


Accurate and efficient collision detection in complex environments is one of the foundations of today’s
cutting-edge computer games. Yet collision detection is notoriously difficult to implement robustly
and takes up an increasingly large fraction of compute cycles in current game engines as increasingly
detailed environments are becoming the norm.

Real-time Collision Detection is a comprehensive reference on this topic, covering it with both breadth
and depth. Not only are the fundamental algorithms explained clearly and in detail, but Ericson’s book
covers crucial implementation issues, including geometric and numeric robustness and cache-efficient
implementations of the algorithms. Together, these make this book a“must have”practical reference for
anyone interested in developing interactive applications with complex environments.

–Matt Pharr,
Senior Software Developer, NVIDIA

Christer Ericson’s Real-time Collision Detection is an excellent resource that covers the fundamentals
as well as a broad array of techniques applicable to game development.

–Jay Stelly,
Senior Engineer,Valve

Christer Ericson provides a practical and very accessible treatment of real-time collision detection.This
includes a comprehensive set of C++ implementations of a very large number of routines necessary
to build such applications in a context which is much broader than just game programming. The
programs are well-thought out and the accompanying discussion reveals a deep understanding of the
graphics, algorithms, and ease of implementation issues. It will find a welcome home on any graphics
programmer’s bookshelf although it will most likely not stay there long as others will be constantly
borrowing it.

–Hanan Samet,
Professor of Computer Science, University of Maryland

Real-Time Collision Detection is an excellent resource that every serious engine programmer should
have on his bookshelf. Christer Ericson covers an impressive range of techniques and presents them
using concise mathematics, insightful figures, and practical code.

–Eric Lengyel,
Senior Programmer, Naughty Dog

If you think you already know everything about collision detection, you’re in for a surprise! This book
not only does an excellent job at presenting all the collision detection methods known to date, it also
goes way beyond the standard material thanks to a plethora of juicy, down-to-earth, hard-learned
implementation tips and tricks. This produces a perfect blend between theory and practice, illustrated
by the right amount of source code in appropriate places.

Basically the book just oozes with experience. Christer doesn’t forget all the alternative topics that,
despite not directly related to collision detection, can ruin your implementation if you don’t include them
in your design. The chapters on robustness and optimization are priceless in this respect. Its carefully
crafted compact kd-tree implementation beautifully concludes a unique book full of luminous gems.

–Pierre Terdiman,
Principal Software Engineer, NovodeX AG

(author of the OPCODE collision detection library)
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Preface

Together with a friend, I wrote my first computer game as a preteen, in 1978—the
same year as Space Invaders was released. Written in BASIC, our game was a quiz
game where you were asked questions about African animals. Compared to Space
Invaders, our text-based game was primitive and not very exciting. Still, we were
hooked, and it was not long until we were writing copies on our home computers,
not only of Space Invaders but also of many other arcade games of that period, not to
mention creating an endless number of original games of our own design. My then-
hobby of writing games has today become my day job and games have evolved into a
multi-billion dollar industry, which—for better or worse—virtually single-handedly
drives the development of graphics hardware and fuels the need for increasingly more
powerful CPUs.

Back then, one of the main challenges to writing an action game was dealing with
collision detection: the problem of determining if an object had intersected another
object or overlapped relevant background scenery. Since games were (primarily) 2D,
collision detection involved determining overlap in screen space in efficient ways.
Interestingly, even though computers today are over 1000 times faster, collision detec-
tion remains a key challenge. Today, game worlds are predominantly in 3D. They are
of incredible complexity, containing tens if not hundreds of millions of polygons. Col-
lision detection solutions now require sophisticated data structures and algorithms
to deal with such large data sets, all of this taking place in real-time. Of course, games
are not the only applications having to solve complex collision detection problems in
real-time; other applications, such as CAD/CAM systems and 3D modeling programs
must also address these problems.

The goal of this book is to provide efficient solutions for games and all other real-
time applications to address their collision detection problems. To make this possible,
this book provides an extensive coverage of the data structures and algorithms related
to collision detection systems. Implementing collision detection systems also requires
a good understanding of various mathematical concepts, which this book also focuses
on. Special care has been taken to discuss only practical solutions, and code and
pseudocode is provided to aid the implementation of the methods discussed in the
book.

Overall, collision detection is a very large topic. Every chapter in this book could
easily form the basis of a book each. As such, the coverage has been restricted to the
most important areas and that provide a solid foundation for further exploration into
this rich field.

xxxvii
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Chapter 1

Introduction

This book is concerned with the subject of collision detection, a broad topic dealing
with a seemingly simple problem: detecting if two (or more) objects are intersect-
ing. More specifically, collision detection concerns the problems of determining if,
when, and where two objects come into contact. “If”involves establishing a Boolean
result, answering the question whether or not the objects intersect. “When” must
additionally determine at what time during a movement collision occurred.“Where”
establishes how the objects are coming into contact. Roughly, these three types of
queries become increasingly more complex to answer in the order given.

Gathering information about when and where (in addition to the Boolean collision
detection result) is sometimes labeled collision determination. The terms intersection
detection and interference detection are sometimes used synonymously with collision
detection.

Collision detection is fundamental to many varied applications, including com-
puter games, physically based simulations (such as computer animation), robotics,
virtual prototyping, and engineering simulations (to name a few).

In computer games, collision detection ensures that the illusion of a solid world is
maintained. It keeps player characters from walking through walls or falling through
floors; it provides for line-of-sight queries, telling enemies if they can see the player
and therefore can attack; and it keeps a skateboarder attached to an invisible guide
surface, ensuring that the player safely makes it back down into a halfpipe after having
gone airborne up it.

In computer animation, collision detection is used, for example, to constrain the
physical simulation of cloth, ensuring clothing behaves in a lifelike manner and
does not slide off a character as the character moves. Collision detection is used
for path planning in robotics applications, helping robots steer away from obstacles.
In virtual prototyping, collision detection assists in computing clearances, and overall
allows prototypes to be refined without the production of physical models. Collision
detection is used in crash tests and other engineering simulations.

1
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Some applications, such as path planning and animation rendering, do not
require real-time performance of their collision systems. Others applications, com-
puter games in particular, have extraordinary demands on the real-time efficiency
of collision detection systems. Computer- and console-based action games involve
simulations requiring that a large number of queries be performed at frame rates of
about 30 to 60 frames per second (fps). With such tight time constraints and with
collision detection an integral part of game and physics engines, collision detection
can account for a large percentage of the time it takes to complete a game frame.
In computer games, a poorly designed collision system can easily become a key
bottleneck.

This book is not just on collision detection in general, but specifically on the effi-
cient implementation of data structures and algorithms to solve collision detection
problems in real-time applications. While the games domain is often used for exam-
ples, several nongame applications have performance requirements similar to (or
even greater than) those of games, including haptic (force feedback) systems, particle
simulations, surgical simulators, and other virtual reality simulations. The methods
described here apply equally well to these applications.

Many of the methods discussed herein are applicable to areas other than collision
detection. For instance, the methods discussed in Chapters 6 through 8 can be used to
accelerate ray tracing and ray casting (for, say, computing scene lighting), and in regard
to geographic information systems (GIS) to answer queries on large geographical
databases. Some problems from the field of computer graphics can be solved as
collision detection problems. For example, view frustum culling can be addressed
using the methods described in Chapters 6 and 7.

1.1 Content Overview

The following sections provide a brief outline of the chapters of this book.

1.1.1 Chapter 2: Collision Detection Design Issues

This chapter talks about issues that must be considered when constructing a collision
detection system and what factors affect the design. Such factors include how objects
are represented, how many of them there are, how they move, and what types of
collision queries the user wants to pose. Chapter 2 also introduces terminology used
throughout the rest of the book.

1.1.2 Chapter 3: A Math and Geometry Primer

Any nontrivial collision detection system requires a large portion of geometry-
oriented mathematics to work out the if, when, and where of collision queries.
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Chapter 3 introduces the mathematical and geometrical concepts necessary to
understand the material explored in the remaining chapters.

1.1.3 Chapter 4: Bounding Volumes

To accelerate collision queries, simple geometrical objects such as spheres and boxes
are initially used to represent objects of more complex nature. Only if the “simple”
bounding volumes (which are large enough to encapsulate complex objects) collide
are tests performed on the complex geometry. Chapter 4 describes several bounding
volume types, how to perform intersection tests on them, and how to fit a bounding
volume to a complex object.

1.1.4 Chapter 5: Basic Primitive Tests

Having introduced some intersection tests in the previous chapter, Chapter 5
describes, in detail, a large number of tests for determining intersection status and
distance between pairs of objects of varying types, including lines, rays, segments,
planes, triangles, polygons, spheres, boxes, cylinders, and polyhedra. Both static and
moving objects are considered in these tests.

1.1.5 Chapter 6: Bounding Volume Hierarchies

For large objects and for collections of objects, performance benefits can be had by
constructing hierarchies of bounding volumes over the object(s). Such hierarchies
provide quick identification of objects or parts of an object that cannot possibly par-
ticipate in a collision, allowing queries to restrict testing to a small number of objects
or object parts. Chapter 6 talks about desired characteristics of bounding volume hier-
archies and ways in which to construct and perform queries over them. The chapter
also explores efficient ways of representing these hierarchies.

1.1.6 Chapter 7: Spatial Partitioning

When a large number of objects are considered for collision, the objects must be
partitioned into small disjoint subgroups to facilitate fast tests (by avoiding the worst-
case quadratic behavior of testing all objects against all other objects). The bounding
volume hierarchies discussed in Chapter 6 represent one way of performing such
partitioning. Chapter 7 examines other partitioning approaches, based on grids, trees,
and object sorting.
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1.1.7 Chapter 8: BSP Tree Hierarchies

One of the most versatile tree structures for representing collision detection data is
the binary space partitioning (BSP) tree. BSP trees can be used to partition space
independently from the objects in the space. They can also be used to partition the
boundary of an object from the space it is in, thereby effectively forming a volume
representation of the object. Chapter 8 talks about robustly constructing BSP trees
and how to perform tests on the resulting trees.

1.1.8 Chapter 9: Convexity-based Methods

Chapter 9 looks at a number of more advanced methods for performing collision
queries on convex objects, exploiting the special properties of convex objects. Pre-
sented are hierarchical representations, the V-Clip closest feature algorithm, the
mathematical optimization methods of linear and quadratic programming, the effi-
cient Gilbert–Johnson–Keerthi algorithm, and a separating vector algorithm due to
Chung and Wang.

1.1.9 Chapter 10: GPU-assisted Collision Detection

PC commodity graphics cards have advanced to a point at which they incorporate
more computational power than the main PC CPU. This change has triggered an
interest in outsourcing computations to the graphics card. Chapter 10 takes a brief
look at how to perform collision detection tests using graphics hardware.

1.1.10 Chapter 11: Numerical Robustness

Even the smallest errors in a collision detection system can lead to catastrophic fail-
ures, such as objects failing to collide with world geometry and thus falling out of the
world. This chapter discusses the robustness problems associated with working with
floating-point arithmetic and suggests approaches to dealing with these problems.

1.1.11 Chapter 12: Geometrical Robustness

Whereas Chapter 11 looked at how to perform calculations robustly, Chapter 12
considers the problem of taking an arbitrary set of polygons and turning it into well-
formed geometry, suitable for input into a collision detection system. Presented are
methods for welding of vertices, removal of gaps and cracks, merging of coplanar
faces, and decomposition of objects into convex (or triangular) pieces.
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1.1.12 Chapter 13: Optimization

The last chapter of the book talks about how to take the efficient data structures
and algorithms presented throughout the book and make them even more efficient
by targeting and tuning them for a particular hardware platform. Large performance
gains can be had by optimizing code to take advantage of memory hierarchies (caches)
and of code and data parallelism. Chapter 13 presents detailed descriptions on how
to perform such optimizations.

1.2 About the Code

As part of the hands-on nature of this book, many of the presented ideas are sup-
plemented by code examples. Whereas many books rely exclusively on high-level
pseudocode to convey the broad ideas of an algorithm, here the majority of the code
is given in C++. There are two reasons for presenting code in this detail. First, it
provides the minutiae often vital to the understanding (and implementation) of an
algorithm. Second, understanding can now additionally be had from running the
code and inspecting variable values during execution. The latter is particularly impor-
tant for a reader who may not be fully versed in the mathematics required for a
particular algorithm implementation. Only in a few places in the book is the given
code expressed in pseudocode, primarily where it would not be practical to provide
a full implementation.

Although C++ is used for the code in the book, it should be stressed that the
focus of the book is not on C++. C++ is only used as a means to present detailed
executable descriptions of the described concepts. Any computer language would
serve this purpose, but C++ was chosen for a few reasons, including its popularity
and its ability to abstract, in a succinct way, the low-level manipulation of geometrical
entities such as points and vectors using classes and (overloaded) infix operators. To
make the presented code accessible to as many programmers as possible (for example,
those only familiar with C or Java), certain features of C++ such as templates and STL
(Standard Template Library) were deliberately avoided where possible. C++ purists
may want to take a few deep breaths at the start of each chapter!

Similarly, this is not a book on software engineering. To get the basic ideas to come
across as best as possible, the code is kept short and to the point. Concessions were
made so as not to clutter up the text with verbose C++ syntax. For example, class
definitions are deliberately minimalistic (or nonexistent), global variables sometimes
substitute for proper member variables, pointers are not declared const (or restrict),
and arrays are often declared of fixed size instead of being dynamically allocated of
an appropriate size. Variable names have also been limited in length to make code
lines better fit on a typeset page.

To turn the presented code into real production code, some additions may be
necessary. For example, tests for division by zero are not always performed to avoid
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going into details that would hamper the understanding of the overall approach.
Similarly, some code tests may require tolerance values to be added for full robustness.
The intent is for the discussion of robustness in Chapter 11 to make it clear what
changes (if any) are necessary to turn the presented code into robust production code.

To help make it clear which function arguments are inputs and which are outputs,
input variables are often passed by value and output variables are passed by reference.
In some cases, it would be more efficient to pass input variables by reference. This is
left as an exercise for the reader.

Comments are set in cursive, whereas the code is set in boldface. Names of func-
tions, classes, structs, and user-defined types begin with an uppercase letter.Variables
begin with a lowercase letter. Where possible, variable names have been chosen to
follow the notation used in the accompanying text. In some cases, these rules conflict.
For example, points are denoted using uppercase characters in the text, whereas in
the code they are lowercase.

The code presented in the book is available on the companion CD-ROM. However,
the reader may want to visit the book’s companion web site for the latest version
of the code, incorporating corrections, changes, and additions.



Chapter 2

Collision Detection
Design Issues

Designing an efficient collision detection system is a bit like putting a puzzle together:
a lot of pieces must be connected before the big picture starts to appear. In a similar
fashion, the majority of this book is concerned with examining the individual pieces
that go into different approaches to collision detection. The big picture will become
clear over the course of the book. This chapter provides a quick overview of a number
of issues that must be considered in selecting among approaches, and how the com-
ponents of these approaches relate. This chapter also introduces a number of terms,
defined and explained further in following chapters. More in-depth coverage of the
items touched upon here is provided throughout remaining chapters of the book.

2.1 Collision Algorithm Design Factors

There are several factors affecting the choices made in designing a collision detection
system. These factors will be broken down into the following categories:

1. Application domain representation. The geometrical representations used for the
scene and its objects have a direct bearing on the algorithms used. With
fewer restrictions put on these representations, more general collision detection
solutions have to be used, with possible performance repercussions.

2. Different types of queries. Generally, the more detailed query types and results are,
the more computational effort required to obtain them. Additional data struc-
tures may be required to support certain queries. Not all object representations
support all query types.

3. Environment simulation parameters. The simulation itself contains several param-
eters having a direct impact on a collision detection system. These include how

7
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many objects there are, their relative sizes and positions, if and how they move, if
they are allowed to interpenetrate, and whether they are rigid or flexible.

4. Performance. Real-time collision detection systems operate under strict time and
size restrictions. With time and space always being a trade-off, several features are
usually balanced to meet stated performance requirements.

5. Robustness. Not all applications require the same level of physical simulation. For
example, stacking of bricks on top of each other requires much more sophistication
from a collision detection system than does having a basketball bouncing on a
basketball court. The ball bouncing slightly too early or at a somewhat larger
angle will go unnoticed, but even the slightest errors in computing contact points
of stacked bricks is likely to result in their slowly starting to interpenetrate or slide
off each other.

6. Ease of implementation and use. Most projects are on a time frame. Scheduling
features of a collision detection system means nothing if the system cannot
be completed and put in use on time. Decisions regarding implementational
simplicity therefore play a large role in what approach is taken.

These issues are covered in further detail in the remainder of the chapter.

2.2 Application Domain Representation

To select appropriate collision detection algorithms, it is important to consider the
types of geometrical representations that will be used for the scene and its objects.This
section talks briefly about various object representations, how simplified geometry
can be used instead of modeling geometry, and how application-specific knowledge
can allow specialized solutions to be used over more generic solutions.

2.2.1 Object Representations

Most current hardware uses triangles as the fundamental rendering primitive.
Consequently, a polygonal representation is a natural choice for scenes and scene
objects, as well as for their corresponding collision geometry.The most generic polyg-
onal representation is the polygon soup: an unordered collection of polygons with no
connectivity information specifying how one polygon relates to another. With no
inherent constraints, the polygon soup is an attractive representation for artists and
level designers. Algorithms operating on polygon soups apply to any collection of
polygons but tend to be less efficient and less robust than those relying on additional
information. For example, a polygon soup contains no information regarding the
“inside”of an object, so there is no easy way of finding out if an object has somehow
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Figure 2.1 Geometrical models, like the one pictured, are commonly built from a collection
of polygon meshes.

erroneously ended up inside another object. The additional information mentioned
could include which edges connect to what vertices and what faces connect to a
given face, whether the object forms a closed solid, and whether the object is convex
or concave.

Polygons may be connected to one another at their edges to form a larger polygonal
surface called a polygon mesh. Building objects from a collection of polygon meshes is
one of the most common methods for authoring geometrical models (Figure 2.1).

Polygonal objects are defined in terms of their vertices, edges, and faces. When
constructed in this way, objects are said to have an explicit representation. Implicit
objects refer to spheres, cones, cylinders, ellipsoids, tori, and other geometric prim-
itives that are not explicitly defined in such a manner but implicitly through a
mathematical expression. Implicit objects are often described as a function mapping
from 3D space to real numbers, f : R

3 → R, where the points given by f (x, y, z) < 0
constitute the interior, f (x, y, z) = 0 the boundary, and f (x, y, z) > 0 the exterior of the
object (Figure 2.2). An object boundary defined by an implicit function is called an
implicit surface. Implicit objects can be used as rough approximations of scene objects
for quick rejection culling. The implicit form may allow for fast intersection tests,
especially with lines and rays — a fact utilized in ray tracing applications. Several
examples of implicit tests are provided in Chapter 5.

Convex polygonal objects can also be described as the intersection of a number
of halfspaces. For example, a cube can be expressed as the intersection of six half-
spaces, each halfspace“trimming away”the portion of space that lies outside a face of
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x2 + y2 + z2 ≤ r2

Figure 2.2 An implicitly defined sphere (where the sphere is defined as the boundary plus
the interior).

–

(a) (b)

Figure 2.3 (a) A cube with a cylindrical hole through it. (b) The CSG construction tree for
the left-hand object, where a cylinder is subtracted from the cube.

the cube. Halfspaces and halfspace intersection volumes are described in more detail
in Chapter 3.

Geometric primitives such as spheres, boxes, and cylinders are also the building
blocks of objects constructed via the constructive solid geometry (CSG) framework.
CSG objects are recursively formed through applying set-theoretic operations (such
as union, intersection, or difference) on basic geometric shapes or other CSG objects,
allowing arbitrarily complex objects to be constructed. Thus, a CSG object is repre-
sented as a (binary) tree, with set-theoretic operations given in the internal nodes
and geometry primitives in the leaves (Figure 2.3). CSG objects are implicit in that
vertices, edges, and faces are not directly available.

A strength of CSG modeling is that the resulting objects are always valid — without
cracks and other problems that plague polygonal representations. CSG is also a
volume representation, making it easy to determine if, for example, a query point lies
inside the CSG object. CSG on polyhedral objects can be implemented through the
processes described in, for example, [Laidlaw86] and [Thibault87]. However, it can
be difficult to achieve robust implementations due to numerical imprecision in the
calculations involved.
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2.2.2 Collision Versus Rendering Geometry

Although it is possible to pass rendering geometry directly into a collision system,
there are several reasons it is better to have separate geometry with which collision
detection is performed.

1. Graphics platforms have advanced to the point where rendering geometry is
becoming too complex to be used to perform collision detection or physics. In
addition, there is a usually a limit as to how accurate collisions must be.Thus, rather
than using the same geometry used for rendering, a simplified proxy geometry can
be substituted in its place for collision detection. For games, for example, it is com-
mon to rely on simple geometric shapes such as spheres and boxes to represent the
game object, regardless of object complexity. If the proxy objects collide, the actual
objects are assumed to collide as well. These simple geometric shapes, or bound-
ing volumes, are frequently used to accelerate collision queries regardless of what
geometry representation is used. Bounding volumes are typically made to encap-
sulate the geometry fully. Bounding volumes are discussed in detail in Chapter 4.

2. For modern hardware, geometry tends to be given in very specific formats (such as
triangle strips and indexed vertex buffers), which lend themselves to fast rendering
but not to collision detection. Rather than decoding these structures on the fly
(even though the decoded data can be cached for reuse), it is usually more efficient
to provide special collision geometry. In addition, graphics hardware often enforces
triangle-only formats. For collision geometry, efficiency sometimes can be had by
supporting other, nontriangle, primitives.

