes (as is likely),
these transformations have to be repeated each time the leaf is involved in a query.
If these transformations are expensive, a caching mechanism can be implemented to
hold the data after it has been initially transformed.

A compromise alternative to implementing a sophisticated caching scheme is the
“descend A”rule. By traversing down to the leaves of hierarchy A before hierarchy B
is descended into, it becomes very easy to transform the leaves of A just once. This
compromise does not serve as a full replacement for a caching mechanism, as only
the A hierarchy will effectively be cached this way. However, as it is so simple to
implement it can serve as an indication of how much of an improvement a caching
scheme would actually bring. A code fragment follows.

// This routine recurses over the first hierarchy, into its leaves.
// The leaves are transformed once, and then passed off along with
// second hierarchy to a support routine
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void BVHCollision(CollisionResult *r, BVTree a, BVTree b)

{
if (!BVOverlap(a, b)) return;
if (!IsLeaf(a)) {
BVHCollision(a->left, b);
BVHCollision(a->right, b);
} else {
a2 = TransformLeafContentsOnce(a);
BVHCollision2(r, a2, b);
}
}

// The support routine takes what is known to be a leaf and a full
// hierarchy, recursing over the hierarchy, performing the low-level
// leaf-leaf collision tests once the hierarchy leaves are reached
void BVHCollision2(CollisionResult *r, BVTree a, BVTree b)
{
if (!BVOverlap(a, b)) return;
if (!IsLeaf(b)) {
BVHCollision2(a, b->left);
BVHCollision2(a, b->right);
} else {
// At leaf nodes. Perform collision tests on leaf node contents
CollidePrimitives(r, a, b);

6.4 Sample Bounding Volume Hierarchies

6.4.1

The hierarchy construction methods described earlier in this chapter are all generic
in the sense that they apply to any type of bounding volume. To further illustrate how
they can be used, this section elaborates on a few specific methods suggested in the
literature and used in actual systems. These should not be interpreted as the final
word on any one technique, merely as one way of implementing something.

OBB Trees

The OBB-tree hierarchy construction method presented in [Gottschalk96] proceeds
in a top-down fashion. Initially a tight-fitting OBB is obtained for the original set of
primitives. The OBB is fitted by aligning the box axes with the eigenvectors computed
from the continuous formulation of covariance computed across the whole faces of
the primitives, as described in Section 4.4.3. Given this box, the set is partitioned by



262 Chapter 6 Bounding Volume Hierarchies

6.4.2

splitting along the longest axis of the OBB. Thanks to the covariance-fitted OBB, this
axis corresponds to the axis of greatest spread. The object mean (computed from the
projection of the primitive vertices onto the axis) is used as the splitting point.

Primitives straddling the splitting plane are assigned to the corresponding subset
of the halfspace their centroids are in. If the longest axis fails to create two nonempty
subsets, they instead try the other axes in decreasing order of length. If all axes fail,
the set is considered indivisible. However, in the publicly available implementation
(called RAPID) if the initial partitioning fails instead of trying alternative axes the set
is simply partitioned into two equal parts based on the object median.

A strength of OBB trees is that they perform extremely well in situations of parallel
close proximity between two surfaces; that is, when all points of the first surface are
close to some point on the other surface. It can also be shown that hierarchies of OBBs
converge quadratically to match the bounded geometry, whereas AABBs and spheres
converge only linearly. In other words, if O(m) OBBs are required to approximate
some geometry within a given tolerance O(m*) AABBs or spheres would be required
for the same task. Both Ny and Np in the cost function tend to be smaller for OBB
trees compared to AABB and sphere trees. However, the cost for the overlap test
between two OBBs, Cy, is still about a magnitude slower than the overlap tests for
AABBs and spheres.