3. The required data and data organization of rendering geometry and collision
geometry are likely to vary drastically. Whereas static rendering data might be
sorted by material, collision data are generally organized spatially. Rendering
geometry requires embedded data such as material information, vertex colors,
and texture coordinates, whereas collision geometry needs associated surface
properties. Separating the two and keeping all collision-relevant information
together makes the collision data smaller. Smaller data, in turn, leads to efficiency
improvements due to better data cache coherency.

4. Sometimes the collision geometry differs from the rendered geometry by design.
For example, the knee-deep powder snow in a snowboarding game can be mod-
eled by a collision surface two feet below the rendered representation of the snow
surface. Walking in ankle-deep swaying grass or wading in waist-deep murky
water can be handled similarly. Even if rendering geometry is used as collision
geometry, there must be provisions for excluding some rendering geometry from
(and for including additional nonrendering geometry in) the collision geometry
data set.

5. For simulation purposes, collision data must be kept around even when rendering
data can be thrown out as not visible. With the collision geometry being smaller
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than the corresponding rendering geometry, the permanent memory footprint is
therefore reduced.

6. The original geometry might be given as a polygon soup or mesh, whereas the
simulation requires a solid-object representation. In this case, it is much easier to
compute solid proxy geometry than to attempt to somehow solidify the original
geometrical representation.

However, there are some potential drawbacks to using separate collision geometry.

1. Data duplication (primarily of vertices) causes additional memory to be used. This
problem may be alleviated by creating some or all of the collision geometry from
the rendering geometry on the fly through linearization caching (as described in
Section 13.5 and onward).

2. Extra work may be required to produce and maintain two sets of similar geometry.
Building the proxy geometry by hand will impair the schedule of the designer
creating it. If it is built by a tool, that tool must be written before the collision
system becomes usable. In addition, if there is a need to manually modify the tool
output, the changes must somehow be communicated back into the tool and the
original data set.

3. If built and maintained separately, the rendering and collision geometries may
mismatch in places. When the collision geometry does not fill the same volume
as the render geometry, objects may partially disappear into or float above the
surface of other objects.

4. Versioning and other logistics problems can show up for the two geometries. Was
the collision geometry really rebuilt when the rendering geometry changed? If
created manually, which comes first: collision geometry or rendering geometry?
And how do you update one when the other changes?

For games, using proxy geometry that is close to (but may not exactly match)
actual visuals works quite well. Perceptually, humans are not very good at detecting
whether exact collisions are taking place. The more objects involved and the faster
they move, the less likely the player is to spot any discrepancies. Humans are also bad
at predicting what the outcome of a collision should be, which allows liberties to be
taken with the collision response as well. In games, collision detection and response
can effectively be governed by “if it looks right, it is right.”Other applications have
stricter accuracy requirements.

2.2.3 Collision Algorithm Specialization

Rather than having one all-encompassing collision detection system, it is often wise
to provide specialized collision systems for specific scenarios. An example of where
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specialization is relevant is particle collisions. Rather than sending particles one by
one through the normal collision system, they are better handled and submitted
for collision as groups of particles, where the groups may form and reform based
on context. Particles may even be excluded from collision, in cases where the lack of
collision is not noticeable.

Another example is the use of separate algorithms for detecting collision between
an object and other objects and between the object and the scene. Object-object
collisions might even be further specialized so that a player character and fast-moving
projectiles are handled differently from other objects. For example, a case where all
objects always collide against the player character is better handled as a hard-coded
test rather than inserting the player character into the general collision system.

Consider also the simulation of large worlds. For small worlds, collision data can
be held in memory at all times. For the large, seamless world, however, collision data
must be loaded and unloaded as the world is traversed. In the latter case, having
objects separate from the world structure is again an attractive choice, so the objects
are not affected by changes to the world structure. A possible drawback of having
separate structures for holding, say, objects and world, is that querying now entails
traversing two data structures as opposed to just one.

2.3 Types of Queries

The most straightforward collision query is the interference detection or intersection
testing problem: answering the Boolean question of whether two (static) objects, A
and B, are overlapping at their given positions and orientations. Boolean intersec-
tion queries are both fast and easy to implement and are therefore commonly used.
However, sometimes a Boolean result is not enough and the parts intersecting must
be found. The problem of intersection finding is a more difficult one, involving finding
one or more points of contact.

For some applications, finding any one point in common between the objects
might be sufficient. In others, such as in rigid-body simulations, the set of contact-
ing points (the contact manifold) may need to be determined. Robustly computing
the contact manifold is a difficult problem. Overall, approximate queries — where the
answers are only required to be accurate up to a given tolerance — are much easier to
deal with than exact queries. Approximate queries are commonplace in games. Addi-
tionally, in games, collision queries are generally required to report specific collision
properties assigned to the objects and their boundaries. For example, such properties
may include slipperiness of a road surface or climbability of a wall surface.

If objects penetrate, some applications require finding the penetration depth. The
penetration depth is usually defined in terms of the minimum translational distance: the
length of the shortest movement vector that would separate the objects. Computing
this movement vector is a difficult problem, in general.The separation distance between
two disjoint objects A and B is defined as the minimum of the distances between points
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in A and points in B. When the distance is zero, the objects are intersecting. Having
a distance measure between two objects is useful in that it allows for prediction of
the next time of collision. A more general problem is that of finding the closest points
of A and B: a point in A and a point in B giving the separation distance between
the objects. Note that the closest points are not necessarily unique; there may be
an infinite number of closest points. For dynamic objects, computing the next time
of collision is known as the estimated time of arrival (ETA) or time of impact (TOI)
computation. The ETA value can be used to, for instance, control the time step in a
rigid-body simulation. Type of motion is one of the simulation parameters discussed
further in the next section.

2.4 Environment Simulation Parameters

As mentioned earlier in the chapter, several parameters of a simulation directly affect
what are appropriate choices for a collision detection system.To illustrate some of the
issues they may cause, the following sections look specifically at how the number of
objects and how the objects move relate to collision processing.

2.4.1 Number of Objects

Because any one object can potentially collide with any other object, a simulation
with n objects requires (n−1)+ (n−2)+· · ·+1 = n(n−1)/2 = O(n2) pairwise tests,
worst case. Due to the quadratic time complexity, naively testing every object pair
for collision quickly becomes too expensive even for moderate values of n. Reducing
the cost associated with the pairwise test will only linearly affect runtime. To really
speed up the process, the number of pairs tested must be reduced. This reduction is
performed by separating the collision handling of multiple objects into two phases:
the broad phase and the narrow phase.

The broad phase identifies smaller groups of objects that may be colliding and
quickly excludes those that definitely are not. The narrow phase constitutes the pair-
wise tests within subgroups. It is responsible for determining the exact collisions, if
any. The broad and narrow phases are sometimes called n-body processing and pair
processing, respectively.

Figure 2.4 illustrates how broad-phase processing reduces the workload through a
divide-and-conquer strategy. For the 11 objects (illustrated by boxes), an all-pairs test
would require 55 individual pair tests. After broad-phase processing has produced 5
disjoint subgroups (indicated by the shaded areas), only 10 individual pair tests would
have to be performed in the narrow phase. Methods for broad-phase processing are
discussed in Chapters 6 through 8. Narrow-phase processing is covered in Chapters
4, 5, and 9.

In addition to the number of objects, the relative size of the objects also affects how
many tests have to be performed. With both small and large objects present in a scene,
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Figure 2.4 The broad phase identifies disjoint groups of possibly intersecting objects.

the broad-phase system generally must work harder (or be more sophisticated) to
identify groups than it would for a set of homogeneously sized objects. How object
size affects broad-phase methods is discussed further in Chapter 7.

2.4.2 Sequential Versus Simultaneous Motion

In real life, objects are moving simultaneously during a given movement time step,
with any eventual collisions resolved within the time step. For an accurate computer
simulation of the real-life event, the earliest time of contact between any two of the
moving objects would somehow have to be determined. The simulation can then
be advanced to this point in time, moving all objects to the position they would
be in when the first collision occurs. The collision is then resolved, and the process
continues determining the next collision, repeating until the entire movement time
step has been used up.

Executing a simulation by repeatedly advancing it to the next earliest time of contact
becomes quite expensive. For example, as one or more objects come to rest against a
surface, the next time of collision follows almost immediately after the current time
of collision. The simulation is therefore only advanced by a small fraction, and it can
take virtually “forever”to resolve the full movement time step. One solution to this
problem is to use the broad phase to identify groups of objects that may interact
within the group, but not with objects of other groups during the time step. The
simulation of each group can therefore proceed at different rates, helping to alleviate
the problem in general.

An alternative option is to move objects simultaneously, but setting a fixed (small)
time step for the movement. Simultaneous movement can result in objects interpen-
etrating, which typically must be dealt with somehow, for example, by backing up the
simulation to an earlier state. In both cases, simultaneous updates remain expensive
and are therefore often reserved for accurate rigid-body simulations. However, many
games, as well as other applications, are not rigid-body simulations and it would be
overkill and wasted effort to try to simulate motion with high accuracy. For these,
an alternative option is to resolve motion sequentially. That is, objects are moved
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(a) (b) (c)

Figure 2.5 (a) Top: If both objects move simultaneously, there is no collision. Bottom: If the
circle object moves before the triangle, the objects collide. In (b), again there is no collision
for simultaneous movement, but for sequential movement the objects collide. (c) The objects
collide under simultaneous movement, but not under sequential movement.

one object at a time and any collisions are detected and resolved before the process
continues with the next object.

Clearly, sequential movement is not a physically accurate movement model. Some
objects may collide with objects that have not yet moved in this frame but that would
have moved out of the way were the two objects moving simultaneously (Figure 2.5a).
Other objects may collide with objects that moved before they did and are now in
their path (Figure 2.5b). In some cases, where two simultaneously moving objects
would have collided halfway through their motion, collisions will now be missed as
one object is moved past the other (Figure 2.5c). For games, for example, the problems
introduced by a sequential movement model can often be ignored. The high frame
rate of games often makes the movement step so small that the overlap is also small
and not really noticeable.

One of the benefits of the sequential movement model is that an object nonpen-
etration invariant is very easy to uphold. If there is a collision during the movement
of an object, the movement can simply be undone (for example). Only having to
undo the movement of a single object should be contrasted with the simultaneous
movement model using a fixed time step, where the movement of all simultaneously
moved objects would have to be undone.

2.4.3 Discrete Versus Continuous Motion

Something that can greatly affect both the computational effort needed to deter-
mine a collision result and the accuracy of the result itself is if the two objects
involved in a pairwise test are moving at the time of testing. Static collision detection
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involves detecting intersection between the objects, at discrete points in time, dur-
ing their motion. At each such point in time the objects are treated as if they were
stationary at their current positions with zero velocities. In contrast, dynamic colli-
sion detection considers the full continuous motion of the objects over the given time
interval. Dynamic collision tests can usually report the exact time of collision and
the point(s) of first contact. Static tests are (much) cheaper than dynamic tests, but
the time steps between tests must be short so that the movement of the objects is
less than the spatial extents of the objects. Otherwise, the objects may simply pass
each other from one time step to the next without a collision being detected. This
phenomenon is referred to as tunneling.

The volume covered by an object in continuous motion over a given time interval is
called the swept volume. If the swept volumes of two moving objects do not intersect,
there is no intersection between the objects. Even if the swept volumes intersect,
the objects still may not intersect during movement. Thus, intersection of the swept
volumes is a sufficient, but not necessary, condition for object collision. For complex
motions, the swept volume is both difficult to compute and to work with. Fortunately,
perfect accuracy is rarely necessary. Dynamic collision testing of complex tumbling
motions can usually be simplified by assuming a piecewise linear motion; that is,
a linear translation over the range of movement, with an instantaneous rotation
at the end (or start) of the motion. Somewhere between these two alternatives is
replacement of the unrestricted motion with a screw motion (that is, a fixed rotational
and translational motion).

When working with moving objects it is virtually always preferable to consider
the relative motion of the objects by subtracting the motion of the one object off the
other object, thus effectively leaving one object static. Assuming linear translational
motion for the objects makes this operation a simple vector subtraction. A key benefit
of considering only the relative motion is that for testing one moving object against
a stationary object a swept volume test is now an exact intersection test. In games,
the entire swept volume is sometimes just replaced by a speedbox: an elongated box
covering the object for its full range of motion (or some similarly simple proxy object,
not necessarily a box).

2.5 Performance

Taking game consoles as an example, for the best possible visuals games must run
at 60 fps (in countries with NTSC TV format; 50 fps in PAL territory). This frame
rate leaves 16.7 ms to prepare each game frame. Depending on the type of game,
collision detection may account for, say, 10 to 30% of a frame, in turn leaving 2 to
5 ms for collision detection. For an action platform game that may have dozens of
collision-dependent objects active at a given time there may be only about 50 to
250 μs available to handle the collision for each object — not a lot of time. Clearly, it
is very important to reduce the average running time of collision queries. However,
as large sudden drops in frame rate are very noticeable in games (in a bad way) it is
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also important to make sure the worst case for the selected algorithms is not taking
a magnitude longer than the average case.

A number of things can be done to speed up collision processing, which in large
part is what this book is about. Some general ideas of what optimizations are relevant
for collision detection are discussed in the next section.

2.5.1 Optimization Overview

The first tenet of optimization is that nothing is faster than not having to perform a
task in the first place. Thus, some of the more successful speed optimizations revolve
around pruning the work as quickly as possible down to the minimum possible. As
such, one of the most important optimizations for a collision detection system is
the broad-phase processing mentioned in Section 2.4.1: the exploitation of objects’
spatial locality. Because objects can only hit things that are close to them, tests against
distant objects can be avoided by breaking things up spatially.Tests are then only made
against the regions immediately nearby the object, ignoring those that are too far away
to intersect the object. There are strong similarities between this spatial partitioning
and what is done for view frustum culling to limit the number of graphical objects
drawn.

Spatial partitioning can be performed using a flat structure, such as by dividing
space into a grid of cells of a uniform size. It also can be implemented in terms of a
hierarchy, where space is recursively divided in half until some termination goal is
met. Objects are then inserted into the grid or the hierarchy. Grids and hierarchical
partitioning are also useful for the pair tests of the narrow phase, especially when
the objects have high complexity. Rather than having to test an entire object against
another, they allow collision tests to be limited to the parts of two objects nearest
each other. Object and spatial partitioning are discussed in Chapters 6 and 7.

Doing inexpensive bounding volume tests before performing more expensive geo-
metric tests is also a good way of reducing the amount of work needed to determine
a collision. Say encompassing bounding spheres have been added to all objects, then
a simple sphere-sphere intersection test will now show — when the spheres do not
overlap — that no further testing of the complex contained geometry is necessary.
Bounding volumes are covered in Chapter 4.

The insight that objects tend to take small local steps from frame to frame — if
moving at all — leads to a third valuable optimization: to exploit this temporal (or
frame-to-frame) coherency. For example, only objects that have moved since the last
frame need to be tested; the collision status remains the same for the other objects.
Temporal coherency may also allow data and calculations to be cached and reused over
one or more future frames, thus speeding up tests. Assumptions based on movement
coherency are obviously invalidated if objects are allowed to “teleport” to arbitrary
locations. Coherence is further discussed in Chapter 9.

Last, architecture-specific optimizations are also very important. Many platforms
support some type of code or data parallelism that when fully exploited can provide
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large speedups. Due to big differences between the speed at which CPUs operate
and the speeds at which main memory can provide data for it to operate on (with the
speed advantage for the CPU), how collision geometry and other data are stored in
memory can also have a huge speed impact on a collision system. These issues are
covered in detail in Chapter 13.

2.6 Robustness

Collision detection is one of a number of geometrical applications where robustness
is very important. In this book, robustness is used simply to refer to a program’s
capability of dealing with numerical computations and geometrical configurations
that in some way are difficult to handle. When faced with such problematic inputs,
a robust program provides the expected results. A nonrobust program may in the
same situations crash or get into infinite loops. Robustness problems can be broadly
categorized into two classes: those due to lack of numerical robustness and those due
to lack of geometrical robustness.

Numerical robustness problems arise from the use of variables of finite precision
during computations. For example, when intermediate calculations become larger
than can be represented by a floating-point or an integer variable the intermediate
result will be invalid. If such problems are not detected, the final result of the com-
putation is also likely to be incorrect. Robust implementations must guarantee such
problems cannot happen, or if they do that adjusted valid results are returned in their
stead.

Geometrical robustness entails ensuring topological correctness and overall geo-
metrical consistency. Problems often involve impossible or degenerate geometries,
which may be the result of a bad numerical calculation. Most algorithms, at some
level, expect well-formed inputs. When given bad input geometry, such as triangles
degenerating to a point or polygons whose vertices do not all lie in the plane, anything
could happen if these cases are not caught and dealt with.

The distinction between numerical and geometrical robustness is sometimes diffi-
cult to make, in that one can give rise to the other.To avoid obscure and difficult-to-fix
runtime errors, robustness should be considered throughout both design and devel-
opment of a collision detection system. Chapters 11 and 12 discuss robustness in
more depth.

2.7 Ease of Implementation and Use

In the case of a collision detection system implemented from scratch, the issue of
expected development time might be as important as the desired feature set. For
example, games are often on tight budgets and time frames, and the delay of any
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critical component could be costly. In evaluating the ease of implementation it is of
interest to look at not just the overall algorithm complexity but how many and what
type of special cases are involved, how many tweaking variables are involved (such as
numerical tolerances), and other limitations that might affect the development time.

Several additional issues relate to the use of the collision detection system. For
example, how general is the system? Can it handle objects of largely varying sizes?
Can it also answer range queries? How much time is required in the build process
to construct the collision-related data structures? For the latter question, while the
time spent in preprocessing is irrelevant for runtime performance it is still impor-
tant in the design and production phase. Model changes are frequent throughout
development, and long preprocessing times both lessen productivity and hinder
experimentation. Some of these problems can be alleviated by allowing for a faster,
less optimized data structure construction during development and a slower but more
optimal construction for non-debug builds.

2.7.1 Debugging a Collision Detection System

Just like all code, collision detection systems are susceptible to errors. Finding these
errors can sometimes be both difficult and time consuming. Steps can be taken during
development to make this debugging process less painful. Some good ideas include:

● Keep a cyclic buffer of the arguments to the n last collision queries, correspond-
ing to up to a few seconds’ worth of data (or more). Then, when something
goes visually wrong, the program can be paused and the data can be out-
put for further analysis, such as stepping through the calls with the saved
arguments. The logged data may also provide useful information when asserts
trigger.

● Provide means to visualize the collision geometry. For example, you might visu-
alize tested faces, their collision attributes, and any hierarchies and groupings
of the faces. Additionally, visualize the collision queries themselves, prefer-
ably with the history provided by the cyclic buffer mentioned earlier. This
visualization provides a context that makes it easy to spot bad collision queries.

● Implement a simple reference algorithm (such as a brute-force algorithm that
tests all objects or all polygons against each other) and run the reference algo-
rithm in parallel with the more sophisticated algorithm. If the results differ,
there is a problem (in all likelihood with the more advanced algorithm).

● Maintain a test suite of queries, and run the collision code against the test
suite when the code changes. Code of geometric nature tends to have many
special cases, and having a set of comprehensive tests helps in trapping prob-
lems early. Whenever a bug is found, add test cases to detect if it is ever
reintroduced.
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Of course, all general debugging strategies such as liberal use of assert() calls
apply as well. A good discussion of such strategies is found in [McConnell93,
Chapter 26].

2.8 Summary

This chapter has outlined the many factors that must be considered when designing
and implementing a collision detection system. It talked about possible collision
geometry representations, and whether to use rendering geometry or specialized
geometry to perform collision tests. Collision processing was defined as taking place
in two phases, the narrow and broad phase. The broad phase is concerned with
coarsely identifying small subgroups of potentially colliding objects, whereas the
narrow phase performs the detailed pairwise collision tests between objects. Narrow-
phase testing is the primary topic of Chapters 4 and 5, where many different query
types on a wide variety of geometrical object representations are discussed. Narrow-
phase testing is also discussed in Chapter 9. Broad-phase methods are discussed in
Chapters 6 through 8. The importance of robustness was stressed. This book devotes
two full chapters to the topic of robustness, Chapters 11 and 12. Because this book
is about collision detection for real-time applications, performance was also stressed
as an important system consideration. In some respect, the majority of the book
is about performance in that efficient algorithms and data structures are discussed
throughout. The book concludes with discussion of optimization, in Chapter 13.
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Chapter 3

A Math and Geometry
Primer

Collision detection is an area of a very geometric nature. For example, in a world sim-
ulation both world and objects of that world are represented as geometrical entities
such as polygons, spheres, and boxes. To implement efficient intersection tests for
these entities, a thorough grasp of vectors, matrices, and linear algebra in general is
required. Although this book assumes the reader already has some experience with
these topics, the coverage in this chapter is provided for convenience, serving as a
quick review of relevant concepts, definitions, and identities used throughout the
book. The presentation is intended as an informal review, rather than a thorough for-
mal treatment.Those readers interested in a more formal and encompassing coverage
of vector spaces, and linear algebra and geometry in general, may want to consult
texts such as [Hausner98] or [Anton00].

This chapter also presents some concepts from computational geometry (for exam-
ple,Voronoi regions and convex hulls) and from the theory of convex sets (separating
planes, support mappings, and Minkowski sums and differences). These concepts
are important to many of the algorithms presented in this book.

3.1 Matrices

A matrix A is an m × n rectangular array of numbers, with m rows and n columns:

A =

⎡
⎢⎢⎢⎣

a11 a12 · · · a1n

a21 a22 · · · a2n
...

...
. . .

...
am1 am2 · · · amn

⎤
⎥⎥⎥⎦ = [aij].

23
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The matrix entry aij is located in the i-th row and j-th column of the array. An m × n
matrix is said to be of order m × n (“m by n”). If m = n, A is said to be a square matrix
(of order n). A matrix of a single row is called a row matrix. Similarly, a matrix of a
single column is called a column matrix:

A = [
a1 a2 · · · an

]
, B =

⎡
⎢⎢⎢⎣

b1

b2
...

bm

⎤
⎥⎥⎥⎦.

A matrix is often viewed as consisting of a number of row or column matrices. Row
matrices and column matrices are also often referred to as row vectors and column vec-
tors, respectively. For a square matrix, entries for which i = j (that is, a11, a22, . . . , ann)
are called the main diagonal entries of the matrix. If aij = 0 for all i �= j the matrix is
called diagonal:

A =

⎡
⎢⎢⎢⎣

a11 0 · · · 0
0 a22 · · · 0
...

...
. . .

...
0 0 · · · ann

⎤
⎥⎥⎥⎦.

A square diagonal matrix with entries of 1 on the main diagonal and 0 for all other
entries is called an identity matrix, denoted by I. A square matrix L with all entries
above the main diagonal equal to zero is called a lower triangular matrix. If instead
all entries below the main diagonal of a matrix U are equal to zero, the matrix is an
upper triangular matrix. For example:

I =
⎡
⎣1 0 0

0 1 0
0 0 1

⎤
⎦, L =

⎡
⎣ 2 0 0

1 −2 0
−5 0 −1

⎤
⎦, U =

⎡
⎣1 5 4

0 2 1
0 0 3

⎤
⎦.

The transpose of a matrix A, written AT , is obtained by exchanging rows for columns,
and vice versa. That is, the transpose B of a matrix A is given by bij = aji:

A =
⎡
⎣ 5 2

−3 −1
0 −4

⎤
⎦, B = AT =

[
5 −3 0
2 −1 −4

]
.
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A matrix is symmetric if AT = A; that is, if aij = aji for all i and j. If AT = −A the
matrix is said to be skew symmetric (or antisymmetric).

3.1.1 Matrix Arithmetic

Given two m × n matrices A = [aij] and B = [bij], matrix addition (C = [cij] = A + B)
is defined as the pairwise addition of elements from each matrix at corresponding
positions, cij = aij + bij, or

C = A + B =

⎡
⎢⎢⎢⎢⎣

a11 a12 · · · a1n

a21 a22 · · · a2n

...
...

. . .
...

am1 am2 · · · amn

⎤
⎥⎥⎥⎥⎦ +

⎡
⎢⎢⎢⎢⎣

b11 b12 · · · b1n

b21 b22 · · · b2n

...
...

. . .
...

bm1 bm2 · · · bmn

⎤
⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎣

a11 + b11 a12 + b12 · · · a1n + b1n

a21 + b21 a22 + b22 · · · a2n + b2n

...
...

. . .
...

am1 + bm1 am2 + bm2 · · · amn + bmn

⎤
⎥⎥⎥⎥⎦ = [aij + bij].

Matrix subtraction is defined analogously. Multiplication of matrices comes in two
forms. If c is a scalar, then the scalar multiplication B = c A is given by [bij] = [c aij].
For example:

B = 4A = 4
[−2 0 1

5 −3 −1

]
=
[−8 0 4

20 −12 −4

]
, where A =

[−2 0 1
5 −3 −1

]
.

If A is an m × n matrix and B an n × p matrix, then matrix multiplication (C = AB)
is defined as:

cij =
n∑

k=1

aik bkj.

For example:

C = AB =
[
3 0 −5
2 −1 −4

]⎡⎣3 −1
4 7
2 −2

⎤
⎦ =

[−1 7
−6 −1

]
.
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In terms of vectors (as defined in Section 3.3), cij is the dot product of the i-th row
of A and the j-th column of B. Matrix multiplication is not commutative; that is, in
general, AB �= BA. Division is not defined for matrices, but some square matrices A
have an inverse, denoted inv(A) or A−1, with the property that AA−1 = A−1A = I.
Matrices that do not have an inverse are called singular (or noninvertible).

3.1.2 Algebraic Identities Involving Matrices

Given scalars r and s and matrices A, B, and C (of the appropriate sizes required
to perform the operations), the following identities hold for matrix addition, matrix
subtraction, and scalar multiplication:

A + B = B + A

A + (B + C) = (A + B) + C

A − B = A + (−B)

−(−A) = A

s(A ± B) = s A ± s B

(r ± s)A = r A ± s A

r(s A) = s(r A) = (rs) A

For matrix multiplication, the following identities hold:

AI = IA = A

A(BC) = (AB)C

A(B ± C) = AB ± AC

(A ± B)C = AC ± BC

(s A)B = s(AB) = A(s B)

Finally, for matrix transpose the following identities hold:

(A ± B)T = AT ± BT

(s A)T = s AT

(AB)T = BTAT
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3.1.3 Determinants

The determinant of a matrix A is a number associated with A, denoted det(A) or
|A|. It is often used in determining the solvability of systems of linear equations,
as discussed in the next section. In this book the focus is on 2 × 2 and 3 × 3
determinants. For matrices up to a dimension of 3×3, determinants are calculated as
follows:

|A| = |u1| = u1,

|A| =
∣∣∣∣u1 u2

v1 v2

∣∣∣∣ = u1v2 − u2v1, and

|A| =
∣∣∣∣∣∣
u1 u2 u3

v1 v2 v3

w1 w2 w3

∣∣∣∣∣∣ = u1 (v2w3 − v3w2) + u2 (v3w1 − v1w3)

+ u3 (v1w2 − v2w1) = u · (v × w) .

(The symbols · and × are the dot product and cross product, as described in Sections
3.3.3 and 3.3.5, respectively.) Determinants are geometrically related to (oriented)
hypervolumes: a generalized concept of volumes in n-dimensional space for an n × n
determinant, where length, area, and volume are the 1D, 2D, and 3D volume mea-
surements. For a 1 × 1 matrix, A = [u1], |A| corresponds to the signed length of a
line segment from the origin to u1. For a 2 × 2 matrix,

A =
[
u1 u2

v1 v2

]
,

|A| corresponds to the signed area of the parallelogram determined by the points
(u1, u2), (v1, v2), and (0, 0), the last point being the origin. If the parallelogram is swept
counterclockwise from the first point to the second, the determinant is positive, else
negative. For a 3 × 3 matrix, A = [u v w] (where u, v, and w are column vectors),
|A| corresponds to the signed volume of the parallelepiped determined by the three
vectors. In general, for an n-dimensional matrix the determinant corresponds to the
signed hypervolume of the n-dimensional hyper-parallelepiped determined by its
column vectors.

Entire books have been written about the identities of determinants. Here, only
the following important identities are noted:

● The determinant of a matrix remains unchanged if the matrix is transposed,

|A| = ∣∣AT
∣∣ .
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● If B is obtained by interchanging two rows or two columns of A, then |B| = − |A|
(swapping two rows or columns changes how the hypervolume is swept out and
therefore changes the sign of the determinant).

● If B is derived from A by adding a multiple of one row (or column) to another
row (or column), then |B| = |A| (this addition skews the hypervolume parallel
to one of its faces, thus leaving the volume unchanged).

● The determinant of the product of two n × n matrices A and B is equal to the
product of their respective determinants, |AB| = |A| |B|.

● If B is obtained by multiplying a row (or column) of A by a constant k, then
|B| = k |A|.

● If one row of A is a multiple of another row, then |A| = 0. The same is true
when a column of A is a multiple of another column.

● For a determinant with a row or column of zeroes, |A| = 0.

An effective way of evaluating determinants is to use row and column operations on
the matrix to reduce it to a triangular matrix (where all elements below or above the
main diagonal are zero). The determinant is then the product of the main diagonal
entries. For example, the determinant of A,

A =
⎡
⎣ 4 −2 6

2 5 0
−2 1 −4

⎤
⎦,

can be evaluated as follows:

det(A) =
∣∣∣∣∣∣

4 −2 6
2 5 0

−2 1 −4

∣∣∣∣∣∣
Adding the second row
to the third row …

=
∣∣∣∣∣∣
4 −2 6
2 5 0
0 6 −4

∣∣∣∣∣∣
Adding − 1

2 times the first
row to the second row …

=
∣∣∣∣∣∣
4 −2 6
0 6 −3
0 6 −4

∣∣∣∣∣∣
Adding −1 times the second
row to the third row …
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=
∣∣∣∣∣∣
4 −2 6
0 6 −3
0 0 −1

∣∣∣∣∣∣
Now triangular so determinant is
product of main diagonal entries

= −24.

An example application of determinants is Cramer’s rule for solving small systems of
linear equations, described in the next section.

Determinants can also be evaluated through a process known as expansion by
cofactors. First define the minor to be the determinant mij of the matrix obtained by
deleting row i and column j from matrix A. The cofactor cij is then given by

cij = (−1)i+jmij.

The determinant of A can now be expressed as

|A| =
n∑

j=1

arjcrj =
n∑

i=1

aikcik,

where r and k correspond to an arbitrary row or column index. For example, given
the same matrix A as before, |A| can now be evaluated as, say,

|A|=
∣∣∣∣∣∣

4 −2 6
2 5 0

−2 1 −4

∣∣∣∣∣∣=4
∣∣∣∣5 0
1 −4

∣∣∣∣−(−2)
∣∣∣∣ 2 0
−2 −4

∣∣∣∣+6
∣∣∣∣ 2 5
−2 1

∣∣∣∣=−80−16+72=−24.

3.1.4 Solving Small Systems of Linear Equation Using
Cramer’s Rule

Consider a system of two linear equations in the two unknowns x and y:

ax + by = e, and

cx + dy = f.
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Multiplying the first equation by d and the second by b gives

adx + bdy = de, and

bcx + bdy = bf.

Subtracting the second equation from first gives adx−bcx = de−bf, from which x can
be solved for as x = (de−bf )/(ad−bc). A similar process gives y = (af − ce)/(ad−bc).

The solution to this system corresponds to finding the intersection point of two
straight lines, and thus three types of solution are possible: the lines intersect in a
single point, the lines are parallel and nonintersecting, or the lines are parallel and
coinciding. A unique solution exists only in the first case, signified by the denominator
ad − bc being nonzero. Note that this 2 × 2 system can also be written as the matrix
equation AX = B, where

A =
[
a b
c d

]
, X =

[
x
y

]
, and B =

[
e
f

]
.

A is called the coefficient matrix, X the solution vector, and B the constant vector. A
system of linear equations has a unique solution if and only if the determinant of the
coefficient matrix is nonzero, |A| �= 0. In this case, the solution is given by X = A−1B.

Upon examining the previous solution in x and y it becomes clear it can be
expressed in terms of ratios of determinants:

x =

∣∣∣∣e b
f d

∣∣∣∣∣∣∣∣a b
c d

∣∣∣∣
, y =

∣∣∣∣a e
c f

∣∣∣∣∣∣∣∣a b
c d

∣∣∣∣
.

Here, the denominator is the determinant of the coefficient matrix. The x numerator
is the determinant of the coefficient matrix where the first column has been replaced
by the constant vector. Similarly, the y numerator is the determinant of the coefficient
matrix where the second column has been replaced by the constant vector.

Called Cramer’s rule, this procedure extends to larger systems in the same manner,
allowing a given variable to be computed by dividing the determinant of the coef-
ficient matrix (where the variable column is replaced by the constant vector) by the
determinant of the original coefficient matrix. For example, for the 3 × 3 system

a1x + b1y + c1z = d1,

a2x + b2y + c2z = d2, and

a3x + b3y + c3z = d3
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Cramer’s rule gives the solution

x =

∣∣∣∣∣∣
d1 b1 c1

d2 b2 c2

d3 b3 c3

∣∣∣∣∣∣
d

, y =

∣∣∣∣∣∣
a1 d1 c1

a2 d2 c2

a3 d3 c3

∣∣∣∣∣∣
d

, z =

∣∣∣∣∣∣
a1 b1 d1

a2 b2 d2

a3 b3 d3

∣∣∣∣∣∣
d

, where

d =
∣∣∣∣∣∣
a1 b1 c1

a2 b2 c2

a3 b3 c3

∣∣∣∣∣∣.

Solving systems of linear equations using Cramer’s rule is not recommended for
systems with more than three or perhaps four equations, in that the amount of work
involved increases drastically. For larger systems, a better solution is to use a Gaussian
elimination algorithm. However, for small systems Cramer’s rule works well and is
easy to apply. It also has the benefit of being able to compute the value of just a single
variable. All systems of linear equations encountered in this text are small.

3.1.5 Matrix Inverses for 2 × 2 and 3 × 3 Matrices

Determinants are also involved in the expressions for matrix inverses. The full details
on how to compute matrix inverses is outside the range of topics for this book. For
purposes here, it is sufficient to note that the inverses for 2 × 2 and 3 × 3 matrices
can be written as

A−1 = 1
det(A)

[
u22 −u12

−u21 u11

]
, and

A−1 = 1
det(A)

⎡
⎣u22u33 − u23u32 u13u32 − u12u33 u12u23 − u13u22

u23u31 − u21u33 u11u33 − u13u31 u13u21 − u11u23

u21u32 − u22u31 u12u31 − u11u32 u11u22 − u12u21

⎤
⎦.

From these expressions, it is clear that if the determinant of a matrix A is zero, inv(A)
does not exist, as it would result in a division by zero (this property holds for square
matrices of arbitrary size, not just 2 × 2 and 3 × 3 matrices). The inverse of a 3 × 3
matrix A can also be expressed in a more geometrical form. Let A consist of the three
column vectors u, v, and w:

A = [
u v w

]
.

The inverse of A is then given as

A−1 = [
a b c

]T ,
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where a, b, and c are the column vectors

a = (v × w)/(u · (v × w)),

b = (w × u)/(u · (v × w)), and

c = (u × v)/(u · (v × w)).

In general, whenever the inverse of A, inv(A), exists, it can always be factored as

inv(A) = 1
det(A)

M,

where M is called the adjoint matrix of A, denoted adj(A).

3.1.6 Determinant Predicates

Determinants are also useful in concisely expressing geometrical tests. Many, if not
most, geometrical tests can be cast into determinant form. If a determinant can be
robustly and efficiently evaluated, so can the geometrical test. Therefore, the evalua-
tion of determinants has been well studied. In particular, the sign of a determinant
plays a special role in many geometrical tests, often used as topological predicates to
test the orientation, sidedness, and inclusion of points. Note that direct evaluation
of determinant predicates (without, for example, applying common subexpression
elimination) does not, in general, result in the most efficient or robust expressions.
Also note that determinant predicates implemented using floating-point arithmetic
are very sensitive to rounding errors and algorithms relying on a correct sign in degen-
erate configurations are likely not to work as intended. For more on robustness errors
and how to handle them, see Chapters 11 and 12. With that caveat, as an application
of determinants, the next few sections illustrate some of the more useful of these
topological predicates.

3.1.6.1 ORIENT2D(A, B, C )

Let A = (ax , ay), B = (bx , by), and C = (cx , cy) be three 2D points, and let
ORIENT2D(A, B, C) be defined as

ORIENT2D(A, B, C) =
∣∣∣∣∣∣
ax ay 1
bx by 1
cx cy 1

∣∣∣∣∣∣ =
∣∣∣∣ax − cx ay − cy

bx − cx by − cy

∣∣∣∣.
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If ORIENT2D(A, B, C) > 0, C lies to the left of the directed line AB. Equivalently,
the triangle ABC is oriented counterclockwise. When ORIENT2D(A, B, C) < 0, C
lies to the right of the directed line AB, and the triangle ABC is oriented clock-
wise. When ORIENT2D(A, B, C) = 0, the three points are collinear. The actual value
returned by ORIENT2D(A, B, C) corresponds to twice the signed area of the trian-
gle ABC (positive if ABC is counterclockwise, otherwise negative). Alternatively, this
determinant can be seen as the implicit equation of the 2D line L(x, y) = 0 through
the points A = (ax , ay) and B = (bx , by) by defining L(x, y) as

L(x, y) =

∣∣∣∣∣∣∣
ax ay 1
bx by 1
x y 1

∣∣∣∣∣∣∣.

3.1.6.2 ORIENT3D(A, B, C, D)

Given four 3D points A = (ax , ay, az), B = (bx , by, bz), C = (cx , cy, cz), and D =
(dx , dy, dz), define ORIENT3D(A, B, C, D) as

ORIENT3D(A, B, C, D) =

∣∣∣∣∣∣∣∣∣

ax ay az 1
bx by bz 1
cx cy cz 1
dx dy dz 1

∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣
ax − dx ay − dy az − dz

bx − dx by − dy bz − dz

cx − dx cy − dy cz − dz

∣∣∣∣∣∣∣
= (A − D) · ((B − D) × (C − D)).

When ORIENT3D(A, B, C, D) < 0, D lies above the supporting plane of trian-
gle ABC, in the sense that ABC appears in counterclockwise order when viewed
from D. If ORIENT3D(A, B, C, D) > 0, D instead lies below the plane of ABC. When
ORIENT3D(A, B, C, D) = 0, the four points are coplanar. The value returned by
ORIENT3D(A, B, C, D) corresponds to six times the signed volume of the tetrahe-
dron formed by the four points. Alternatively, the determinant can be seen as the
implicit equation of the 3D plane P(x, y, z) = 0 through the points A = (ax , ay, az),
B = (bx , by, bz), and C = (cx , cy, cz) by defining P(x, y, z) as

P(x, y, z) =

∣∣∣∣∣∣∣∣∣

ax ay az 1
bx by bz 1
cx cy cz 1
x y z 1

∣∣∣∣∣∣∣∣∣
.
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3.1.6.3 INCIRCLE2D(A, B, C, D)

Given four 2D points A = (ax , ay), B = (bx , by), C = (cx , cy), and D = (dx , dy), define
INCIRCLE2D(A, B, C, D) as

INCIRCLE2D(A, B, C, D) =

∣∣∣∣∣∣∣∣∣

ax ay a2
x + a2

y 1
bx by b2

x + b2
y 1

cx cy c2
x + c2

y 1
dx dy d2

x + d2
y 1

∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣
ax − dx ay − dy (ax − dx)2 + (ay − dy)2

bx − dx by − dy (bx − dx)2 + (by − dy)2

cx − dx cy − dy (cx − dx)2 + (cy − dy)2

∣∣∣∣∣∣∣.

Let the triangle ABC appear in counterclockwise order, as indicated by
ORIENT2D(A, B, C) > 0. Then, when INCIRCLE2D(A, B, C, D) > 0, D lies inside the
circle through the three points A, B, and C. If instead INCIRCLE2D(A, B, C, D) < 0,
D lies outside the circle. When INCIRCLE2D(A, B, C, D) = 0, the four points are
cocircular. If ORIENT2D(A, B, C) < 0, the result is reversed.

3.1.6.4 INSPHERE(A, B, C, D, E )

Given five 3D points A = (ax , ay, az), B = (bx , by, bz), C = (cx , cy, cz), D = (dx , dy, dz),
and E = (ex , ey, ez), define INSPHERE(A, B, C, D, E) as

INSPHERE(A, B, C, D, E) =

∣∣∣∣∣∣∣∣∣∣∣

ax ay az a2
x + a2

y + a2
z 1

bx by bz b2
x + b2

y + b2
z 1

cx cy cz c2
x + c2

y + c2
z 1

dx dy dz d2
x + d2

y + d2
z 1

ex ey ez e2
x + e2

y + e2
z 1

∣∣∣∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣∣

ax − ex ay − ey az − ez (ax − ex)2 + (ay − ey)2 + (az − ez)2

bx − ex by − ey bz − ez (bx − ex)2 + (by − ey)2 + (bz − ez)2

cx − ex cy − ey cz − ez (cx − ex)2 + (cy − ey)2 + (cz − ez)2

dx − ex dy − ey dz − ez (dx − ex)2 + (dy − ey)2 + (dz − ez)2

∣∣∣∣∣∣∣∣∣
.

Let the four points A, B, C, and D be oriented such that ORIENT3D(A, B, C, D) > 0.
Then, when INSPHERE(A, B, C, D, E) > 0, E lies inside the sphere through A, B,
C, and D. If instead INSPHERE(A, B, C, D, E) < 0, E lies outside the sphere. When
INSPHERE(A, B, C, D, E) = 0, the five points are cospherical.
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3.2 Coordinate Systems and Points

A point is a position in space, the location of which is described in terms of a coordinate
system, given by a reference point, called the origin, and a number of coordinate axes.
Points in an n-dimensional coordinate system are each specified by an n-tuple of real
numbers (x1, x2, . . . , xn). The n-tuple is called the coordinate of the point. The point
described by the n-tuple is the one reached by starting at the origin and moving x1

units along the first coordinate axis, x2 units along the second coordinate axis, and so
on for all given numbers.The origin is the point with all zero components, (0, 0, . . . , 0).
A coordinate system may be given relative to a parent coordinate system, in which
case the origin of the subordinate coordinate system may correspond to any point in
the parent coordinate system.