AABB Trees and BoxTrees

In [Bergen97] the author describes constructing binary AABB trees using top-down
recursive subdivision. At each step the set of primitives is tightly bounded with an
AABB. The set is then partitioned into two parts by splitting the AABB orthogonally
along its longest side. Primitives are assigned to the two subsets based on which side
of the splitting plane the midpoint of the projection ends up on. This assignment
method minimizes the overlap between the AABBs of the subsets, as no primitive
can now extend beyond the splitting plane by more than half its length.

The recursive construction procedure is then repeated until the subset contains one
primitive. The splitting point is chosen as the spatial median, splitting the AABB in
half. van den Bergen reports better performance with this method than with splitting
at the object median. In the rare case in which all primitives end up in one of the
subsets the set is instead split based on the object median.

The informed traversal method is used along with the “descend larger” rule to
traverse the trees. Instead of realigning the AABB trees as their objects rotate, the OBB
test is used to compare the — after transformation — relatively oriented AABBs. As
the same relative orientation is shared between all transformed AABB pairs, the trans-
formation matrix needs to be computed just once per query, simplifying the OBB test.

van den Bergen also reports obtaining a speed increase from performing only the
first 6 of the 15 axis tests for the rotated AABB tests. This is a trade-off that results
in an overall cheaper test but also false hits that give rise to more (costly) primitive
tests. The same optimization applied to OBB trees resulted in no change.
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The BoxTree presented in [Zachmann95] is also a recursively constructed hierarchy
of AABBs defined in the object’s coordinate frame. Here, however, as a bounding box
is cut into two (not necessarily equal size) parts by a splitting plane the resultant sub-
boxes directly form the AABBs. Primitives fully inside either sub-box are assigned to
the corresponding set. Any primitives straddling the splitting plane are sent to both
boxes, resulting in a duplication of primitives. Overall, the construction is very similar
to that of a k-d tree.

As primitives straddling the splitting plane are duplicated, the choice of splitting
plane is made in an attempt to balance the tree and to minimize the number of
straddling primitives. Before attempting to find this splitting plane, Zachmann first
checks to see if there is a splitting plane that trims away a“large” (as large as possible)
part of empty space from the AABB, making it fit the contained geometry better.
Large is here defined by the ratio of the empty box to its parent being greater than
a preset constant. All three AABB axes are tested during this operation and the one
with the best result is used. In addition to stopping the recursion when a certain
depth has been reached or the set of primitives is less than some particular limit,
it is also stopped if one of the sub-boxes contains almost as many primitives as its
parent box.

As the BoxTrees are constructed in model space, during testing they have to be
transformed as the objects are transformed. However, as all AABBs share the same
orientation as the top node, most calculations can be reused during the hierarchy
traversal. To test the rotated AABBs (now OBBs), the separating-axis test can be used,
now greatly simplified by the fact that the 15 axes remain the same throughout the test.
Zachmann also describes an alternative clipping-based overlap test. For traversing
the trees, Zachmann uses the simultaneous traversal method.

In a later presentation, Zachmann describes an alternative implementation in
which instead of directly using the splitting plane to determine the boundary of the
sub-boxes he determines the two planes that bound the straddling primitives on
either side along the splitting axis. The“left”sub-box then becomes the left part of the
parent AABB, split at the position of the rightmost of the two planes, and vice versa
for the “right” sub-box. In other words, the child AABBs are identical to the parent
AABB except for one side. In this representation both children are represented using
just two (float) values, given the parent volume [Zachmann00].

Both van den Bergen’s and Zachmann’s methods work on arbitrary polyhedra or
polygon soups. As such, they will only reliably detect surface collisions. They do not
detect when one object is fully inside the other.

Sphere Tree Through Octree Subdivision

Thanks to its simplicity, a popular approach to building a sphere tree is to construct
it from an octree subdivision of the object volume [Tzafestas96]. First, the object
is enclosed in the smallest encompassing bounding cube. This cube is recursively
subdivided into eight equal-size parts, or octants. Any octant that contains part of
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the object is recursively divided until some preset tree depth is reached. During the
construction, each occupied octree node is circumscribed with a sphere, forming the
actual sphere tree. The octant center point is used as the sphere center. For a regular
cube with side s, the sphere radius r is given by r = s¢/3 /2. If the initial bounding
volume is a general AABB instead of a cube, the radius for an octant with sides x, y,
and z becomes r = \/x2 + y2 + 22 /2.