Of primary interest is the Cartesian (or rectangular) coordinate system, where the
coordinate axes are perpendicular to each other. For a 2D space, the two coordinate
axes are conventionally denoted the x axis and the y axis. In a 3D space, the third
coordinate axis is called the z axis.

The coordinate space is the set of points the coordinate system can specify. The
coordinate system is said to span this space. A given set of coordinate axes spanning
a space is called the frame of reference, or basis, for the space. There are infinitely many
frames of reference for a given coordinate space.

In this book, points are denoted by uppercase letters set in italics (for example, P,
Q, and R). Points are closely related to vectors, as discussed in the next section.

3.3 Vectors

Abstractly, vectors are defined as members of vector spaces. A vector space is defined in
terms of a set of elements (the vectors) that support the operations of vector addition
and scalar multiplication, elements and operations all obeying a number of axioms.
In this abstract sense, m × n matrices of real numbers may, for example, be elements
(vectors) of a vector space. However, for the practical purposes of this book vectors
typically belong to the vector space R

n, whose elements are n-tuples of numbers from
the domain of real numbers. A vector v is thus given as

v = (v1, v2, . . . , vn).

The number terms v1, v2, . . . , vn are called the components of v. In fact, in this book
vectors are predominantly restricted to the special cases R

2 and R
3 of R

n, thus being
given as tuples of two and three real numbers, respectively.

Informally, vectors are often described as entities having both direction and magni-
tude. They are therefore usually represented graphically by an arrow, or geometrically
as a directed line segment, pointing in a given direction and of a given length.Vectors
are denoted by boldface lowercase letters (for example, u, v, and w).
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(a)

A

v

v

B

C

D

(b)

q

p

Q

P

O

Figure 3.1 (a) The (free) vector v is not anchored to a specific point and may therefore
describe a displacement from any point, specifically from point A to point B, or from point C
to point D. (b) A position vector is a vector bound to the origin. Here, position vectors p and
q specify the positions of points P and Q, respectively.

A vector v can be interpreted as the displacement from the origin to a specific
point P, effectively describing the position of P. In this interpretation v is, in a sense,
bound to the origin O. A vector describing the location of a point is called a position
vector, or bound vector. A vector v can also be interpreted as the displacement from
an initial point P to an endpoint Q, Q = P + v. In this sense, v is free to be applied at
any point P. A vector representing an arbitrary displacement is called a free vector (or
just vector). If the origin is changed, bound vectors change, but free vectors stay the
same. Two free vectors are equal if they have the same direction and magnitude; that
is, if they are componentwise equal. However, two bound vectors are not equal —
even if the vectors are componentwise equal — if they are bound to different origins.
Although most arithmetic operations on free and bound vectors are the same, there
are some that differ. For example, a free vector — such as the normal vector of a
plane — transforms differently from a bound vector.

The existence of position vectors means there is a one-to-one relationship between
points and vectors. Frequently, a fixed origin is assumed to exist and the terms point
and vector are therefore used interchangeably.

As an example, in Figure 3.1a, the free vector v may describe a displacement from
any point, specifically from A to B, or from C to D. In Figure 3.1b, the two bound
vectors p and q specify the positions of the points P and Q, respectively, and only
those positions.

The vector v from point A to point B is written v = −→
AB (which is equivalent to

v = −→
OB − −→

OA). Sometimes the arrow is omitted and v is written simply as v = AB.
A special case is the vector from a point P to P itself. This vector is called the zero
vector, and is denoted by 0.

In the context of working with vectors, real numbers are usually referred to as
scalars. Scalars are here denoted by lowercase letters set in italics (for example a,
b, and c).
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u+v

u

(a) (b)

v

u+v

u

u

v v

Figure 3.2 (a) The result of adding two vectors u and v is obtained geometrically by placing
the vectors tail to head and forming the vector from the tail of the first vector to the head
of the second. (b) Alternatively, by the parallelogram law, the vector sum can be seen as the
diagonal of the parallelogram formed by the two vectors.

3.3.1 Vector Arithmetic

The sum w of two vectors u and v, w = u + v, is formed by pairwise adding the
components of u and v:

w = u + v = (u1, u2, . . . , un) + (v1, v2, . . . , vn) = (u1 + v1, u2 + v2, . . . , un + vn).

Geometrically, the vector sum can be seen as placing the arrow for v at the tip of
u and defining their sum as the arrow pointing from the start of u to the tip of v.
This geometric view of the vector sum is often referred to as the parallelogram law
of vector addition, as the vector forming the sum corresponds to the diagonal of the
parallelogram formed by the two given vectors, as illustrated in Figure 3.2.

The subtraction of vectors, w = u − v, is defined in terms of the addition of u
and the negation of v; that is, w = u + (−v). The negation −v of a vector v is a
vector of equal magnitude but of opposite direction. It is obtained by negating each
component of the vector:

−v = −(v1, v2, . . . , vn) = (−v1, −v2, . . . , −vn).

Componentwise, the subtraction of two vectors is therefore given by

w = u − v = (u1, u2, . . . , un) − (v1, v2, . . . , vn) = (u1 − v1, u2 − v2, . . . , un − vn).

Vectors can also be scaled through the multiplication of the vector by a constant
(Figure 3.3). The resulting vector w, w = k v, from a scalar multiplication by k is
given by

w = k v = k (v1, v2, . . . , vn) = (k v1, k v2, . . . , k vn).
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v

(a)

–v

2v

(b) (c)

Figure 3.3 (a) The vector v. (b) The negation of vector v. (c) The vector v scaled by a
factor of 2.

When the scalar k is negative, w has a direction opposite that of v. The length of a
vector v is denoted by ‖v‖ and is defined in terms of its components as

‖v‖ =
√

(v2
1 + v2

2 + · · · + v2
n).

The length of a vector is also called its norm or magnitude. A vector with a magnitude
of 1 is called a unit vector. A nonzero vector v can be made unit, or be normalized, by
multiplying it with the scalar 1/ ‖v‖.

For any n-dimensional vector space (specifically R
n) there exists a basis consisting

of exactly n linearly independent vectors e1, e2, . . . , en. Any vector v in the space can
be written as a linear combination of these base vectors; thus,

v = a1e1 + a2e2 + · · · + anen, where a1, a2, . . . , an are scalars.

Given a set of vectors, the vectors are linearly independent if no vector of the set can
be expressed as a linear combination of the other vectors. For example, given two
linearly independent vectors e1 and e2, any vector v in the plane spanned by these
two vectors can be expressed linearly in terms of the vectors as v = a1e1 + a2e2 for
some constants a1 and a2.

Most bases used are orthonormal. That is, the vectors are pairwise orthogonal and
are unit vectors. The standard basis in R

3 is orthonormal, consisting of the vectors
(1, 0, 0), (0, 1, 0), and (0, 0, 1), usually denoted, respectively, by i, j, and k.

3.3.2 Algebraic Identities Involving Vectors

Given vectors u, v, and w, the following identities hold for vector addition and
subtraction:

u + v = v + u

(u + v) + w = u + (v + w)
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u − v = u + (−v)

−(−v) = v

v + (−v) = 0

v + 0 = 0 + v = v

Additionally, given the scalars r and s, the following identities hold for scalar
multiplication:

r(s v) = (rs) v

(r + s) v = r v + s v

s(u + v) = s u + s v

1 v = v

3.3.3 The Dot Product

The dot product (or scalar product) of two vectors u and v is defined as the sum of the
products of their corresponding vector components and is denoted by u · v. Thus,

u · v = (u1, u2, . . . , un) · (v1, v2, . . . , vn) = u1v1 + u2v2 + · · · + unvn.

Note that the dot product is a scalar, not a vector. The dot product of a vector and
itself is the squared length of the vector:

v · v = v2
1 + v2

2 + · · · + v2
n = ‖v‖2 .

It is possible to show that the smallest angle θ between u and v satisfies the equation

u · v = ‖u‖ ‖v‖ cos θ ,

and thus θ can be obtained as

θ = cos−1 u · v
‖u‖ ‖v‖ .

As a result, for two nonzero vectors the dot product is positive when θ is acute,
negative when θ is obtuse, and zero when the vectors are perpendicular (Figure 3.4).
Being able to tell whether the angle between two vectors is acute, obtuse, or at a right
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u ⋅ v < 0

(a)

v obtuse

(b) (c)

v

v

u u u

right angle acute

u ⋅ v = 0 u ⋅ v > 0

Figure 3.4 The sign of the dot product of two vectors tells whether the angle between the
vectors is (a) obtuse, (b) at a right angle, or (c) acute.

angle is an extremely useful property of the dot product, which is frequently used in
various geometric tests.

Geometrically, the dot product can be seen as the projection of v onto u, returning
the signed distance d of v along u in units of ‖u‖:

d = u · v
‖u‖ .

This projection is illustrated in Figure 3.5a. Given vectors u and v, v can there-
fore be decomposed into a vector p parallel to u and a vector q perpendicular to u,
such that v = p + q:

p = u · v
‖u‖

u
‖u‖ = u · v

‖u‖2 u = u · v
u · u

u, and

q = v − p = v − u · v
u · u

u.

Figure 3.5b shows how v is decomposed into p and q.
Note that because the dot product is commutative the same holds true for seeing

it as the projection of u onto v, returning the distance of u along v in units of ‖v‖.

3.3.4 Algebraic Identities Involving Dot Products

Given scalars r and s and vectors u and v, the following identities hold for the dot
product:

u · v = u1v1 + u2v2 + · · · + unvn
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(a)
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p
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Figure 3.5 (a) The distance of v along u and (b) the decomposition of v into a vector p
parallel and a vector q perpendicular to u.

u · v = ‖u‖ ‖v‖ cos θ

u · u = ‖u‖2

u · v = v · u

u · (v ± w) = u · v ± u · w

r u · s v = rs(u · v)

3.3.5 The Cross Product

The cross product (or vector product) of two 3D vectors u = (u1, u2, u3) and v =
(v1, v2, v3) is denoted by u × v and is defined in terms of vector components as

u × v = (u2v3 − u3v2, −(u1v3 − u3v1), u1v2 − u2v1).

The result is a vector perpendicular to u and v. Its magnitude is equal to the product
of the lengths of u and v and the sine of the smallest angle θ between them. That is,

u × v = n ‖u‖ ‖v‖ sin θ ,

where n is a unit vector perpendicular to the plane of u and v. When forming the
cross product w = u ×v, there is a choice of two possible directions for w. Here, and
by convention, the direction of w is chosen so that it, together with u and v, forms
a right-handed coordinate system. The right-hand rule is a mnemonic for remembering
what a right-handed coordinate system looks like. It says that if the right hand is
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u

v

n

u + v

u × v

Figure 3.6 Given two vectors u and v in the plane, the cross product w (w = u × v) is a
vector perpendicular to both vectors, according to the right-hand rule. The magnitude of w
is equal to the area of the parallelogram spanned by u and v (shaded in dark gray).

curved about the w vector such that the fingers go from u to v, the direction of w
coincides with the direction of the extended thumb.

The magnitude of u × v equals the area of the parallelogram spanned by u and v,
with base ‖u‖ and height ‖v‖ sin θ (Figure 3.6). The magnitude is largest when the
vectors are perpendicular.

Those familiar with determinants might find it easier to remember the expression
for the cross product as the pseudo-determinant:

u × v =
∣∣∣∣∣∣

i j k
u1 u2 u3

v1 v2 v3

∣∣∣∣∣∣ =
∣∣∣∣u2 u3

v2 v3

∣∣∣∣i −
∣∣∣∣u1 u3

v1 v3

∣∣∣∣j +
∣∣∣∣u1 u2

v1 v2

∣∣∣∣k,

where i = (1, 0, 0), j = (0, 1, 0), and k = (0, 0, 1) are unit vectors parallel to the
coordinate axes.The cross product can also be expressed in matrix form as the product
of a (skew-symmetric) matrix and a vector:

u × v =
⎡
⎣ 0 −u3 u2

u3 0 −u1

−u2 u1 0

⎤
⎦
⎡
⎣v1

v2

v3

⎤
⎦.

It is interesting to note that the cross product can actually be computed using only
five multiplications, instead of the six multiplications indicated earlier, by express-
ing it as

u × v = (v2(t1 − u3) − t4, u3v1 − t3, t4 − u2(v1 − t2)),
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Figure 3.7 Given a quadrilateral ABCD, the magnitude of the cross product of the two
diagonals AC and BD equals twice the area of ABCD. Here, this property is illustrated by the
fact that the four gray areas of the quadrilateral are pairwise identical to the white areas, and
all areas together add up to the area of the parallelogram spanned by AC and BD.

where

t1 = u1 − u2, t2 = v2 + v3, t3 = u1v3, and t4 = t1t2 − t3.

Because this formulation increases the total number of operations from 9 (6 multiplies,
3 additions) to 13 (5 multiplies, 8 additions), any eventual practical performance
benefit of such a rewrite is hardware dependent.

Given a triangle ABC, the magnitude of the cross product of two of its edges equals
twice the area of ABC. For an arbitrary non self-intersecting quadrilateral ABCD, the
magnitude ‖e‖ of the cross product of the two diagonals, e = (C − A) × (D − B),
equals twice the area of ABCD. This property is illustrated in Figure 3.7.

There is no direct equivalent of the cross product in two dimensions, as a third
vector perpendicular to two vectors in the plane must leave the plane and the 2D
space. The closest 2D analog is the 2D pseudo cross product, defined as

u⊥ · v,

where u⊥ = (−u2, u1) is the counterclockwise vector perpendicular to u. The term u⊥
is read “u-perp.”For this reason, the pseudo cross product is sometimes referred to
as the perp-dot product. The 2D pseudo cross product is a scalar, the value of which —
similar to the magnitude of the cross product — corresponds to the signed area of
the parallelogram determined by u and v. It is positive if v is counterclockwise from
u, negative if v is clockwise from u, and otherwise zero.

Again, given the (3D) triangle ABC, note that each component of the cross product
vector d = (B − A) × (C − A) consists of a 2D pseudo cross product (with the middle
component being negated). Therefore, each component of d holds twice the signed
area of the projection of ABC onto the yz, zx, and xy planes, respectively. A single cross
product operation is therefore sufficient for determining the result of a 2D point-in-
triangle test, which can be useful if a cross product operation is directly supported in
hardware.
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3.3.6 Algebraic Identities Involving Cross Products

Given scalars r and s and vectors u, v, w, and x, the following cross product identities
hold:

u × v = −(v × u)

u × u = 0

u × 0 = 0 × u = 0

u · (u × v) = v · (u × v) = 0 (that is, u × v is perpendicular to both u and v)

u · (v × w) = (u × v) · w

u × (v ± w) = u × v ± u × w

(u ± v) × w = u × w ± v × w

(u × v) × w = w × (v × u) = (u · w)v − (v · w)u (a vector in the plane of u and v)

u × (v × w) = (w × v) × u = (u · w)v − (u · v)w (a vector in the plane of v and w)

‖u × v‖ = ‖u‖ ‖v‖ sin θ

(u × v) · (w × x) = (u · w)(v · x) − (v · w)(u · x) (Lagrange’s identity)

r u × s v = rs(u × v)

u × (v × w) + v × (w × u) + w × (u × v) = 0 (Jacobi’s identity)

The Lagrange identity is particularly useful for reducing the number of operations
required for various geometric tests. Several examples of such reductions are found
in Chapter 5.

3.3.7 The Scalar Triple Product

The expression (u × v) · w occurs frequently enough that it has been given a name
of its own: scalar triple product (also referred to as the triple scalar product or box
product). Geometrically, the value of the scalar triple product corresponds to the
(signed) volume of a parallelepiped formed by the three independent vectors u, v,
and w. Equivalently, it is six times the volume of the tetrahedron spanned by u, v,
and w. The relationship between the scalar triple product and the parallelepiped is
illustrated in Figure 3.8.

The cross and dot product can be interchanged in the triple product without
affecting the result:

(u × v) · w = u · (v × w).
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v = b . h = (u × v) . w

h = w . u × v

||u × v||

b = ||u × v||

u × v

w

v

u

Figure 3.8 The scalar triple product (u × v) · w is equivalent to the (signed) volume of the
parallelepiped formed by the three vectors u, v, and w.

The scalar triple product also remains constant under the cyclic permutation of its
three arguments:

(u × v) · w = (v × w) · u = (w × u) · v.

Because of these identities, the special notation [u v w] is often used to denote a triple
product. It is defined as

[u v w] = (u × v) · w = u · (v × w).

This notation abstracts away the ordering of the dot and cross products and makes it
easy to remember the correct sign for triple product identities. If the vectors read uvw
from left to right (starting at the u and allowing wraparound), the product identity is
positive, otherwise negative:

[u v w] = [v w u] = [w u v] = − [u w v] = − [v u w] = − [w v u] .

The scalar triple product can also be expressed as the determinant of the 3×3 matrix,
where the rows (or columns) are the components of the vectors:

[u v w] =
∣∣∣∣∣∣
u1 u2 u3

v1 v2 v3

w1 w2 w3

∣∣∣∣∣∣ = u1

∣∣∣∣v2 v3

w2 w3

∣∣∣∣ − u2

∣∣∣∣v1 v3

w1 w3

∣∣∣∣ + u3

∣∣∣∣v1 v2

w1 w2

∣∣∣∣ = u · (v × w).

Three vectors u, v, and w lie in the same plane if and only if [u v w] = 0.
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3.3.8 Algebraic Identities Involving Scalar Triple Products

Given vectors u, v, w, x, y, and z, the following identities hold for scalar triple
products:

[u v w] = [v w u] = [w u v] = − [u w v] = − [v u w] = − [w v u]

[u u v] = [v u v] = 0

[u v w]2 = [(u × v) (v × w) (w × u)]

u [v w x] − v [w x u] + w [x u v] − x [u v w] = 0

(u × v) × (w × x) = v [u w x] − u [v w x][
(u × v) (w × x) (y × z)

] = [
v y z

]
[u w x] − [

u y z
]

[v w x]

[(u + v) (v + w) (w + u)] = 2 [u v w]

[u v w]
[
x y z

] =
∣∣∣∣∣∣
u · x u · y u · z
v · x v · y v · z
w · x w · y w · z

∣∣∣∣∣∣
[(u − x) (v − x) (w − x)] = [u v w] − [u v x] − [u x w] − [x v w]

= [(u − x) v w] − [(v − w) x u]

3.4 Barycentric Coordinates

A concept useful in several different intersection tests is that of barycentric coordinates.
Barycentric coordinates parameterize the space that can be formed as a weighted
combination of a set of reference points. As a simple example of barycentric coor-
dinates, consider two points, A and B. A point P on the line between them can be
expressed as P = A + t(B − A) = (1 − t)A + tB or simply as P = uA + vB, where
u + v = 1. P is on the segment AB if and only if 0 ≤ u ≤ 1 and 0 ≤ v ≤ 1. Written in
the latter way, (u, v) are the barycentric coordinates of P with respect to A and B. The
barycentric coordinates of A are (1, 0), and for B they are (0, 1).

The prefix bary comes from Greek, meaning weight, and its use as a prefix is
explained by considering u and v as weights placed at the endpoints A and B of the
segment AB, respectively. Then, the point Q dividing the segment in the ratio v:u
is the centroid or barycenter: the center of gravity of the weighted segment and the
position at which it must be supported to be balanced.

A typical application of barycentric coordinates is to parameterize triangles (or
the planes of the triangles). Consider a triangle ABC specified by three noncollinear
points A, B, and C. Any point P in the plane of the points can then be uniquely
expressed as P = uA + vB + wC for some constants u, v, and w, where u + v + w = 1.
The triplet (u, v, w) corresponds to the barycentric coordinates of the point. For the
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triangle ABC, the barycentric coordinates of the vertices A, B, and C are (1, 0, 0),
(0, 1, 0), and (0, 0, 1), respectively. In general, a point with barycentric coordinates
(u, v, w) is inside (or on) the triangle if and only if 0 ≤ u, v, w ≤ 1, or alternatively
if and only if 0 ≤ v ≤ 1, 0 ≤ w ≤ 1, and v + w ≤ 1. That barycentric coordinates
actually parameterize the plane follows from P = uA + vB + wC really just being a
reformulation of P = A + v(B − A) + w(C − A), with v and w arbitrary, as

P = A + v(B − A) + w(C − A) = (1 − v − w)A + vB + wC.

In the latter formulation, the two independent direction vectors AB and AC form a
coordinate system with origin A, allowing any point P in the plane to be parame-
terized in terms of v and w alone. Clearly, barycentric coordinates is a redundant
representation in that the third component can be expressed in terms of the first two.
It is kept for reasons of symmetry.

To solve for the barycentric coordinates, the expression P = A + v(B − A) +
w(C − A) — or equivalently v(B − A) + w(C − A) = P − A — can be written as
v v0 + w v1 = v2, where v0 = B − A, v1 = C − A, and v2 = P − A. Now, a 2 × 2
system of linear equations can be formed by taking the dot product of both sides
with both v0 and v1:

(v v0 + w v1) · v0 = v2 · v0, and

(v v0 + w v1) · v1 = v2 · v1.

Because the dot product is a linear operator, these expressions are equivalent to

v (v0 · v0) + w (v1 · v0) = v2 · v0, and

v (v0 · v1) + w (v1 · v1) = v2 · v1.

This system is easily solved with Cramer’s rule. The following code is an implemen-
tation computing the barycentric coordinates using this method.