To eliminate redundant spheres that do not contribute to the actual collision detec-
tion it is possible to stop recursing into any octree nodes that are occluded on all
sides [O’Sullivan99]. This may cause collisions with interior parts to go undetected,
however.

The sphere tree resulting from this approach has a fairly loose fit. Hubbard sug-
gests using simulated annealing to tighten the spheres around the object, while still
maintaining conservative coverage of the object [Hubbard95]. This involves mak-
ing random changes to the spheres, accepting those producing a tighter sphere,
sometimes accepting those that are worse to fight getting stuck in local minima.
Unfortunately, as Hubbard points out, measuring the tightness of spheres around
objects is difficult. The simulated annealing step is also quite slow and can produce
very irregular distributions of spheres. The practical value of this technique is therefore
somewhat limited.

Sphere Tree from Sphere-covered Surfaces

Using the basic top-down construction method, [Quinlan94] computes sphere trees
from an input set of small spheres covering all surfaces of the original object. The
surface covering is performed in a scan conversion-like process whereby each polygon
in the input set is overlaid with a regular grid of spheres, with the sphere centers in
the plane of the polygons. Each of these spheres, forming the leaf nodes of the final
tree, is labeled with the polygon it was created to cover.

The hierarchy is built by dividing the full set of leaf spheres into two roughly
equal-size parts. Two subtrees are constructed by recursively calling the algorithm
with each of the subsets. These subtrees are then combined into a tree by adding
them as children to a new parent node. At each step, the set of spheres is divided into
two subsets by enclosing the sphere centers in an AABB. The AABB is split in half
along its longest side and spheres are assigned to the subsets based on which AABB
half their center is in.

Note that this approach assumes a surface representation based on (convex)
polygons. It will not detect collisions with the interior of an object.

Generate-and-Prune Sphere Covering

An interesting method that does not construct a hierarchy as such but simply com-
putes a collection of spheres, the union of which completely encloses a given object,
was suggested by Greenspan and Burtnyk [Greenspan96]. Their algorithm consists
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of two steps. First, a generation step is performed in which the object is fully covered
by a large number of spheres. Then, in a second pruning step any and all redundant
spheres are removed. Redundant here means that if the spheres were removed the
object would still be fully covered by the remaining spheres.

The generation part is controlled by two parameters. The first parameter, overshoot,
controls how far beyond the surface of the object a sphere is allowed to extend.
The second parameter, spacing, specifies the minimum allowable distance between
any two sphere centers. The algorithm proceeds by creating a tight uniform 3D grid
around the object. The grid cell side is set to the spacing parameter. All cells are
labeled interior, exterior, or surface, depending on whether they are fully inside the
object, fully outside the object, or neither. Each cell is also assigned a value, initially
zero. A sphere is then centered at every grid cell not marked exterior. Sphere radii
are set so that spheres do not extend outside object boundaries by more than the
overshoot parameter.

In the pruning step, spheres can be redundant either by being fully enclosed within
a single (larger) sphere or by being enclosed by the union of a set of two or more
spheres. In the first case, each sphere is simply compared to all other spheres to see if
it is redundant, in which case it is removed. This process requires O(12%) sphere-sphere
comparisons. To handle the second case, the remaining set of spheres is iterated over
and for each cell fully contained within the sphere its associated value is incremented
by one. After this is done, each grid cell labeled surface having a value of 1 must be
contained in a single sphere. For the object to be fully enclosed, all such spheres
must be included in the final set. These spheres are identified, removed, and added to
the final set. The cell is labeled processed, indicating that it should not be considered
henceforth.