// Compute barycentric coordinates (u, v, w) for
// point p with respect to triangle (a, b, c)
void Barycentric(Point a, Point b, Point c, Point p, float &u, float &v, float &w)
{

Vector v0 = b - a, v1 = c - a, v2 = p - a;
float d00 = Dot(v0, v0);
float d01 = Dot(v0, v1);
float d11 = Dot(v1, v1);
float d20 = Dot(v2, v0);
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float d21 = Dot(v2, v1);
float denom = d00 * d11 - d01 * d01;
v = (d11 * d20 - d01 * d21) / denom;
w = (d00 * d21 - d01 * d20) / denom;
u = 1.0f - v - w;

}

If several points are tested against the same triangle, the terms d00, d01, d11, and
denom only have to be computed once, as they are fixed for a given triangle.

The barycentric coordinates can be computed for a point with respect to a simplex
(Section 3.8) of any dimension. For instance, given a tetrahedron specified by the
vertices A, B, C, and D, the barycentric coordinates (u, v, w, x) specify a point P in 3D
space, P = uA + vB + wC + xD with u + v + w + x = 1. If 0 ≤ u, v, w, x ≤ 1, then P is
inside the tetrahedron.

Given the points specified as A = (ax , ay, az), B = (bx , by, bz), C = (cx , cy, cz),
D = (dx , dy, dz), and P = (px , py, pz), the barycentric coordinates can be solved for by
setting up a system of linear equations:

axu + bxv + cxw + dxx = px

ayu + byv + cyw + dyx = py

azu + bzv + czw + dzx = pz

u + v + w + x = 1

Alternatively, by subtracting A from both sides of P = uA + vB + wC + xD — giving

P − A = v(B − A) + w(C − A) + x(D − A)

— it follows that three of the four barycentric coordinate components can be obtained
by solving

(bx − ax)v + (cx − ax) w + (dx − ax) x = px − ax ,

(by − ay)v + (
cy − ay

)
w + (

dy − ay
)

x = py − ay, and

(bz − az)v + (cz − az) w + (dz − az) x = pz − az

(with the fourth component given by u = 1−v−w−x). Either system is easily solved
using Cramer’s rule or Gaussian elimination. For example, in the former system the
coordinates are given by Cramer’s rule as the ratios

u = dPBCD/dABCD,
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v = dAPCD/dABCD,

w = dABPD/dABCD, and

x = dABCP/dABCD = 1 − u − v − w

of the following determinants:

dPBCD =

∣∣∣∣∣∣∣∣∣

px bx cx dx

py by cy dy

pz bz cz dz

1 1 1 1

∣∣∣∣∣∣∣∣∣
, dAPCD =

∣∣∣∣∣∣∣∣∣

ax px cx dx

ay py cy dy

az pz cz dz

1 1 1 1

∣∣∣∣∣∣∣∣∣
, dABPD =

∣∣∣∣∣∣∣∣∣

ax bx px dx

ay by py dy

az bz pz dz

1 1 1 1

∣∣∣∣∣∣∣∣∣
,

dABCP =

∣∣∣∣∣∣∣∣∣

ax bx cx px

ay by cy py

az bz cz pz

1 1 1 1

∣∣∣∣∣∣∣∣∣
, and dABCD =

∣∣∣∣∣∣∣∣∣

ax bx cx dx

ay by cy dy

az bz cz dz

1 1 1 1

∣∣∣∣∣∣∣∣∣
.

These determinants correspond to the signed volumes of the tetrahedra PBCD,APCD,
ABPD, ABCP, and ABCD (strictly 1/6 of each signed volume). As shown further ahead,
the ratios simplify to being the normalized relative heights of the point over the
opposing planes.

Returning to triangles, just as the barycentric coordinates with respect to a tetrahe-
dron can be computed as ratios of volumes the barycentric coordinates with respect
to a triangle can be computed as ratios of areas. Specifically, the barycentric coor-
dinates of a given point P can be computed as the ratios of the triangle areas of
PBC, PCA, and PAB with respect to the area of the entire triangle ABC. For this reason
barycentric coordinates are also called areal coordinates. By using signed triangle areas,
these expressions are valid for points outside the triangle as well. The barycentric
coordinates (u, v, w) are thus given by

u = SignedArea(PBC)/SignedArea(ABC),
v = SignedArea(PCA)/SignedArea(ABC), and
w = SignedArea(PAB)/SignedArea(ABC) = 1 - u – v.

Because constant factors cancel out, any function proportional to the triangle area
can be used in computing these ratios. In particular, the magnitude of the cross
product of two triangle edges can be used. The correct sign is maintained by taking
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Figure 3.9 Triangle ABC with marked “height lines” for u = 0, u = 1, v = 0, v = 1, w = 0,
and w = 1.

the dot product of this cross product with the normal of ABC. For instance, the signed
area for the triangle PBC would be computed as

SignedArea(PBC) = Dot(Cross(B-P, C-P), Normalize(Cross(B-A, C-A))).

Because the area of a triangle can be written as base · height/2, and because for
each of the previous ratios the triangles involved share the same base, the previ-
ous expressions simplify to ratios of heights. Another way of looking at barycentric
coordinates is therefore as the components u, v, and w corresponding to the nor-
malized height of the point P over each of the edges BC, AC, and AB relative to the
height of the edge’s opposing vertex. Because the triangle ABC is the intersection
of the three 2D slabs — each slab defined by the infinite space between two par-
allel lines (or planes) at height 0 and height 1 of a given triangle edge — it also
directly follows why 0 ≤ u, v, w ≤ 1 is required for a point to be inside the triangle
(Figure 3.9).

The lines coinciding with the edges of a triangle can also be seen as dividing
the triangle plane in seven barycentric regions based on the signs of the barycentric
coordinate components: three edge regions, three vertex regions, and the triangle
interior (Figure 3.10). These regions are relevant to both mesh traversal and various
containment algorithms.

An important property of barycentric coordinates is that they remain invariant
under projection. This property allows for a potentially more efficient way of com-
puting the coordinates than given earlier. Instead of computing the areas from the
3D coordinates of the vertices, the calculations can be simplified by projecting all
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Figure 3.10 Barycentric coordinates divide the plane of the triangle ABC into seven regions
based on the sign of the coordinate components.

vertices to the xy, xz, or yz plane. To avoid degeneracies, the projection is made to
the plane where the projected areas are the greatest. The largest absolute component
value of the triangle normal indicates which component should be dropped during
projection.

inline float TriArea2D(float x1, float y1, float x2, float y2, float x3, float y3)
{

return (x1-x2)*(y2-y3) - (x2-x3)*(y1-y2);
}

// Compute barycentric coordinates (u, v, w) for
// point p with respect to triangle (a, b, c)
void Barycentric(Point a, Point b, Point c, Point p, float &u, float &v, float &w)
{

// Unnormalized triangle normal
Vector m = Cross(b - a, c - a);
// Nominators and one-over-denominator for u and v ratios
float nu, nv, ood;
// Absolute components for determining projection plane
float x = Abs(m.x), y = Abs(m.y), z = Abs(m.z);

// Compute areas in plane of largest projection
if (x >= y && x >= z) {

// x is largest, project to the yz plane
nu = TriArea2D(p.y, p.z, b.y, b.z, c.y, c.z); // Area of PBC in yz plane
nv = TriArea2D(p.y, p.z, c.y, c.z, a.y, a.z); // Area of PCA in yz plane
ood = 1.0f / m.x; // 1/(2*area of ABC in yz plane)
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} else if (y >= x && y >= z) {

// y is largest, project to the xz plane

nu = TriArea2D(p.x, p.z, b.x, b.z, c.x, c.z);

nv = TriArea2D(p.x, p.z, c.x, c.z, a.x, a.z);

ood = 1.0f / -m.y;

} else {

// z is largest, project to the xy plane

nu = TriArea2D(p.x, p.y, b.x, b.y, c.x, c.y);

nv = TriArea2D(p.x, p.y, c.x, c.y, a.x, a.y);

ood = 1.0f / m.z;

}

u = nu * ood;

v = nv * ood;

w = 1.0f - u - v;

}

Barycentric coordinates have many uses. Because they are invariant under projec-
tion, they can be used to map points between different coordinate systems. They can
be used for point-in-triangle testing. Given a vertex-lit triangle, they can also find
the corresponding RGB of a specific point within the triangle, which could be used
to adjust the ambient color of an object at that position on the triangle. For triangle
clipping, they can be used to interpolate any quantity, including colors (Gouraud
shading), normals (Phong shading), and texture coordinates (texture mapping). The
following code illustrates how barycentric coordinates can be used to test containment
of a point P in a triangle ABC.

// Test if point p is contained in triangle (a, b, c)
int TestPointTriangle(Point p, Point a, Point b, Point c)
{

float u, v, w;
Barycentric(a, b, c, p, u, v, w);
return v >= 0.0f && w >= 0.0f && (v + w) <= 1.0f;

}

A generalized form of barycentric coordinates for irregularn-sided convex polygons
is given in [Meyer02]. For n = 3, it reduces to the traditional formula for barycentric
coordinates. See also [Floater04].

When the barycentric coordinates of a point P (P = a0P0 + a1P1 + · · · + anPn, a0 +
a1 +· · · an = 1) with respect to the points P0, P1, . . . , Pn also satisfies a0, a1, . . . , an ≥ 0,
P is said to be a convex combination of P0, P1, . . . , Pn.
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3.5 Lines, Rays, and Segments

A line L can be defined as the set of points expressible as the linear combination of
two arbitrary but distinct points A and B:

L(t) = (1 − t)A + t B.

Here, t ranges over all real numbers, −∞ < t < ∞. The line segment (or just segment)
connecting A and B is a finite portion of the line through A and B, given by limiting t
to lie in the range 0 ≤ t ≤ 1. A line segment is directed if the endpoints A and B are
given with a definite order in mind. A ray is a half-infinite line similarly defined, but
limited only by t ≥ 0. Figure 3.11 illustrates the difference among a line, a ray, and a
line segment.

By rearranging the terms in the parametric equation of the line, the equivalent
expression

L(t) = A + t v (where v = B − A)

is obtained. Rays, in particular, are usually defined in this form. Both forms are referred
to as the parametric equation of the line. In 3D, a line L can also be defined implicitly
as the set of points X satisfying

∥∥(X − A) × v
∥∥ = 0,

where A is a point on L and v is a vector parallel to L. This identity follows, because
if and only if X − A is parallel to v does the cross product give a zero vector result
(in which case X lies on L, and otherwise it does not). In fact, when v is a unit vector

A

B

(c)

L(t),0 ≤ t ≤1

A

B

(b)

L(t),0 ≤ t

A

B

(a)

L(t),–∞< t <∞

Figure 3.11 (a) A line. (b) A ray. (c) A line segment.
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the distance of a point P from L is given by
∥∥(P − A) × v

∥∥. This expression relates to
the test for collinearity of points, where three or more points are said to be collinear
when they all lie on a line. The three points A, B, and C are collinear if and only if
the area of the triangle ABC is zero. Letting m = (B − A) × (C − A), collinearity
can be tested by checking if ‖m‖ = 0, or to avoid a square root if m · m is zero.
Alternatively, if (mx , my, mz) are the components of m the points are collinear if and
only if |mx| + ∣∣my

∣∣ + |mz| is zero.

3.6 Planes and Halfspaces

A plane in 3D space can be thought of as a flat surface extending indefinitely in all
directions. It can be described in several different ways. For example by:

● Three points not on a straight line (forming a triangle on the plane)

● A normal and a point on the plane

● A normal and a distance from the origin

In the first case, the three points A, B, and C allow the parametric representation
of the plane P to be given as

P(u, v) = A + u(B − A) + v(C − A).

For the other two cases, the plane normal is a nonzero vector perpendicular to any
vector in the plane. For a given plane, there are two possible choices of normal,
pointing in opposite directions. When viewing a plane specified by a triangle ABC so
that the three points are ordered counterclockwise, the convention is to define the
plane normal as the one pointing toward the viewer. In this case, the plane normal n
is computed as the cross product n = (B − A) × (C − A). Points on the same side of
the plane as the normal pointing out of the plane are said to be in front of the plane.
The points on the other side are said to be behind the plane.

Given a normal n and a point P on the plane, all points X on the plane can be
categorized by the vector X −P being perpendicular to n, indicated by the dot product
of the two vectors being zero. This perpendicularity gives rise to an implicit equation
for the plane, the point-normal form of the plane:

n · (X − P) = 0.

The dot product is a linear operator, which allows it to be distributed across a sub-
traction or addition. This expression can therefore be written as n · X = d, where
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d = n · P, which is the constant-normal form of the plane. When n is unit,
∣∣d∣∣ equals

the distance of the plane from the origin. If n is not unit,
∣∣d∣∣ is still the distance, but

now in units of the length of n. When not taking the absolute value, d is interpreted
as a signed distance.

The constant-normal form of the plane equation is also often written component-
wise as ax + by + cz − d = 0, where n = (a, b, c) and X = (x, y, z). In this text, the
ax+by+cz−d = 0 form is preferred over its common alternative, ax+by+cz+d = 0,
as the former tends to remove a superfluous negation (for example, when computing
intersections with the plane).

When a plane is precomputed, it is often useful to have the plane normal be a
unit vector. The plane normal is made unit by dividing n (and d, if it has already
been computed) by ‖n‖ = √

a2 + b2 + c2. Having a unit plane normal simplifies
most operations involving the plane. In these cases, the plane equation is said to be
normalized. When a normalized plane equation is evaluated for a given point, the
obtained result is the signed distance of the point from the plane (negative if the
point is behind the plane, otherwise positive).

A plane is computed from three noncollinear points as follows:

struct Plane {
Vector n; // Plane normal. Points x on the plane satisfy Dot(n,x) = d
float d; // d = dot(n,p) for a given point p on the plane

};

// Given three noncollinear points (ordered ccw), compute plane equation
Plane ComputePlane(Point a, Point b, Point c)
{

Plane p;
p.n = Normalize(Cross(b - a, c - a));
p.d = Dot(p.n, a);
return p;

}

A plane can also be given in a parameterized form as

P(s, t) = A + s u + t v,

where u and v are two independent vectors in the plane and A is a point on the
plane.

When two planes are not parallel to each other, they intersect in a line. Similarly,
three planes — no two parallel to each other — intersect in a single point. The angle
between two intersecting planes is referred to as the dihedral angle.
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–8x + 6y = –16

–8x + 6y < –16

(2,0)

(8,8)

–8x + 6y > –16

Figure 3.12 The 2D hyperplane −8x + 6y = −16 (a line) divides the plane into two halfspaces.

Planes in arbitrary dimensions are referred to as hyperplanes: planes with one less
dimension than the space they are in. In 2D, hyperplanes correspond to a line; in 3D,
to a plane. Any hyperplane divides the space it is in into two infinite sets of points on
either side of the plane.These two sets are referred to as halfspaces (Figure 3.12). If the
points on the dividing plane are considered included in the halfspace, the halfspace
is closed (otherwise, it is called open). The positive halfspace lies on the side in which
the plane normal points, and the negative halfspace on the opposite side of the plane.
A 2D halfspace is also called a halfplane.

3.7 Polygons

A polygon is a closed figure with n sides, defined by an ordered set of three or more
points in the plane in such a way that each point is connected to the next (and the
last to the first) with a line segment. For a set of n points, the resulting polygon is also
called an n-sided polygon or just n-gon. The line segments that make up the polygon
boundary are referred to as the polygon sides or edges, and the points themselves are
called the polygon vertices (singular, vertex). Two vertices are adjacent if they are joined
by an edge. Figure 3.13 illustrates the components of a polygon.

A polygon is simple if no two nonconsecutive edges have a point in common. A
simple polygon partitions the plane into two disjoint parts: the interior (the bounded
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Figure 3.13 The components of a polygon. Polygon (a) is simple, whereas polygon (b) is
nonsimple due to self-intersection.

area covered by the polygon) and the exterior (the unbounded area outside the poly-
gon). Usually the term polygon refers to both the polygon boundary and the interior.
A polygon diagonal is a line segment that joins two polygon vertices and lies fully
inside the polygon. A vertex is a convex vertex if the interior angle (the angle between
the sides connected to the vertex, measured on the inside of the polygon) is less than
or equal to 180 degrees (Figure 3.14a). If the angle is larger than 180 degrees, it is
instead called a concave (or reflex) vertex (Figure 3.14b).

A polygon P is a convex polygon if all line segments between any two points of P lie
fully inside P. A polygon that is not convex is called a concave polygon. A polygon with

Convex
vertex

(b)(a)

Concave
vertex

Figure 3.14 (a) For a convex polygon, the line segment connecting any two points of the
polygon must lie entirely inside the polygon. (b) If two points can be found such that the
segment is partially outside the polygon, the polygon is concave.
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S CH(S)

Figure 3.15 Convex hull of a concave polygon. A good metaphor for the convex hull is a
large rubber band tightening around the polygonal object.

one or more concave vertices is necessarily concave, but a polygon with only convex
vertices is not always convex (see the next section). The triangle is the only n-sided
polygon always guaranteed to be convex. Convex polygons can be seen as a subset
of the concept of convex point sets in the plane. A convex point set S is a set of points
wherein the line segment between any two points in S is also in S. Given a point set
S, the convex hull of S, denoted CH(S), is the smallest convex point set fully containing
S (Figure 3.15). CH(S) can also be described as the intersection of all convex point
sets containing S.

Related to the convex hull is the affine hull, AH(S). The affine hull is the lowest
dimensional hyperplane that contains all points of S. That is, if S contains just one
point, AH(S) is the point; if S contains two points, AH(S) is the line through them; if
S contains three noncollinear points, AH(S) is the plane determined by them; and if
S contains four (or more) non co-planar points, AH(S) is all of R

3.
In addition to the explicit vertex representation, convex polygons can also be

described as the intersection of a finite number of halfspaces. This representation
is convenient for, for example, point containment tests. For the implicit polygon rep-
resentation, a point lies inside the polygon if it lies inside all halfspaces. Figure 3.16
illustrates a triangle expressed as the intersection of three halfspaces. An alternative
definition for point set convexity is therefore that a point set S is convex if and only if
S is equal to the intersection of all halfspaces that fully contain S. For polygons (and
polyhedra), this is an operative definition in the sense that it can be directly used to
implement a convexity test.

Two or more polygons can be joined at their edges to form a polygon mesh. In a
polygon mesh, the degree of a vertex corresponds to the number of edges connected
to the vertex. In this text, a mesh will be considered closed if all polygons have been
joined such that each edge is part of exactly two polygons.
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(1,2)

(5,8)

3x – 2y ≥ –1

(9,0)

4x + 2y ≤ 36

x + 4y ≥ 9

Figure 3.16 A convex polygon can be described as the intersection of a set of (closed) half-
spaces. Here, the triangle (1, 2), (9, 0), (5, 8) is defined as the intersection of the halfspaces
x + 4y ≥ 9, 4x + 2y ≤ 36, and 3x − 2y ≥ −1.

3.7.1 Testing Polygonal Convexity

Most intersection tests and other operations performed on polygons in a collision
detection system are faster when applied to convex rather than concave polygons, in
that simplifying assumptions can be made in the former case. Triangles are nice in
this respect, as they are the only type of polygon guaranteed to be convex. However, it
may be more efficient to perform an intersection against a single convex n-gon rather
than against multiple triangles covering the same area.To guarantee no concave faces
are present in the collision geometry database — which would not work with a faster
test, specially written for convex faces — all faces should be verified as convex, either
at tool time or during runtime (perhaps in a debug build).

Frequently, quadrilaterals (or quads, for short) are the only primitives supported
in addition to triangles. In such situations, rather than applying a generic convexity
test for arbitrary polygons, a simpler convexity test that applies specifically to quads
can be used. Assuming all vertices of the quad ABCD lie in the same plane, the quad
is convex if and only if its two diagonals lie fully in the interior of the quad (Figure
3.17a through c). This test is equivalent to testing if the two line segments AC and BD,
corresponding to the diagonals, intersect each other. If they do, the quad is convex.
If they do not, the quad is concave or self-intersecting. If the segments are parallel
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Figure 3.17 Different types of quads. (a) A convex quad. (b) A concave quad (dart). (c) A self-
intersecting quad (bowtie). (d) A degenerate quad. The dashed segments illustrate the two
diagonals of the quad. The quad is convex if and only if the diagonals transversely intersect.

and overlapping, the quad is degenerate (into a line), as illustrated in Figure 3.17d. To
avoid considering a quad with three collinear vertices convex, the segments should
only be considered intersecting if they overlap on their interior (and not on their
endpoints).

It can be shown that the intersection of the segments is equivalent to the points A
and C lying on opposite sides of the line through BD, as well as to the points B and
D lying on opposite sides of the line through AC. In turn, this test is equivalent to
the triangle BDA having opposite winding to BDC, as well as ACD having opposite
winding to ACB.The opposite winding can be detected by computing (using the cross
products) the normals of the triangles and examining the sign of the dot product
between the normals of the triangles to be compared. If the dot product is negative,
the normals point in opposing directions, and the triangles therefore wind in opposite
order. To summarize, the quad is therefore convex if

(BD × BA) · (BD × BC) < 0 and

(AC × AD) · (AC × AB) < 0.

A straightforward implementation results in the following code:

// Test if quadrilateral (a, b, c, d) is convex
int IsConvexQuad(Point a, Point b, Point c, Point d)
{

// Quad is nonconvex if Dot(Cross(bd, ba), Cross(bd, bc)) >= 0
Vector bda = Cross(d - b, a - b);
Vector bdc = Cross(d - b, c - b);
if (Dot(bda, bdc) >= 0.0f) return 0;
// Quad is now convex iff Dot(Cross(ac, ad), Cross(ac, ab)) < 0
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(a) (b) (c) (d) (e)

Figure 3.18 Some inputs likely to be problematic for a convexity test. (a) A line segment.
(b) A quad with two vertices coincident. (c) A pentagram. (d) A quadrilateral with two extra
vertices collinear with the top edge. (e) Thousands of cocircular points.