When all such spheres have been added to the final set, and no more cells with a
value of 1 exist, all remaining surface cells must be covered by two or more spheres.
Conversely, each remaining sphere must be fully enclosed by two or more spheres.
Thus, any sphere can be deleted from the candidate set while still maintaining full
object coverage. As the sphere s deleted, the grid cells contained by it are decremented
by one. Whenever this results in a grid cell with value 1, the corresponding sphere is
added to the final set in the same way as before. Processing stops when no candidate
spheres are remaining or, if desired, simply when all surface cells have been marked
processed. Even though their algorithm does not proceed to build a hierarchy from
the final sphere set, any of the previously described hierarchy construction methods
could now be applied with the spheres as the input set to produce a sphere tree, if
needed.

k-DOP Trees

In [Klosowski98] k-DOP trees were used for detection collisions between a flying
object and a large static environment. Using top-down construction, they bound
the input set of triangles in a k-DOP and then partition the input set in two parts,
recursing over the parts. The recursion is stopped when the nodes contain a preset
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threshold t of triangles. For the static hierarchy they used t = 1, and for the flying
object t = 40. Query traversal was such that the environment was fully descended
into before the object was descended.

Four different partitioning strategies were compared for the construction of the
k-DOP trees. The choice of axis was limited to one of the x, y, or z coordinate axes
based on the criteria of minimizing the sum of volumes, minimizing the maximum
volume, using the axis with the largest variance, and splitting along the longest axis of
the parent volume. The mean and the median of the axis-projected triangle centroid
coordinates were both used to determine the splitting point.

Their results showed that splitting at the mean always produced a hierarchy with
a smaller total volume than splitting at the median. The “minimize sum” strategy
consistently produced the smallest total volume hierarchy, with“minimize maximum,”
“largest variance,” and “longest axis” producing results roughly 7%, 10%, and 33%
worse, respectively. They also examined using more than the three coordinate axes,
specifically all k/2 defining directions for the k-DOPs, reporting it not really providing
an improvement. Preprocessing time increased by about 30% on average, however.

To tumble the k-DOPs during updating, they used the more expensive hill-climbing
method for the root node, as it and nearby nodes are most frequently visited. The
approximate DOP-of-DOP method was used for all other nodes because of the
(much) lower overhead.

Also working with k-DOPs, [Koneény98] instead uses the axis of largest variance
among the set of k/2 fixed-direction axes for the k-DOPs (measured over the projected
centroids). He then partitions the primitives in two sets of equal size.

[Klosowski98] compared 6-, 14-, 18-, and 26-DOPs and found 18-DOPs perform-
ing the best. As a contrast, [Zachmann98] compared 6-, 8-, and 14-DOPs, finding
6-DOPs (that is, AABBs) performing better than the other two. In a later work, using
the nonstandard k-DOPs described in Chapter 4, Zachmann reports examining the
full range k = [6...32]. Although no k was optimal in all tests, k = 24 performed
best overall [Zachmann00]. As these tests were performed under varying conditions,
it is difficult to compare the results directly.

Using doubles (8 bytes) for vertex components and 4-byte integers for triangle
vector indices, Klosowski et al. report they require (16k 4 108)n bytes to store all
triangles of the environment, including the hierarchy itself. For k = 6,14, 18, and
26 this becomes 204, 332, 396, and 524 bytes per input triangle, respectively. This
should be compared to the 412 bytes per input triangle claimed for the OBB-based
collision detection package RAPID (also using doubles). What is worse, for a data set
of 169,944 triangles they report a 26-DOP hierarchy being an obscene 69 MB in size!

Merging Bounding Volumes

When hierarchies are created top-down or incrementally, bounding volumes
are typically created from scratch using the dimensions of the contained data.
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During bottom-up construction an alternative to the rather costly operation of fitting
the bounding volume directly to the data is to merge the child volumes themselves
into a new bounding volume. This section presents such merging operations for
AABBs, spheres, OBBs, and k-DOPs.