Vector acd = Cross(c - a, d - a);
Vector acb = Cross(c - a, b - a);
return Dot(acd, acb) < 0.0f;

}

Testing two line segments in the plane for intersection is discussed in more detail
in Section 5.1.9.1.

For general n-gons, not just quads, a straightforward solution is to, for each poly-
gon edge, test to see if all other vertices lie (strictly) on the same side of that edge. If the
test is true for all edges, the polygon is convex, and otherwise it is concave. A separate
check for coincident vertices is required to make the test robust. However, although
easy to implement, this test is expensive for large polygons, with an O(n2) complexity
in the number of vertices. Polygons involved in collision detection systems are rarely
so large that the O(n2) complexity becomes a problem. It is easy to come up with
tests that are faster. However, many of them correctly classify only a subset of convex
polygons and incorrectly classify some nonconvex polygons (Figure 3.18). For exam-
ple, a strictly convex polygon has interior angles that are all less than 180 degrees.
However, although this test is a necessary criterion for convexity it is not a sufficient
one. Testing the interior angles alone would thus incorrectly conclude that a penta-
gram is a convex polygon (Figure 3.18c). This test only works if the polygon is known,
a priori, not to be self-intersecting.

Another basis for a convexity test is that there are only two changes in direction
along any given axis when moving from vertex to vertex of a convex polygon, account-
ing for wraparound from the first to the last vertex.To detect the zigzag case illustrated
in Figure 3.18d, a test for change of direction would have to be performed for two
different directions, such as along both the x axis and the y axis. Although seemingly
robust, this test fails (for example) when all vertices of an originally convex polygon
have been projected onto a single line. It turns out that applying both of these two
alternative tests at the same time makes for a rather robust combined test, with the
two approaches “covering” for each other (so to speak). An implementation of the
combined test is described in [Schorn94].
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(a) (b)
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Figure 3.19 (a) A convex polyhedron. (b) A concave polyhedron. A face, an edge, and a
vertex have been indicated.

3.8 Polyhedra

A polyhedron is the 3D counterpart of a polygon. It is a bounded and connected region
of space in the shape of a multifaceted solid. The polyhedron boundary consists of
a number of (flat) polygonal faces connected so that each polygon edge is part of
exactly two faces (Figure 3.19). Some other definitions of a polyhedron allow it to be
unbounded; that is, extending indefinitely in some directions.

As for polygons, the polyhedron boundary divides space into two disjoint regions:
the interior and the exterior. A polyhedron is convex if the point set determined by its
interior and boundary is convex. A (bounded) convex polyhedron is also referred to
as a polytope. Like polygons, polytopes can also be described as the intersection of a
finite number of halfspaces.

A d-simplex is the convex hull of d+1 affinely independent points in d-dimensional
space. A simplex (plural simplices) is a d-simplex for some given d. For example, the
0-simplex is a point, the 1-simplex is a line segment, the 2-simplex is a triangle, and
the 3-simplex is a tetrahedron (Figure 3.20). A simplex has the property that removing
a point from its defining set reduces the dimensionality of the simplex by one.

For a general convex set C (thus, not necessarily a polytope), a point from the
set most distant along a given direction is called a supporting point of C. More
specifically, P is a supporting point of C if for a given direction d it holds that
d ·P = max

{
d · V : V ∈ C

}
; that is, P is a point for which d ·P is maximal. Figure 3.21

illustrates the supporting points for two different convex sets. Supporting points are
sometimes called extreme points. They are not necessarily unique. For a polytope, one
of its vertices can always be selected as a supporting point for a given direction.
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0-simplex 1-simplex 2-simplex 3-simplex

Figure 3.20 Simplices of dimension 0 through 3: a point, a line segment, a triangle, and a
tetrahedron.

When a support point is a vertex, the point is commonly called a supporting
vertex.

A support mapping (or support function) is a function, SC(d), associated with a convex
set C that maps the direction d into a supporting point of C. For simple convex
shapes — such as spheres, boxes, cones, and cylinders — support mappings can be
given in closed form. For example, for a sphere C centered at O and with a radius
of r, the support mapping is given by SC(d) = O + r d/

∥∥d
∥∥ (Figure 3.21b). Convex

shapes of higher complexity require the support mapping function to determine a
supporting point using numerical methods.

For a polytope of n vertices, a supporting vertex is trivially found in O(n) time
by searching over all vertices. Assuming a data structure listing all adjacent vertex
neighbors for each vertex, an extreme vertex can be found through a simple hill-
climbing algorithm, greedily visiting vertices more and more extreme until no vertex
more extreme can be found. This approach is very efficient, as it explores only a
small corridor of vertices as it moves toward the extreme vertex. For larger polyhedra,
the hill climbing can be sped up by adding one or more artificial neighbors to the
adjacency list for a vertex. Through precomputation of a hierarchical representation
of the vertices, it is possible to locate a supporting point in O(log n) time. These

d

C

(a)

P = Sc(d)

(b)

C

P = SC(d)

Figure 3.21 (a) A supporting vertex P of polygon C with respect to the direction d. (b) A
supporting point P of circle C with respect to the direction d. In both cases, P is given by the
support mapping function SC(d).
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ideas of accelerating the search for supporting vertices are further elaborated on in
Chapter 9.

A supporting plane is a plane through a supporting point with the given direction
as the plane normal. A plane is supporting for a polytope if all polytope vertices lie
on the same side of the plane as the polytope centroid. The centroid of a polytope
defined by the vertex set {P1, P2, . . . , Pn} is the arithmetic mean of the vertex positions:
(P1 + P2 + · · · + Pn)/n.

A separating plane of two convex sets is a plane such that one set is fully in the
positive (open) halfspace and the other fully in the negative (open) halfspace. An axis
orthogonal to a separating plane (parallel to its normal) is referred to as a separating
axis. For two nonintersecting convex sets, it can be shown that a separating axis
(or plane) always exists. The same is not necessarily true for concave sets, however.
Separating axes are revisited in more detail in Chapter 5.

The surface of a polyhedron is often referred to as a 2-manifold. This topological
term implies that the neighborhood of each point of the surface is topologically
equivalent (or homeomorphic) to a disk. A polyhedron surface being 2-manifold implies
that an edge of the polyhedron must connect to exactly two faces (or the neighborhood
of a point on the edge would not be disk-like).

The number of vertices (V ), faces (F) , and edges (E) of a polyhedron relate accord-
ing to the Euler formula V + F − E = 2. It is possible to generalize the Euler formula
to hold for polyhedra with holes. The Euler formula is revisited in Chapter 12.

3.8.1 Testing Polyhedral Convexity

Similar to the convexity test for a polygon, a polyhedron P is convex if and only if for
all faces of P all vertices of P lie (strictly) on the same side of that face. A separate
test for coincident vertices and collinear edges of the polyhedron faces is required to
make the test robust, usually with some tolerance added for determining coincidency
and collinearity. The complexity of this test is O(n2).

A faster O(n) approach is to compute for each face F of P the centroid C of F,
and for all neighboring faces G of F test if C lies behind the supporting plane of
G. If some C fails to lie behind the supporting plane of one or more neighboring
faces, P is concave, and is otherwise assumed convex. However, note that just as the
corresponding polygonal convexity test may fail for a pentagram this test may fail for,
for example, a pentagram extruded out of its plane and capped at the ends.

3.9 Computing Convex Hulls

Among other uses, convex hulls can serve as tight bounding volumes for collision
geometry. Many different algorithms for computing convex hulls have been proposed.
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Figure 3.22 Andrew’s algorithm. Top left: the point set. Top right: the points sorted (lexi-
cographically) from left to right. Middle left: during construction of the upper chain. Middle
right: the completed upper chain. Lower left: the lower chain. Lower right: the two chains
together forming the convex hull.

Two of them are briefly described in the next two sections: Andrew’s algorithm and
the Quickhull algorithm.

3.9.1 Andrew’s Algorithm

One of the most robust and easy to implement 2D convex hull algorithms is Andrew’s
algorithm [Andrew79]. In its first pass, it starts by sorting all points in the given point
set from left to right. In subsequent second and third passes, chains of edges from
the leftmost to the rightmost point are formed, corresponding to the upper and lower
half of the convex hull, respectively. With the chains created, the hull is obtained by
simply connecting the two chains end to end. The process is illustrated in Figure 3.22.
The main step lies in the creation of the chains of hull edges. To see how one of the
chains is formed, consider the partially constructed upper chain of points, as shown
in the middle left-hand illustration. To simplify the presentation, it is assumed there
are not multiple points of the same x coordinate (this assumption is lifted further on).

Initially, the two leftmost points, A and B, are taken to form the first edge of the
chain. The remaining points are now processed in order, considered one by one for
addition to the hull chain. If the next point for consideration lies to the right of the
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current last edge of the chain, the point is tentatively assumed part of the hull and is
added to the chain. However, if the next point lies to the left of the current last edge
of the chain, this point clearly lies outside the hull and the hull chain must be in error.
The last point added to the chain is therefore removed, and the test is applied again.
The removal of points from the chain is repeated until the next point lies to the right
of the last edge of the chain, after which the next point is appended to the hull chain.

The next point in the example is point C. C lies to the left of edge AB, and thus
the tentative hull must be in error and B is removed from the chain. Because there
are no more points to delete (A must lie on the hull, being the leftmost point), C is
added to the chain, making the hull chain A − C. Next is point D, which lies to the
right of edge AC, and is therefore added to the chain. The next point is E, which lies
to the right of CD, and thus E is also added to the chain, as is the next point, F. Point
G lies to the left of edge EF, and thus again the tentative hull chain must be in error
and F is removed from the chain. Next, G is found to lie to the left of DE as well, and
thus E is also removed from the chain. Finally, G now lies to the right of the last edge
on the chain, CD, and G is added to the chain, which at this point is A − C − D − G.
Proceeding to the remaining points, the final upper chain ends up as shown in the
middle right-hand illustration. An analogous process is applied to form the lower
hull chain. Remaining then is to handle the case of multiple points sharing the same
x coordinate. The straightforward solution is to consider only the topmost point for
addition to the upper chain, and only the bottommost point for addition to the lower
chain.

It is easy to write an in-situ version of Andrew’s algorithm.Thus, it can with benefit
be used on point sets represented as arrays.

3.9.2 The Quickhull Algorithm

Although Andrew’s algorithm works very well in 2D, it is not immediately clear how
to extend it to work in 3D. An alternative method that works in both 2D and 3D is
the Quickhull algorithm. The basic idea of the Quickhull algorithm is very simple, and
is illustrated in Figure 3.23 for the 2D case.

In a first step, the bounding box of the point set is obtained, and in the general case
the four extreme points of the set (lying on each of the four sides of the bounding
box) are located. Because these points are extreme, they must lie on the convex hull,
and thus form a quadrilateral“first approximation”of the convex hull (Figure 3.23, top
left). As such, any points lying inside this quadrilateral clearly cannot lie on the convex
hull of the point set and can be removed from further consideration (Figure 3.23, top
right). Some of the points lying outside the quadrilateral must, however, lie on the
hull, and thus the approximation is now refined. For each edge of the quadrilateral,
the point outside the edge farthest away from the edge (if any) is located. Because
each such point is extreme in the direction perpendicularly away from the edge, it
must lie on the hull.Therefore, these points are inserted into the hull, between the two
points of the edge they were outside of (Figure 3.23, bottom left). Together with the
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Figure 3.23 First steps of the Quickhull algorithm. Top left: the four extreme points (on the
bounding box of the point set) are located. Top right: all points inside the region formed by
those points are deleted, as they cannot be on the hull. Bottom left: for each edge of the
region, the point farthest away from the edge is located. Bottom right: all points inside the
triangular regions so formed are deleted, and at this point the algorithm proceeds recursively
by locating the points farthest from the edges of these triangle regions, and so on.

endpoints of the edge, these new points form a triangular region. Just as before, any
points located inside this region cannot be on the hull and can be discarded (Figure
3.23, bottom right). The procedure now recursively repeats the same procedure for
each new edge that was added to the hull, terminating the recursion when no points
lie outside the edges.

Although the preceding paragraph completes the overall algorithm description,
two minor complications must be addressed in a robust implementation. The first
complication is that the initial hull approximation may not always be a quadrilateral.
If an extreme point lies, say, in the bottom left-hand corner, the initial shape may
instead be a triangle. If another extreme point lies in the top right-hand corner,
it may be a degenerate hull, consisting of only two points. To avoid problems, an
implementation must be written to handle an initial hull approximation of a variable
number of edges. The second complication is that there might not be a single unique
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point on the edge of the initial bounding box, or a single unique point farthest away
from an edge.There might be several points on a given bounding box edge, or several
points equally far away from an edge. In both cases, one of the two points that lie
closest to the edge endpoints must be chosen as the extreme point. Any points that
lie between these two points are generally not considered vertices of the convex hull,
as they would lie on an edge, collinear with the edge’s end vertices.

Given an edge specified by two points A and B, the point of a point set P farthest
from the edge can be found by projecting the points onto a perpendicular to the edge.
The point projecting farthest along the perpendicular is the sought point.To break ties
between two points equally far along the perpendicular, the one projecting farthest
along AB is selected as the farthest point. This procedure is illustrated through the
following code:

// Return index i of point p[i] farthest from the edge ab, to the left of the edge
int PointFarthestFromEdge(Point2D a, Point2D b, Point2D p[], int n)
{

// Create edge vector and vector (counterclockwise) perpendicular to it
Vector2D e = b – a, eperp = Vector2D(-e.y, e.x);
// Track index, ‘distance’ and ‘rightmostness’ of currently best point
int bestIndex = -1;
float maxVal = -FLT_MAX, rightMostVal = -FLT_MAX;

// Test all points to find the one farthest from edge ab on the left side
for (int i = 1; i < n; i++) {

float d = Dot2D(p[i] – a, eperp); // d is proportional to distance along eperp
float r = Dot2D(p[i] – a, e); // r is proportional to distance along e
if (d > maxVal || (d == maxVal && r > rightMostVal)) {

bestIndex = i;
maxVal = d;
rightMostVal = r;

}
}
return bestIndex;

}

The Quickhull algorithm can also be made to work in three dimensions (and
higher) [Barber96]. In 3D, the initial approximation starts from the (up to) six extreme
points that lie on the axis-aligned box that bounds the point set. Now, instead of
finding points that are farthest from the edges of a polygon, points farthest from the
faces of a polyhedron are located. Instead of breaking the polygon edges up as a
new point is inserted into the hull, the polyhedron faces are broken up into two or
more faces.
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Figure 3.24 A triangle divides its supporting plane into seven Voronoi feature regions: one
face region (F ), three edge regions (E1, E2, E3), and three vertex regions (V1, V2, V3).

A solid implementation of the Quickhull algorithm, Qhull by Brad Barber, is avail-
able for download on the Internet. Convex hull algorithms in general are described
in some detail in [O’Rourke98].

3.10 Voronoi Regions

A concept important to the design of many intersection tests is that of Voronoi
regions. Given a set S of points in the plane, the Voronoi region of a point P in S
is defined as the set of points in the plane closer to (or as close to) P than to any other
points in S. Voronoi regions and the closely relatedVoronoi diagrams (describing the set
of points equally close to two or more points in S) come from the field of computational
geometry, in which they are used for nearest neighbor queries, among other uses.

Extending the concept of Voronoi regions slightly, it also becomes quite useful
for collision detection applications. Given a polyhedron P, let a feature of P be one of
its vertices, edges, or faces. The Voronoi region of a feature F of P is then the set of
points in space closer to (or as close to) F than to any other feature of P. Figure 3.24
illustrates theVoronoi regions determined by the features of a triangle. Three types of
Voronoi feature regions of a cube are illustrated in Figure 3.25.The termsVoronoi region
and Voronoi feature region are used interchangeably in this book. It is important not
to confuse theVoronoi regions with the barycentric regions discussed in Section 3.4.
The boundary planes of aVoronoi region are referred to as Voronoi planes.

Given a convex polyhedron P, all points in space exterior to P can be classified as
lying in a Voronoi feature region of a vertex, edge, or face of P, with the boundary
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(a) (c)(b)

Figure 3.25 The three types of Voronoi feature regions of a 3D cube. (a) An edge region.
(b) A vertex region. (c) A face region.

between two neighboring Voronoi feature regions considered to belong to only one
of the regions. Because theVoronoi regions create a partitioning of the space exterior
to a polyhedron, they can be used, for instance, to determine the closest point on a
convex polyhedral object to some point Q in space. This determination is done by
walking from region to region until Q is found to be inside the region. The closest
point on the object to Q is then the projection of Q onto the feature with which the
given region is associated. For repeated queries, it is possible to exploit coherence by
remembering from frame to frame which region the closest point was in and start the
new search from there. The concept of Voronoi regions is used in several intersection
tests, described in Chapter 5.Voronoi regions are also discussed in Chapter 9, in the
context of intersection of convex polyhedra.

3.11 Minkowski Sum and Difference

Two important operations on point sets will be referred to throughout parts of this
book. These operations are the Minkowski sum and the Minkowski difference of point
sets. Let A and B be two point sets, and let a and b be the position vectors corre-
sponding to pairs of points in A and B. The Minkowski sum, A ⊕ B, is then defined
as the set

A ⊕ B = {
a + b : a ∈ A, b ∈ B

}
,

where a+b is the vector sum of the position vectors a and b.Visually, the Minkowski
sum can be seen as the region swept by A translated to every point in B (or vice versa).
An illustration of the Minkowski sum is provided in Figure 3.26.
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A

A�B

B

Figure 3.26 The Minkowski sum of a triangle A and a square B.

The Minkowski difference of two point sets A and B is defined analogously to the
Minkowski sum:

A 
 B = {
a − b : a ∈ A, b ∈ B

}
.

Geometrically, the Minkowski difference is obtained by adding A to the reflection of
B about the origin; that is, A 
 B = A ⊕ (−B) (Figure 3.27). For this reason, both
terms are often simply referred to as the Minkowski sum. For two convex polygons, P
and Q, the Minkowski sum R = P ⊕ Q has the properties that R is a convex polygon
and the vertices of R are sums of the vertices of P and Q. The Minkowski sum of two
convex polyhedra is a convex polyhedron, with corresponding properties.

Minkowski sums both directly and indirectly apply to collision detection. Con-
sider the problem of having a complex object move past a number of other equally
complex obstacles. Instead of performing expensive tests on these complex objects,
the obstacles can be “grown”by the object at the same time the object is “shrunk,”
allowing the collision testing of the moving object to be treated as a moving point
against the grown obstacles. This idea is further explored in, for example, Chapter 8,
in regard to BSP trees.

The Minkowski difference is important from a collision detection perspective
because two point sets A and B collide (that is, have one or more points in com-
mon) if and only if their Minkowski difference C (C = A 
 B) contains the origin
(Figure 3.27). In fact, it is possible to establish an even stronger result: computing
the minimum distance between A and B is equivalent to computing the minimum
distance between C and the origin.This fact is utilized in the GJK algorithm presented
in Chapter 9. The result follows because

distance(A, B) = min
{∥∥a − b

∥∥ : a ∈ A, b ∈ B
}

= min
{∥∥c

∥∥ : c ∈ A 
 B
}

.
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A

A�(–B)

B

Figure 3.27 Because rectangle A and triangle B intersect, the origin must be contained in
their Minkowski difference.

Note that the Minkowski difference of two convex sets is also a convex set, and thus
its point of minimum norm is unique.

There are algorithms for computing the Minkowski sum explicitly (for example,
[Bekker01]). In this book, however, the Minkowski sum is primarily used conceptually
to help recast a collision problem into an equivalent problem. Occasionally, such as
in the GJK algorithm, the Minkowski sum of two objects is computed implicitly.

The Minkowski difference of two objects is also sometimes referred to as the trans-
lational configuration space obstacle (or TCSO). Queries on the TCSO are said to be
performed in configuration space.

3.12 Summary

Working in the area of collision detection requires a solid grasp of geometry and linear
algebra, not to mention mathematics in general. This chapter has reviewed some
concepts from these fields, which permeate this book. In particular, it is important
to understand fully the properties of dot, cross, and scalar triple products because
these are used, for example, in the derivation of virtually all primitive intersection
tests (compare Chapter 5). Readers who do not feel comfortable with these math
concepts may want to consult linear algebra textbooks, such as those mentioned in
the chapter introduction.

This chapter also reviewed a number of geometrical concepts, including points,
lines, rays, segments, planes, halfspaces, polygons, and polyhedra. A delightful
introduction to these and other geometrical concepts is given in [Mortenson99].

Relevant concepts from computational geometry and from the theory of convex
sets were also reviewed.Voronoi regions are important in the computation of closest
points.The existence of separating planes and axes for nonintersecting convex objects
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allows for efficient tests for the separation of these objects, as further discussed in
Chapters 5 and 9. The Minkowski sum and difference operations allow certain col-
lision detection problems to be recast in a different form, which may be easier to
compute. Chapters 5 and 9 discuss such transformations as well.

A good introduction to the field of computational geometry is [O’Rourke98]. The
theory of convex sets (in the context of convex optimization) is discussed in [Boyd04].
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Chapter 4

Bounding Volumes

Directly testing the geometry of two objects for collision against each other is often
very expensive, especially when objects consist of hundreds or even thousands of
polygons. To minimize this cost, object bounding volumes are usually tested for
overlap before the geometry intersection test is performed.