Merging Two AABBs

Computing the enclosing AABB for two given AABBs is trivial: the sides of the encom-
passing AABB are selected to coincide with the minimum and maximum sides of the
two given volumes. For instance, for the min-max AABB representation, the enclosing
AABB is computed by the following code.

// Computes the AABB a of AABBs a0 and al
void AABBEnclosingAABBs (AABB &a, AABB a0, AABB al)

{
for (int i = 0; i < 2; i++) {
a.min[i] = Min(a0.min[i], al.min[i]);
a.max[i] = Max(a0.max[i], al.max[i]);
}
}

Other AABB representations result in equally trivial implementations.

Merging Two Spheres

To compute the minimum sphere bounding two other spheres, the calculation is
best split into two cases: where either sphere is fully enclosed by the other and
where they are either partially overlapping or disjoint. To distinguish between the
two cases, let the two spheres be Sy and Sy, with centers Cy and C; and radii rp and
r1, respectively (Figure 6.5). Let d = ||C; — Gyl be the distance between Cy and C;.
Then, if [y — 79| > d, one sphere s fully inside the other. A simple geometric argument
shows why this is so. Start with both spheres centered in the same location. Now
d = 0, and the distance between the sphere surfaces is |r; — ro|. However, clearly this
is also the maximum distance by which the sphere centers can be separated (and 4
increased) before the inner sphere penetrates out through the surface of the outer
sphere, and the result follows.

In the first case, in which one sphere is inside the other, no new sphere has to
be calculated and the larger sphere can simply be returned. This avoids an expensive
square root operation. For the second case, in which the spheres are either partially
overlapping or are disjoint, the radius r of the new sphere is half the maximum
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2r=d +ry+1y

Figure 6.5 Merging spheres Sg and Sj.

distance between the sphere surfaces; thus:
r= (d+1’o+V1)/2-

The sphere center C is computed by adjusting Cy by rp units away from C; and then
back toward C; by r units:

C=Co—ro(C1—Co)/ IC1 = Coll +7(C1 — Cp) / IC1 = Coll
=Co+ (r —r)(C1 — Co) / IC1 = Coll -

The code for this follows.

// Computes the bounding sphere s of spheres s0 and sl

void SphereEnclosingSpheres (Sphere &s, Sphere s0, Sphere sl)

{
// Compute the squared distance between the sphere centers
Vector d = sl.c - sO.c;
float dist2 = Dot(d, d);

if (Sqr(sl.r - s0.r) >= dist2) {
// The sphere with the larger radius encloses the other;
// just set s to be the larger of the two spheres
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if (sl.r >= s0.r)
s = sl;
else
s = s0;
} else {
// Spheres partially overlapping or disjoint
float dist = Sqrt(dist2);
s.r = (dist + s0.r + sl.r) * 0.5f;
s.c = s0.c;
if (dist > EPSILON)
s.c += ((s.r - s0.r) / dist) * d;

Merging Two OBBs

Computing an OBB from two OBBs is a bit more complicated. A straightforward
solution is to use the techniques presented in Chapter 4. For instance, the 16 vertices
of the two boxes can be passed directly to the ComputeOBB () function (which uses the
eigenvectors of the covariance matrix for the points as the box axes). This could be
further combined with the min-principal-component technique described in Section
4.4.4. The latter is used for the bottom-up construction in the BoxTree algorithm
described in [Barequet96].

A drawback with these techniques is the cost of the iterative algorithms used to
compute the eigenvectors, making them less suitable for real-time use. An alternative
noniterative solution is presented in [Eberly00]. He suggests combining the rotations
of the two OBBs by converting them into quaternions, interpolating halfway between
them and then converting back to a rotation matrix, now determining the axes of the
OBB. The extents are then established through projection onto these axes. Note that
in the pseudocode presented in [Eberly00] the OBB center is determined before the
OBB extents are calculated. In general, this will not fit the OBB as tightly as possible.
To make the OBB tight with respect to the two OBBs, the center point should be
calculated after the extents have been established.

Merging Two k-DOPs

Merging two k-DOPs is just as easy as merging two AABBs. For each k-DOP axis, the
bounding k-DOP is defined by the smaller of the min values and the larger of the max
values for the two DOPs to be bounded. Per definition, no planes can bound tighter
than these do. The implementation is strikingly similar to the AABB merging code.
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// Computes the KDOP d of KDOPs d0 and dl
void KDOPEnclosingKDOPs (KDOP &d, KDOP d0, KDOP d1, int k)

{
for (int i = 0; i <k / 2; i++) {
d.min[i] = Min(d0.min[i], dl.min[i]);
d.max[i] = Max(d0.max[i], dl.max[i]);
}
}

6.6 Efficient Tree Representation and Traversal

6.6.1

So far, hierarchy construction and traversal has been described in a fairly abstract
manner. However, for an industrial-strength implementation it is important to opti-
mize both the traversal code and the tree representation itself. As memory accesses
and branch prediction misses tend to cause large penalties in modern architectures,
two obvious optimizations are to minimize the size of the data structures involved
and to arrange the data in a more cache-friendly way so that relevant information is
encountered as soon as possible.

This section describes a few data representations and traversal optimizations that
help speed up collision queries. However, always remember that due to difficult-to-
predict cache behaviors some of these more advanced techniques might not always
provide the expected speedups. If this is the case, consider that keeping the traversal
code as short and straightforward as possible might in fact be a simple way of making
it faster. Efficient tree representation is revisited in Chapter 13, in the context of
memory optimization.

Array Representation

Assume a complete binary tree of n nodes is given as a collision hierarchy. This tree
can be stored into an array of n elements by mapping its nodes in a breadth-first
level-by-level manner.

// First level

array[0] = *(root);

// Second level

array[1] = *(root->left);
array[2] = *(root->right);

// Third level

array[3] = *(root->left->left);
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Figure 6.6 A binary tree (top) stored using a pointerless array representation (bottom).
Children of node at array position i can be found at positions 2/ + 1 and 2/ + 2. Note
wasted memory (shown in gray).

Given this setup, it is easy to verify that being at the node stored at array[i]
the corresponding left child to the node will be found at array[2*i+1] and its right
child at array[2*i+2]. Consequently, instead of representing the tree using nodes
containing left and right pointers to the node’s children it is possible to completely
remove all pointers and store the pointerless nodes in an array in the manner just
described (Figure 6.6). Knowing this child-indexing rule, the actual remapping can
effectively be written as a simple recursive routine.

// Given a tree t, outputs its nodes in breadth-first traversal order
// into the node array n. Call with i = 0.
void BreadthFirstOrderOutput(Tree *t, Tree n[], int i)

{
// Copy over contents from tree node to breadth-first tree
n[i].nodeData = t->nodeData;
// If tree has a left node, copy its subtree recursively
if (t->left)
BreadthFirstOrderOutput (t->left, n, 2 * i + 1);
// Ditto if it has a right subtree
if (t->right)
BreadthFirstOrderOutput (t->right, n, 2 * i + 2);
}

When the tree is perfectly balanced (as the assumed complete tree would be),
this saves memory space and pointer reads during tree traversal. Unfortunately, for
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a nonbalanced tree, space still has to be allocated as if the tree were complemented
with extra nodes to make it fully balanced. What is worse, even a single extra node
added to a fully balanced tree will add one full extra level to the tree, doubling its
storage space!

As such, this representation is most useful when the actual node data (its “pay-
load”) is small compared to the combined size of the child pointers, or when the
tree really is fully balanced (or just a few nodes off on the short side from being
fully balanced). For instance, when a hierarchy has been built using a median-based
splitting criterion that guarantees some level of near balance, this could be a useful
representation.

Preorder Traversal Order

Even when no guarantees can be made about the balance of the tree hierarchy, it is
still possible to output the data in a more effective representation. If the tree nodes are
outputin preorder traversal order, the left child when present will always immediately
follow its parent. This way, although a link is still needed to point at the right child only
a single bit is needed to indicate whether there is a left child (immediately following
the current node). Figure 6.7 illustrates a binary tree and its nodes output in preorder
traversal order.