A bounding volume (BV) is a single simple volume encapsulating one or more
objects of more complex nature. The idea is for the simpler volumes (such as boxes
and spheres) to have cheaper overlap tests than the complex objects they bound.
Using bounding volumes allows for fast overlap rejection tests because one need
only test against the complex bounded geometry when the initial overlap query for
the bounding volumes gives a positive result (Figure 4.1).

Of course, when the objects really do overlap, this additional test results in an
increase in computation time. However, in most situations few objects are typically
close enough for their bounding volumes to overlap. Therefore, the use of bounding
volumes generally results in a significant performance gain, and the elimination of
complex objects from further tests well justifies the small additional cost associated
with the bounding volume test.

For some applications, the bounding volume intersection test itself serves as a
sufficient proof of collision. Where it does not, it is still generally worthwhile pruning
the contained objects so as to limit further tests to the polygons contained in the
overlap of the bounding volumes. Testing the polygons of an object A against the
polygons of an object B typically has an O(n2) complexity. Therefore, if the number of
polygons to be tested can be, say, cut in half, the workload will be reduced by 75%.
Chapter 6, on bounding volume hierarchies, provides more detail on how to prune
object and polygon testing to a minimum. In this chapter, the discussion is limited
to tests of pairs of bounding volumes. Furthermore, the tests presented here are
primarily homogeneous in that bounding volumes of the same type are tested against
each other. It is not uncommon, however, to use several types of bounding volumes
at the same time. Several nonhomogeneous BV intersection tests are discussed in the
next chapter.

75
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A

CB

D

Figure 4.1 The bounding volumes of A and B do not overlap, and thus A and B cannot
be intersecting. Intersection between C and D cannot be ruled out because their bounding
volumes overlap.

Many geometrical shapes have been suggested as bounding boxes. This chapter
concentrates on the shapes most commonly used; namely, spheres, boxes, and convex
hull-like volumes. Pointers to a few less common bounding volumes are provided in
Section 4.7.

4.1 Desirable BV Characteristics

Not all geometric objects serve as effective bounding volumes. Desirable properties
for bounding volumes include:

● Inexpensive intersection tests

● Tight fitting

● Inexpensive to compute

● Easy to rotate and transform

● Use little memory

The key idea behind bounding volumes is to precede expensive geometric tests
with less expensive tests that allow the test to exit early, a so-called “early out.”To
support inexpensive overlap tests, the bounding volume must have a simple geomet-
ric shape. At the same time, to make the early-out test as effective as possible the
bounding volume should also be as tight fitting as possible, resulting in a trade-off
between tightness and intersection test cost.The intersection test does not necessarily
just cover comparison against volumes of the same type, but might also test against
other types of bounding volumes. Additionally, testing may include queries such as
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BETTER BOUND, BETTER CULLING

FASTER TEST, LESS MEMORY

SPHERE AABB OBB 8-DOP CONVEX HULL

Figure 4.2 Types of bounding volumes: sphere, axis-aligned bounding box (AABB), oriented
bounding box (OBB), eight-direction discrete orientation polytope (8-DOP), and convex hull.

point inclusion, ray intersection with the volume, and intersection with planes and
polygons.

Bounding volumes are typically computed in a preprocessing step rather than at
runtime. Even so, it is important that their construction does not negatively affect
resource build times. Some bounding volumes, however, must be realigned at runtime
when their contained objects move. For these, if the bounding volume is expensive
to compute realigning the bounding volume is preferable (cheaper) to recomputing
it from scratch.

Because bounding volumes are stored in addition to the geometry, they should
ideally add little extra memory to the geometry. Simpler geometric shapes require less
memory space. As many of the desired properties are largely mutually exclusive, no
specific bounding volume is the best choice for all situations. Instead, the best option
is to test a few different bounding volumes to determine the one most appropriate
for a given application. Figure 4.2 illustrates some of the trade-offs among five of
the most common bounding volume types. The given ordering with respect to better
bounds, better culling, faster tests, and less memory should be seen as a rough, rather
than an absolute, guide. The first of the bounding volumes covered in this chapter is
the axis-aligned bounding box, described in the next section.

4.2 Axis-aligned Bounding Boxes (AABBs)

The axis-aligned bounding box (AABB) is one of the most common bounding volumes.
It is a rectangular six-sided box (in 3D, four-sided in 2D) categorized by having its
faces oriented in such a way that its face normals are at all times parallel with the
axes of the given coordinate system. The best feature of the AABB is its fast overlap
check, which simply involves direct comparison of individual coordinate values.
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(a) (b) (c)

Figure 4.3 The three common AABB representations: (a) min-max, (b) min-widths, and
(c) center-radius.

There are three common representations for AABBs (Figure 4.3). One is by the
minimum and maximum coordinate values along each axis:

// region R = {(x, y, z) | min.x<=x<=max.x, min.y<=y<=max.y, min.z<=z<=max.z }
struct AABB {

Point min;
Point max;

};

This representation specifies the BV region of space as that between the two oppos-
ing corner points: min and max. Another representation is as the minimum corner
point min and the width or diameter extents dx, dy, and dz from this corner:

// region R = {(x, y, z) | min.x<=x<=min.x+dx, min.y<=y<=min.y+dy, min.z<=z<=min.z+dz}
struct AABB {

Point min;
float d[3]; // diameter or width extents (dx, dy, dz)

};

The last representation specifies the AABB as a center point C and halfwidth
extents or radii rx, ry, and rz along its axes:

// region R = {(x, y, z) | |c.x-x|<=rx, |c.y-y|<=ry, |c.z-z|<=rz }
struct AABB {

Point c; // center point of AABB
float r[3]; // radius or halfwidth extents (rx, ry, rz)

};
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In terms of storage requirements, the center-radius representation is the most
efficient, as the halfwidth values can often be stored in fewer bits than the center
position values.The same is true of the width values of the min-width representation,
although to a slightly lesser degree. Worst is the min-max representation, in which
all six values have to be stored at the same precision. Reducing storage requires
representing the AABB using integers, and not floats, as used here. If the object
moves by translation only, updating the latter two representations is cheaper than
the min-max representation because only three of the six parameters have to be
updated. A useful feature of the center-radius representation is that it can be tested
as a bounding sphere as well.

4.2.1 AABB-AABB Intersection

Overlap tests between AABBs are straightforward, regardless of representation. Two
AABBs only overlap if they overlap on all three axes, where their extent along
each dimension is seen as an interval on the corresponding axis. For the min-max
representation, this interval overlap test becomes:

int TestAABBAABB(AABB a, AABB b)
{

// Exit with no intersection if separated along an axis
if (a.max[0] < b.min[0] || a.min[0] > b.max[0]) return 0;
if (a.max[1] < b.min[1] || a.min[1] > b.max[1]) return 0;
if (a.max[2] < b.min[2] || a.min[2] > b.max[2]) return 0;
// Overlapping on all axes means AABBs are intersecting
return 1;

}

The min-width representation is the least appealing. Its overlap test, even when
written in an economical way, still does not compare with the first test in terms of
number of operations performed:

int TestAABBAABB(AABB a, AABB b)
{

float t;
if ((t = a.min[0] - b.min[0]) > b.d[0] || -t > a.d[0]) return 0;
if ((t = a.min[1] - b.min[1]) > b.d[1] || -t > a.d[1]) return 0;
if ((t = a.min[2] - b.min[2]) > b.d[2] || -t > a.d[2]) return 0;
return 1;

}
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Finally, the center-radius representation results in the following overlap test:

int TestAABBAABB(AABB a, AABB b)
{

if (Abs(a.c[0] - b.c[0]) > (a.r[0] + b.r[0])) return 0;
if (Abs(a.c[1] - b.c[1]) > (a.r[1] + b.r[1])) return 0;
if (Abs(a.c[2] - b.c[2]) > (a.r[2] + b.r[2])) return 0;
return 1;

}

On modern architectures, the Abs() call typically translates into just a single
instruction. If not, the function can be effectively implemented by simply stripping
the sign bit of the binary representation of the floating-point value. When the AABB
fields are declared as integers instead of floats, an alternative test for the center-
radius representation can be performed as follows. With integers, overlap between
two ranges [A, B] and [C, D] can be determined by the expression

overlap = (unsigned int)(B - C) <= (B - A) + (D - C);

By forcing an unsigned underflow in the case when C > B, the left-hand side
becomes an impossibly large value, rendering the expression false. The forced over-
flow effectively serves to replace the absolute value function call and allows the
center-radius representation test to be written as:

int TestAABBAABB(AABB a, AABB b)
{

int r;
r = a.r[0] + b.r[0]; if ((unsigned int)(a.c[0] - b.c[0] + r) > r + r) return 0;
r = a.r[1] + b.r[1]; if ((unsigned int)(a.c[1] - b.c[1] + r) > r + r) return 0;
r = a.r[2] + b.r[2]; if ((unsigned int)(a.c[2] - b.c[2] + r) > r + r) return 0;
return 1;

}

Working in integers allows other implementational tricks, many of which are archi-
tecture dependent. SIMD instructions, if present, typically allow AABB tests to be
implemented in just a few instructions worth of code (examples of which are found
in Chapter 13). Finally, in a collision detection system that has to perform a mas-
sive number of overlap tests it may be worthwhile ordering the tests according to
the likelihood of their being taken. For instance, if operations largely take place in
an almost flat xz plane the y-coordinate test should be performed last, as it is least
discriminatory.
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(a) (b) (c)
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Figure 4.4 (a) AABBs A and B in world space. (b) The AABBs in the local space of A. (c) The
AABBs in the local space of B.

4.2.2 Computing and Updating AABBs

Bounding volumes are usually specified in the local model space of the objects they
bound (which may be world space).To perform an overlap query between two bound-
ing volumes, the volumes must be transformed into a common coordinate system.
The choice stands between transforming both bounding volumes into world space
and transforming one bounding volume into the local space of the other. One benefit
of transforming into local space is that it results in having to perform half the work
of transformation into world space. It also often results in a tighter bounding volume
than does transformation into world space. Figure 4.4 illustrates the concept. The
recalculated AABBs of objects A and B overlap in world space (Figure 4.4a). However,
in the space of object B, the objects are found to be separated (Figure 4.4c).

Accuracy is another compelling reason for transforming one bounding volume
into the local space of the other. A world space test may move both objects far away
from the origin.The act of adding in the translation during transformation of the local
near-origin coordinates of the bounding volume can force many (or even all) bits of
precision of the original values to be lost. For local space tests, the objects are kept
near the origin and accuracy is maintained in the calculations. Note, however, that by
adjusting the translations so that the transformed objects are centered on the origin
world space transformations can be made to maintain accuracy as well.

Transformation into world space becomes interesting when updated bounding
volumes can be temporarily cached for the duration of a time step. By caching a
bounding volume after transformation, any bounding volume has to be transformed
just once into any given space. As all bounding volumes are transformed into the
same space when transforming into world space, this becomes a win in situations
in which objects are being checked for overlap multiple times. In contrast, caching
updated bounding volumes does not help at all when transforming into the local
space of other bounding volumes, as all transformations involve either new objects
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or new target coordinate systems. Caching of updated bounding volumes has the
drawback of nearly doubling the required storage space, as most fields of a bounding
volume representation are changed during an update.

Some bounding volumes, such as spheres or convex hulls, naturally trans-
form into any coordinate system, as they are not restricted to specific orientations.
Consequently, they are called nonaligned or (freely) oriented bounding volumes.
In contrast, aligned bounding volumes (such as AABBs) are restricted in what ori-
entations they can assume. The aligned bounding volumes must be realigned as
they become unaligned due to object rotation during motion. For updating or
reconstructing the AABB, there are four common strategies:

● Utilizing a fixed-size loose AABB that always encloses the object

● Computing a tight dynamic reconstruction from the original point set

● Computing a tight dynamic reconstruction using hill climbing

● Computing an approximate dynamic reconstruction from the rotated AABB

The next four sections cover these approaches in more detail.

4.2.3 AABB from the Object Bounding Sphere

The first method completely circumvents the need to reshape the AABB by making it
large enough to contain the object at any orientation. This fixed-size encompassing
AABB is computed as the bounding box of the bounding sphere of the contained
object A. The bounding sphere, in turn, is centered in the pivot point P that A rotates
about. Its radius r is the distance to the farthest object vertex from this center (as
illustrated in Figure 4.5). By making sure the object pivot P lies in the center of the
object, the sphere radius is minimized.

The benefit of this representation is that during update this AABB simply need be
translated (by the same translation applied to the bounded object), and any object
rotation can be completely ignored. However, the bounding sphere itself (which has
a better sound than theAABB) would also have this property.Thus, bounding spheres
should be considered a potential better choice of bounding volume in this case.

4.2.4 AABB Reconstructed from Original Point Set

The update strategy described in this section (as well as the remaining two update
strategies to be described) dynamically resizes the AABB as it is being realigned with
the coordinate system axes. For a tightly fitted bounding box, the underlying geometry
of the bounded object is examined and the box bounds are established by finding
the extreme vertices in all six directions of the coordinate axes. The straightforward
approach loops through all vertices, keeping track of the vertex most distant along
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Figure 4.5 AABB of the bounding sphere that fully contains object A under an arbitrary
orientation.

the direction vector. This distance can be computed through the projection of the
vertex vector onto the direction vector. For comparison reasons, it is not necessary
to normalize the direction vector. This procedure is illustrated in the following code,
which finds both the least and most distant points along a direction vector:

// Returns indices imin and imax into pt[] array of the least and
// most, respectively, distant points along the direction dir
void ExtremePointsAlongDirection(Vector dir, Point pt[], int n, int *imin, int *imax)
{

float minproj = FLT_MAX, maxproj = -FLT_MAX;
for (int i = 0; i < n; i++) {

// Project vector from origin to point onto direction vector
float proj = Dot(pt[i], dir);
// Keep track of least distant point along direction vector
if (proj < minproj) {

minproj = proj;
*imin = i;

}
// Keep track of most distant point along direction vector
if (proj > maxproj) {

maxproj = proj;
*imax = i;

}
}

}
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A

Figure 4.6 When computing a tight AABB, only the highlighted vertices that lie on the
convex hull of the object must be considered.

When n is large, this O(n) procedure can be expensive if performed at runtime.
Preprocessing of the vertex data can serve to speed up the process. One simple
approach that adds no extra data is based on the fact that only the vertices on the
convex hull of the object can contribute to determining the bounding volume shape
(Figure 4.6). In the preprocessing step, all k vertices on the convex hull of the object
would be stored so that they come before all remaining vertices. Then, a tight AABB
could be constructed by examining these k first vertices only. For general concave
volumes this would be a win, but a convex volume, which already has all of its
vertices on its convex hull, would see no improvement.

By use of additional, dedicated, precomputed search structures, locating extremal
vertices can be performed in O(log n) time. For instance, the Dobkin–Kirkpatrick
hierarchy (described in Chapter 9) can be used for this purpose. However, due to
the extra memory required by these structures, as well as the overhead in traversing
them, they have to be considered overkill in most circumstances. Certainly if tight
bounding volumes are that important, tighter bounding volumes than AABBs should
be considered.

4.2.5 AABB from Hill-climbing Vertices of the Object
Representation

Another way to speed up the AABB realignment process is to use an object rep-
resentation in which neighboring vertices of a vertex can be found quickly. Such a
representation allows the extreme vertices that define the new AABB to be located
through simple hill climbing (Figure 4.7).
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Figure 4.7 (a) The extreme vertex E in direction d. (b) After object rotates counterclockwise,
the new extreme vertex E′ in direction d can be obtained by hill climbing along the vertex path
highlighted in gray.

Instead of keeping track of the minimum and maximum extent values along each
axis, six vertex pointers are maintained. Corresponding to the same values as before,
these now actually point at the (up to six) extremal vertices of the object along each
axis direction. The hill-climbing step now proceeds by comparing the referenced
vertices against their neighbor vertices to see if they are still extremal in the same
direction as before. Those that are not are replaced with one of their more extreme
neighbors and the test is repeated until the extremal vertex in that direction is found.
So as not to get stuck in local minima, the hill-climbing process requires objects to
be convex. For this reason, hill climbing is performed on precalculated convex hulls
of nonconvex objects. Overall, this recalculation of the tight AABB is an expected
constant-time operation.

Only having to transform vertices when actually examined by the hill-climbing
process greatly reduces computational effort. However, this can be further improved
by the realization that only one of the x, y, or z components is used in finding the
extremal vertex along a given axis. For instance, when finding the extremal point
along the +x axis only the x components of the transformed vertices need to be
computed. Hence, the transformational cost is reduced by two-thirds.

Some care must be taken in order to write a robust implementation of this hill-
climbing method. Consider an extremal vertex along any axis surrounded by coplanar
vertices only. If the object now rotates 180 degrees about any of the remaining two
axes, the vertex becomes extremal along the opposite direction along the same axis.
However, as it is surrounded by co-planar vertices, the hill-climbing step cannot find
a better neighboring vertex and thus terminates with a vertex that is, in fact, the least
extremal in the sought direction! A robust implementation must special-case this
situation. Alternatively, coplanar vertices can be removed in a preprocessing step,
as described in Chapter 12. The problem of finding extremal vertices is revisited in
Section 9.5.4.
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4.2.6 AABB Recomputed from Rotated AABB

Last of the four realignment methods, the most common approach is to simply wrap
the rotated AABB itself in a new AABB. This produces an approximate rather than
a tight AABB. As the resulting AABB is larger than the one that was started with, it
is important that the approximate AABB is computed from a rotation of the original
local-spaceAABB. If not, repeated recomputing from the rotatedAABB of the previous
time step would make the AABB grow indefinitely.

Consider an axis-aligned bounding box A affected by a rotation matrix M, resulting
in an oriented bounding box A′ at some orientation. The three columns (or rows,
depending on what matrix convention is used) of the rotation matrix M give the
world-coordinate axes of A′ in its local coordinate frame. (If vectors are column vectors
and multiplied on the right of the matrix, then the columns of M are the axes. If instead
the vectors are multiplied on the left of the matrix as row vectors, then the rows of M
are the axes.)

Say A is given using min-max representation and M is a column matrix. The axis-
aligned bounding box B that bounds A′ is specified by the extent intervals formed by
the projection of the eight rotated vertices of A′ onto the world-coordinate axes. For,
say, the x extents of B, only the x components of the column vectors of M contribute.
Therefore, finding the extents corresponds to finding the vertices that produce the
minimal and maximal products with the rows of M. Each vertex of B is a combination
of three transformed min or max values from A. The minimum extent value is the
sum of the smaller terms, and the maximum extent is the sum of the larger terms.
Translation does not affect the size calculation of the new bounding box and can just
be added in. For instance, the maximum extent along the x axis can be computed as:

B.max[0] = max(m[0][0] * A.min[0], m[0][0] * A.max[0])
+ max(m[0][1] * A.min[1], m[0][1] * A.max[1])
+ max(m[0][2] * A.min[2], m[0][2] * A.max[2]) + t[0];

Computing an encompassing bounding box for a rotatedAABB using the min-max
representation can therefore be implemented as follows:

// Transform AABB a by the matrix m and translation t,
// find maximum extents, and store result into AABB b.
void UpdateAABB(AABB a, float m[3][3], float t[3], AABB &b)
{

// For all three axes
for (int i = 0; i < 3; i++) {

// Start by adding in translation
b.min[i] = b.max[i] = t[i];
// Form extent by summing smaller and larger terms respectively
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for (int j = 0; j < 3; j++) {
float e = m[i][j] * a.min[j];
float f = m[i][j] * a.max[j];
if (e < f) {

b.min[i] += e;
b.max[i] += f;

} else {
b.min[i] += f;
b.max[i] += e;

}
}

}
}

Correspondingly, the code for the center-radius AABB representation becomes
[Arvo90]:

// Transform AABB a by the matrix m and translation t,
// find maximum extents, and store result into AABB b.
void UpdateAABB(AABB a, float m[3][3], float t[3], AABB &b)
{

for (int i = 0; i < 3; i++) {
b.c[i] = t[i];
b.r[i] = 0.0f;
for (int j = 0; j < 3; j++) {

b.c[i] += m[i][j] * a.c[j];
b.r[i] += Abs(m[i][j]) * a.r[j];

}
}

}

Note that computing an AABB from a rotated AABB is equivalent to computing it
from a freely oriented bounding box. Oriented bounding boxes and their intersection
tests will be described in more detail ahead. However, classed between the methods
presented here and those to be presented would be the method of storing oriented
bounding boxes with the objects but still intersecting them as reconstructed AABBs
(as done here). Doing so would require extra memory for storing the orientation
matrix. It would also involve an extra matrix-matrix multiplication for combining the
rotation matrix of the oriented bounding box with the transformation matrix M. The
benefit of this solution is that the reconstructed axis-aligned box would be much
tighter, starting with an oriented box. The axis-aligned test is also much cheaper than
the full-blown test for oriented boxes.
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4.3 Spheres

The sphere is another very common bounding volume, rivaling the axis-aligned
bounding box in popularity. Like AABBs, spheres have an inexpensive intersection
test. Spheres also have the benefit of being rotationally invariant, which means that
they are trivial to transform: they simply have to be translated to their new position.
Spheres are defined in terms of a center position and a radius:

// Region R = { (x, y, z) | (x-c.x)∧2 + (y-c.y)∧2 + (z-c.z)∧2 <= r∧2 }
struct Sphere {

Point c; // Sphere center
float r; // Sphere radius

};

At just four components, the bounding sphere is the most memory-efficient
bounding volume. Often a preexisting object center or origin can be adjusted to
coincide with the sphere center, and only a single component, the radius, need be
stored. Computing an optimal bounding sphere is not as easy as computing an opti-
mal axis-aligned bounding box. Several methods of computing bounding spheres are
examined in the following sections, in order of increasing accuracy, concluding with
an algorithm for computing the minimum bounding sphere. The methods explored
for the nonoptimal approximation algorithms remain relevant in that they can be
applied to other bounding volumes.