Aroutine taking an ordinary pointer-based tree and outputting itin preorder traver-
sal order into an array is fairly straightforward to implement. The only complication
is in updating the right-link pointers to point at a node location that is unknown at
the time the parent node is written to memory. These can either be handled through
a second pass through the tree or (better) through stacking and backpatching, as in
the following code.

[AJEAD[A[E[CTFET]7] ]
[ 4

Figure 6.7 Same tree as in Figure 6.6 but with nodes output in preorder traversal order.
Nodes now need a pointer to the right child (shown as an arrow). They also need a bit to
indicate if the node has a left child (which when present always immediately follows the
parent node). Here, this bit is indicated by a gray triangle.
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// Given a tree t, outputs its nodes in preorder traversal order
// into the node array n. Call with i = 0.
int PreorderQutput(Tree *t, Tree n[], int i)
{
// Implement a simple stack of parent nodes.
// Note that the stack pointer 'sp' is automatically reset between calls
const int STACK SIZE = 100;
static int parentStack[STACK SIZE];
static int sp = 0;

// Copy over contents from tree node to PTO tree
n[i] .nodeData = t->nodeData;
// Set the flag indicating whether there is a left child
n[i].hasLeft = t->left != NULL;
// If node has right child, push its index for backpatching
if (t->right) {
assert(sp < STACK SIZE);
parentStack[sp++] = i;
}
/] Now recurse over left part of tree
if (t->left)
i = PreorderQutput(t->left, n, i + 1);
if (t->right) {
// Backpatch right-link of parent to point to this node
int p = parentStack[--sp];
n[p].rightPtr = &[i + 1];
// Recurse over right part of tree
i = PreorderQutput(t->right, n, i + 1);
}
// Return the updated array index on exit
return i;

In addition to reducing the needed number of child pointers by half, this represen-
tation also has the benefit of being quite cache friendly. The left child is very likely
already in cache, having been fetched at the same time as its parent, making traversal
more efficient.

6.6.3 Offsets Instead of Pointers

A typical tree implementation uses (32-bit) pointers to represent node child links.
However, for most trees a pointer representation is overkill. More often than not, by
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allocating the tree nodes from within an array a 16-bit index value from the start of
the array can be used instead. This will work for both static and dynamic trees. If the
tree is guaranteed to be static, even more range can be had by making the offsets
relative from the parent node.

At the cost of some extra traversal overhead, it is also possible to combine the
pointer and index representation. One extra reserved bit could indicate that the stored
value should instead be used as an index into a separate array of either pointers or
wider offset values.

Cache-friendlier Structures (Nonbinary Trees)

Execution time in modern architectures is often more limited by cache issues related to
fetching data from memory than the number of instructions executed. It can therefore
pay off to use nonconventional structures that although more complicated to traverse
take up less memory and have a more cache-friendly access pattern.

One such possible representation is merging sets of three binary tree nodes (parent
plus left and right child) into a “tri-node,” a fused node containing all three nodes.
The original set of three nodes has two internal links connecting the parent node with
the children and four external links connected to the rest of the tree. The new node
does not need any internal links, just the four external links.

For a four-level (15-node) complete binary tree, 14 internal links are needed. The
corresponding tri-node tree has two levels (four nodes) and just four internal links
(Figure 6.8). A six-level (63-node) binary tree has 62 internal links; the tri-node tree
only 20. In general, the corresponding tri-node tree requires a third of the links of
a complete binary tree, an even better reduction than with the preorder traversal
order representation. In addition, tri-nodes can be output in a breadth-first fashion,
potentially allowing the top 7 levels of the hierarchy to stay in cache.

The drawback is the additional processing required to traverse the tree. In addition,
when a tree is not complete nodes go empty in the tri-node, wasting memory. A flag
is also needed to indicate whether the node is used or empty. For this reason, tri-node
trees are better suited for dense trees. For sparse trees, the preorder traversal order
representation is preferable.

(a) (b)

Figure 6.8 (a) A four-level binary tree. (b) The corresponding two-level tri-node tree.



6.6.5

6.6 Efficient Tree Representation and Traversal 275

It is of course possible to combine this representation with previous methods. For
instance, storing a tri-node tree in preorder traversal order with parent-relative offsets
instead of child pointers would reduce the memory used for links to a minimum.
A related technique is discussed in [Intel99], in which instead of a single sphere
bounding volume the union of three spheres is used as the bounding volume, as
three spheres fit nicely within a cache line.

Tree Node and Primitive Ordering

When, say, a simultaneous traversal is used four recursive calls are generated in
the node-node part of the traversal algorithm. As the algorithm was presented in
Section 6.3.3, the order in which these four calls were issued was completely deter-
mined by the relative ordering of the nodes within the two trees. If the current
query is for testing rather than finding collision, or if distance pruning is used to
cull away branches of the hierarchies, it is desired to find intersections as early as
possible.

One possibility would be to attempt to figure out at runtime the best order in which
to issue the recursive calls. This is not necessarily easy, as nothing is known about
the structure further down the hierarchies at this point. A more feasible alternative
(with no runtime overhead) is to rearrange the children of a parent node heuristically
during construction, so that the child more likely to lead to an early intersection
comes first. Following [Haines91a], a few possible ways to order the nodes (for not
necessarily binary trees) include:

o Arrange children so that leaves come before nodes. If the collision status is deter-
mined at the primitive level, as all primitives are contained in the leaves, by
having the leaves come before nonleaf nodes primitives are tested as early as
possible.

o Put the smallest subtrees first. By considering the nodes as roots of hierarchy
subtrees, the same argument applies. By having nodes with fewer descendants
first, leaves should be reached earlier.

e Sort children by their hits-to-tests ratio. Based on actual usage, rearrange the
hierarchy so that nodes actually involved in positive collision queries come first
and those never or rarely involved come last.

o Sort children from near to far along predominant query direction. If tests are coming
predominantly from a specific direction, such as from above for a hierarchy
representing ground, it makes sense to sort children so that those corresponding
to higher ground come first.

The same ordering principle applies to the primitives stored within a leaf, of
course. When the leaf contains more than one primitive, the primitives can be sorted
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according to similar rules. For instance, if different types of primitives are used, such
as both triangles and quads as well as Bezier or NURBS surfaces, it makes sense to
test the polygons first before performing the more expensive tests involving surface
primitives.

It is also possible to arrange primitives to obtain extra culling information for
free. Say an OBB tree is built from a set of polygons representing a static world
that is collided with largely from above. The leaf OBBs of this tree are unlikely to
have polygons extending all the way into their topmost corner. Let the polygons
be rearranged so that the polygon with the highest vertex comes first in the list of
polygons. Then rearrange this polygon’s vertices so that the topmost vertex comes
first in its set of vertices. Now the plane defined by the world up normal and the first
vertex stored in the leaf (which is in a known position) can be used to quickly cull
collisions with the OBB before other, more expensive, tests are performed.

Other possible arrangements include sorting vertices so that the two vertices form-
ing the longest edge come first, and placing the vertex first, which together with
the polygon centroid (which is easily computed from the stored vertices) forms the
bounding sphere of the polygon (the centroid being the sphere center and the vertex
defining the sphere radius).

On Recursion

Traversing of trees (binary or otherwise) is naturally expressed using recursion.
However, as was pointed out in Section 6.3.2, recursion is not the most effective
form in which to express the code. It suffers from a few other drawbacks. One prob-
lem is that exiting the recursion and immediately returning a value is not directly
supported in most languages. Using a flag variable to tell the code to exit is not just
an overly complicated and contrived solution but requires the recursion to“unw