4.3.1 Sphere-sphere Intersection

The overlap test between two spheres is very simple. The Euclidean distance between
the sphere centers is computed and compared against the sum of the sphere radii. To
avoid an often expensive square root operation, the squared distances are compared.
The test looks like this:

int TestSphereSphere(Sphere a, Sphere b)
{

// Calculate squared distance between centers
Vector d = a.c - b.c;
float dist2 = Dot(d, d);
// Spheres intersect if squared distance is less than squared sum of radii
float radiusSum = a.r + b.r;
return dist2 <= radiusSum * radiusSum;

}
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Although the sphere test has a few more arithmetic operations than the AABB
test, it also has fewer branches and requires fewer data to be fetched. In modern
architectures, the sphere test is probably barely faster than the AABB test. However,
the speed of these simple tests should not be a guiding factor in choosing between
the two. Tightness to the actual data is a far more important consideration.

4.3.2 Computing a Bounding Sphere

A simple approximative bounding sphere can be obtained by first computing the
AABB of all points. The midpoint of the AABB is then selected as the sphere center,
and the sphere radius is set to be the distance to the point farthest away from this
center point. Note that using the geometric center (the mean) of all points instead of
the midpoint of theAABB can give extremely bad bounding spheres for nonuniformly
distributed points (up to twice the needed radius). Although this is a fast method, its
fit is generally not very good compared to the optimal method.

An alternative approach to computing a simple approximative bounding sphere
is described in [Ritter90]. This algorithm tries to find a good initial almost-bounding
sphere and then in a few steps improve it until it does bound all points. The algorithm
progresses in two passes. In the first pass, six (not necessarily unique) extremal points
along the coordinate system axes are found. Out of these six points, the pair of points
farthest apart is selected. (Note that these two points do not necessarily correspond
to the points defining the longest edge of the AABB of the point set.) The sphere
center is now selected as the midpoint between these two points, and the radius is
set to be half the distance between them. The code for this first pass is given in the
functions MostSeparatedPointsOnAABB() and SphereFromDistantPoints() of the
following:

// Compute indices to the two most separated points of the (up to) six points
// defining the AABB encompassing the point set. Return these as min and max.
void MostSeparatedPointsOnAABB(int &min, int &max, Point pt[], int numPts)
{

// First find most extreme points along principal axes
int minx = 0, maxx = 0, miny = 0, maxy = 0, minz = 0, maxz = 0;
for (int i = 1; i < numPts; i++) {

if (pt[i].x < pt[minx].x) minx = i;
if (pt[i].x > pt[maxx].x) maxx = i;
if (pt[i].y < pt[miny].y) miny = i;
if (pt[i].y > pt[maxy].y) maxy = i;
if (pt[i].z < pt[minz].z) minz = i;
if (pt[i].z > pt[maxz].z) maxz = i;

}
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// Compute the squared distances for the three pairs of points
float dist2x = Dot(pt[maxx] - pt[minx], pt[maxx] - pt[minx]);
float dist2y = Dot(pt[maxy] - pt[miny], pt[maxy] - pt[miny]);
float dist2z = Dot(pt[maxz] - pt[minz], pt[maxz] - pt[minz]);
// Pick the pair (min,max) of points most distant
min = minx;
max = maxx;
if (dist2y > dist2x && dist2y > dist2z) {

max = maxy;
min = miny;

}
if (dist2z > dist2x && dist2z > dist2y) {

max = maxz;
min = minz;

}
}

void SphereFromDistantPoints(Sphere &s, Point pt[], int numPts)
{

// Find the most separated point pair defining the encompassing AABB
int min, max;
MostSeparatedPointsOnAABB(min, max, pt, numPts);

// Set up sphere to just encompass these two points
s.c = (pt[min] + pt[max]) * 0.5f;
s.r = Dot(pt[max] - s.c, pt[max] - s.c);
s.r = Sqrt(s.r);

}

In the second pass, all points are looped through again. For all points outside the
current sphere, the sphere is updated to be the sphere just encompassing the old
sphere and the outside point. In other words, the new sphere diameter spans from
the outside point to the point on the backside of the old sphere opposite the outside
point, with respect to the old sphere center.

// Given Sphere s and Point p, update s (if needed) to just encompass p
void SphereOfSphereAndPt(Sphere &s, Point &p)
{

// Compute squared distance between point and sphere center
Vector d = p - s.c;
float dist2 = Dot(d, d);
// Only update s if point p is outside it
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if (dist2 > s.r * s.r) {
float dist = Sqrt(dist2);
float newRadius = (s.r + dist) * 0.5f;
float k = (newRadius - s.r) / dist;
s.r = newRadius;
s.c += d * k;

}
}

The full code for computing the approximate bounding sphere becomes:

void RitterSphere(Sphere &s, Point pt[], int numPts)
{

// Get sphere encompassing two approximately most distant points
SphereFromDistantPoints(s, pt, numPts);

// Grow sphere to include all points
for (int i = 0; i < numPts; i++)

SphereOfSphereAndPt(s, pt[i]);
}

By starting with a better approximation of the true bounding sphere, the resulting
sphere could be expected to be even tighter. Using a better starting approximation is
explored in the next section.

4.3.3 Bounding Sphere from Direction of Maximum Spread

Instead of finding a pair of distant points using an AABB, as in the previous section, a
suggested approach is to analyze the point cloud using statistical methods to find its
direction of maximum spread [Wu92]. Given this direction, the two points farthest
away from each other when projected onto this axis would be used to determine the
center and radius of the starting sphere. Figure 4.8 indicates the difference in spread
for two different axes for the same point cloud.

Just as the mean of a set of data values (that is, the sum of all values divided by
the number of values) is a measure of the central tendency of the values, variance
is a measure of their dispersion, or spread. The mean u and the variance σ 2 are
given by

u = 1
n

n∑
i=1

xi,
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σ 2 = 1
n

n∑
i=1

(xi − u)2 = 1
n

(
n∑

i=1

x2
i

)
− u2.

The square root of the variance is known as the standard deviation. For values spread
along a single axis, the variance is easily computed as the average of the squared
deviation of the values from the mean:

// Compute variance of a set of 1D values
float Variance(float x[], int n)
{

float u = 0.0f;
for (int i = 0; i < n; i++)

u += x[i];
u /= n;
float s2 = 0.0f;
for (int i = 0; i < n; i++)

s2 += (x[i] - u) * (x[i] - u);
return s2 / n;

}

Usually there is no obvious direct interpretation of variance and standard devia-
tion. They are, however, important as comparative measures. For two variables, the
covariance measures their tendency to vary together. It is computed as the average of
products of deviation of the variable values from their means. For multiple variables,
the covariance of the data is conventionally computed and expressed as a matrix, the
covariance matrix (also referred to as the variance-covariance or dispersion matrix).

(a) (b)

Figure 4.8 The same point cloud projected onto two different axes. In (a) the spread on the
axis is small. In (b) the spread is much larger. A bounding sphere can be determined from
the axis for which the projected point set has the maximum spread.
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The covariance matrix C = [
cij
]

for a collection of n points P1, P2, . . . , Pn is given by

cij = 1
n

n∑
k=1

(
Pk,i − ui

) (
Pk,j − uj

)
,

or equivalently by

cij = 1
n

(
n∑

k=1

Pk,iPk,j

)
− uiuj.

The ui (and uj) term is the mean of the i-th coordinate value of the points, given by

ui = 1
n

n∑
k=1

Pk,i.

Informally, to see how covariance works, consider the first covariance formula. When
two variables tend to deviate in the same direction from their respective means, the
product,

(
Pk,i − ui

) (
Pk,j − uj

)
,

will be positive more often than negative. If the variables tend to deviate in dif-
ferent directions, the product will be negative more often than positive. The sum
of these products identifies how the variables co-vary. When implemented using
single-precision floats, the former of the two covariance formulas tends to produce
results that are more accurate by retaining more bits of precision. Using double
precision, there is typically little or no difference in the results. The following code
implements the first formula:

void CovarianceMatrix(Matrix33 &cov, Point pt[], int numPts)
{

float oon = 1.0f / (float)numPts;
Point c = Point(0.0f, 0.0f, 0.0f);
float e00, e11, e22, e01, e02, e12;

// Compute the center of mass (centroid) of the points
for (int i = 0; i < numPts; i++)
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c += pt[i];
c *= oon;

// Compute covariance elements
e00 = e11 = e22 = e01 = e02 = e12 = 0.0f;
for (int i = 0; i < numPts; i++) {

// Translate points so center of mass is at origin
Point p = pt[i] - c;
// Compute covariance of translated points
e00 += p.x * p.x;
e11 += p.y * p.y;
e22 += p.z * p.z;
e01 += p.x * p.y;
e02 += p.x * p.z;
e12 += p.y * p.z;

}
// Fill in the covariance matrix elements
cov[0][0] = e00 * oon;
cov[1][1] = e11 * oon;
cov[2][2] = e22 * oon;
cov[0][1] = cov[1][0] = e01 * oon;
cov[0][2] = cov[2][0] = e02 * oon;
cov[1][2] = cov[2][1] = e12 * oon;

}

Once the covariance matrix has been computed, it can be decomposed in a manner
that reveals more about the principal directions of the variance.This decomposition is
performed by computing the eigenvalues and eigenvectors of the matrix.The relation-
ship between these is such that the eigenvector associated with the largest magnitude
eigenvalue corresponds to the axis along which the point data has the largest vari-
ance. Similarly, the eigenvector associated with the smallest magnitude eigenvalue is
the axis along which the data has the least variance. Robustly finding the eigenvalues
and eigenvectors of a matrix is a nontrivial task in general. Typically, they are found
using some (iterative) numerical technique (for which a good source is [Golub96]).

By definition, the covariance matrix is always symmetric. As a result, it decomposes
into real (rather than complex) eigenvalues and an orthonormal basis of eigenvec-
tors. For symmetric matrices, a simpler decomposition approach can be used. For
a moderate-size matrix, as here, the Jacobi method works quite well. The intricate
details of the Jacobi method are beyond the scope of this book. Briefly, however,
the algorithm performs a number of transformation steps to the given input matrix.
Each step consists of applying a rotation to the matrix, bringing the matrix closer and
closer to a diagonal matrix (all elements zero, except along the diagonal). When the
matrix is diagonal, the elements on the diagonal are the eigenvalues. While this is
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done, all rotations are also concatenated into another matrix. Upon exit, this matrix
will contain the eigenvectors. Ideally, this decomposition should be performed in
double-precision arithmetic to minimize numerical errors. The following code for the
Jacobi method is based on the presentation in [Golub96]. First is a subroutine for
assisting in computing the rotation matrix.

// 2-by-2 Symmetric Schur decomposition. Given an n-by-n symmetric matrix
// and indices p, q such that 1 <= p < q <= n, computes a sine-cosine pair
// (s, c) that will serve to form a Jacobi rotation matrix.
//
// See Golub, Van Loan, Matrix Computations, 3rd ed, p428
void SymSchur2(Matrix33 &a, int p, int q, float &c, float &s)
{

if (Abs(a[p][q]) > 0.0001f) {
float r = (a[q][q] - a[p][p]) / (2.0f * a[p][q]);
float t;
if (r >= 0.0f)

t = 1.0f / (r + Sqrt(1.0f + r*r));
else

t = -1.0f / (-r + Sqrt(1.0f + r*r));
c = 1.0f / Sqrt(1.0f + t*t);
s = t * c;

} else {
c = 1.0f;
s = 0.0f;

}
}

Given this support function, the full Jacobi method is now implemented as:

// Computes the eigenvectors and eigenvalues of the symmetric matrix A using
// the classic Jacobi method of iteratively updating A as A = J∧T * A * J,
// where J = J(p, q, theta) is the Jacobi rotation matrix.
//
// On exit, v will contain the eigenvectors, and the diagonal elements
// of a are the corresponding eigenvalues.
//
// See Golub, Van Loan, Matrix Computations, 3rd ed, p428
void Jacobi(Matrix33 &a, Matrix33 &v)
{

int i, j, n, p, q;
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float prevoff, c, s;
Matrix33 J, b, t;

// Initialize v to identify matrix
for (i = 0; i < 3; i++) {

v[i][0] = v[i][1] = v[i][2] = 0.0f;
v[i][i] = 1.0f;

}

// Repeat for some maximum number of iterations
const int MAX_ITERATIONS = 50;
for (n = 0; n < MAX_ITERATIONS; n++) {

// Find largest off-diagonal absolute element a[p][q]
p = 0; q = 1;
for (i = 0; i < 3; i++) {

for (j = 0; j < 3; j++) {
if (i == j) continue;
if (Abs(a[i][j]) > Abs(a[p][q])) {

p = i;
q = j;

}
}

}

// Compute the Jacobi rotation matrix J(p, q, theta)
// (This code can be optimized for the three different cases of rotation)
SymSchur2(a, p, q, c, s);
for (i = 0; i < 3; i++) {

J[i][0] = J[i][1] = J[i][2] = 0.0f;
J[i][i] = 1.0f;

}
J[p][p] = c; J[p][q] = s;
J[q][p] = -s; J[q][q] = c;

// Cumulate rotations into what will contain the eigenvectors
v = v * J;

// Make ’a’ more diagonal, until just eigenvalues remain on diagonal
a = (J.Transpose() * a) * J;

// Compute "norm" of off-diagonal elements
float off = 0.0f;
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for (i = 0; i < 3; i++) {
for (j = 0; j < 3; j++) {

if (i == j) continue;
off += a[i][j] * a[i][j];

}
}
/* off = sqrt(off); not needed for norm comparison */

// Stop when norm no longer decreasing
if (n > 2 && off >= prevoff)

return;

prevoff = off;
}

}

For the particular 3 × 3 matrix used here, instead of applying a general approach
such as the Jacobi method the eigenvalues could be directly computed from a simple
cubic equation. The eigenvectors could then easily be found through, for example,
Gaussian elimination. Such an approach is described in [Cromwell94]. Given the
previously defined functions, computing a sphere from the two most distant points
(according to spread) now looks like:

void EigenSphere(Sphere &eigSphere, Point pt[], int numPts)
{

Matrix33 m, v;

// Compute the covariance matrix m
CovarianceMatrix(m, pt, numPts);
// Decompose it into eigenvectors (in v) and eigenvalues (in m)
Jacobi(m, v);

// Find the component with largest magnitude eigenvalue (largest spread)
Vector e;
int maxc = 0;
float maxf, maxe = Abs(m[0][0]);
if ((maxf = Abs(m[1][1])) > maxe) maxc = 1, maxe = maxf;
if ((maxf = Abs(m[2][2])) > maxe) maxc = 2, maxe = maxf;
e[0] = v[0][maxc];
e[1] = v[1][maxc];
e[2] = v[2][maxc];

// Find the most extreme points along direction ’e’
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int imin, imax;
ExtremePointsAlongDirection(e, pt, numPts, &imin, &imax);
Point minpt = pt[imin];
Point maxpt = pt[imax];

float dist = Sqrt(Dot(maxpt - minpt, maxpt - minpt));
eigSphere.r = dist * 0.5f;
eigSphere.c = (minpt + maxpt) * 0.5f;

}

The modified full code for computing the approximate bounding sphere becomes:

void RitterEigenSphere(Sphere &s, Point pt[], int numPts)
{

// Start with sphere from maximum spread
EigenSphere(s, pt, numPts);

// Grow sphere to include all points
for (int i = 0; i < numPts; i++)

SphereOfSphereAndPt(s, pt[i]);
}

The type of covariance analysis performed here is commonly used for dimension
reduction and statistical analysis of data, and is known as principal component analysis
(PCA). Further information on PCA can be found in [Jolliffe02]. The eigenvectors
of the covariance matrix can also be used to orient an oriented bounding box, as
described in Section 4.4.3.

4.3.4 Bounding Sphere Through Iterative Refinement

The primary idea behind the algorithm described in Section 4.3.2 is to start with a
quite good, slightly underestimated, approximation to the actual smallest sphere and
then grow it until it encompasses all points. Given a better initial sphere, the final
sphere can be expected to be better as well. Consequently, it is hardly surprising that
the output of the algorithm can very effectively be used to feed itself in an iterative
manner. The resulting sphere of one iteration is simply shrunk by a small amount to
make it an underestimate for the next iterative call.

void RitterIterative(Sphere &s, Point pt[], int numPts)
{

const int NUM_ITER = 8;
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RitterSphere(s, pt, numPts);
Sphere s2 = s;
for (int k = 0; k < NUM_ITER; k++) {

// Shrink sphere somewhat to make it an underestimate (not bound)
s2.r = s2.r * 0.95f;

// Make sphere bound data again
for (int i = 0; i < numPts; i++) {

// Swap pt[i] with pt[j], where j randomly from interval [i+1,numPts-1]
DoRandomSwap();
SphereOfSphereAndPt(s2, pt[i]);

}

// Update s whenever a tighter sphere is found
if (s2.r < s.r) s = s2;

}
}

To further improve the results, the points are considered at random, rather than in
the same order from iteration to iteration. The resulting sphere is usually much better
than that produced by Wu’s method (described in the previous section), at the cost of
a few extra iterations over the input data. If the same iterative approach is applied to
Wu’s algorithm, the results are comparable. As with all iterative hill-climbing algo-
rithms of this type (such as gradient descent methods, simulated annealing, or TABU
search), the search can get stuck in local minima, and an optimal result is not guar-
anteed. The returned result is often very nearly optimal, however. The result is also
very robust.

4.3.5 The Minimum Bounding Sphere

A sphere is uniquely defined by four (non co-planar) points. Thus, a brute-force
algorithm for computing the minimum bounding sphere for a set of points is to
consider all possible combinations of four (then three, then two) points, computing
the smallest sphere through these points and keeping the sphere if it contains all other
points. The kept sphere with the smallest radius is then the minimum bounding
sphere. This brute-force algorithm has a complexity of O(n5) and is therefore not
practical. Fortunately, the problem of computing the minimum bounding sphere for
a set of points has been well studied in the field of computational geometry, and a
randomized algorithm that runs in expected linear time has been given by [Welzl91].

Assume a minimum bounding sphere S has been computed for a point set P. If a
new point Q is added to P, then only if Q lies outside S does S need to be recomputed. It
is not difficult to see that Q must lie on the boundary of the new minimum bounding
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sphere for the point set P ∪ {Q}. Welzl’s algorithm is based on this observation,
resulting in a recursive algorithm. It proceeds by maintaining both the set of input
points and a set of support, which contains the points from the input set that must
lie on the boundary of the minimum sphere. The following code fragment outlines
Welzl’s algorithm:

Sphere WelzlSphere(Point pt[], unsigned int numPts, Point sos[], unsigned int numSos)
{

// if no input points, the recursion has bottomed out. Now compute an
// exact sphere based on points in set of support (zero through four points)
if (numPts == 0) {

switch (numSos) {
case 0: return Sphere();
case 1: return Sphere(sos[0]);
case 2: return Sphere(sos[0], sos[1]);
case 3: return Sphere(sos[0], sos[1], sos[2]);
case 4: return Sphere(sos[0], sos[1], sos[2], sos[3]);
}

}
// Pick a point at "random" (here just the last point of the input set)
int index = numPts - 1;
// Recursively compute the smallest bounding sphere of the remaining points
Sphere smallestSphere = WelzlSphere(pt, numPts - 1, sos, numSos); // (*)
// If the selected point lies inside this sphere, it is indeed the smallest
if(PointInsideSphere(pt[index], smallestSphere))

return smallestSphere;
// Otherwise, update set of support to additionally contain the new point
sos[numSos] = pt[index];
// Recursively compute the smallest sphere of remaining points with new s.o.s.
return WelzlSphere(pt, numPts - 1, sos, numSos + 1);

}

Although the two recursive calls inside the function make the function appear
expensive, Welzl showed that assuming points are removed from the input set at
random the algorithm runs in expected linear time. Note that, as presented, the first
recursive call (marked with an asterisk in the code) is likely to cause stack overflow
for inputs of more than a few thousand points. Slight changes to the code avoid this
problem, as outlined in [Gärtner99]. A full implementation is given in [Capens01].
Also available on the Internet is a more intricate implementation, part of the Com-
putational Geometry Algorithms Library (CGAL). Writing a robust implementation
of Welzl’s algorithm requires that the four support functions for computing exact
spheres from one through four points must correctly deal with degenerate input,
such as collinear points.
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Welzl’s algorithm can be applied to computing both bounding circles and higher
dimensional balls. It does not, however, directly extend to computing the minimum
sphere bounding a set of spheres. An algorithm for the latter problem is given in
[Fischer03]. Having covered spheres in detail, we now turn our attention to bounding
boxes of arbitrary orientation.

4.4 Oriented Bounding Boxes (OBBs)

An oriented bounding box (OBB) is a rectangular block, much like an AABB but with
an arbitrary orientation. There are many possible representations for an OBB: as a
collection of eight vertices, a collection of six planes, a collection of three slabs (a pair
of parallel planes), a corner vertex plus three mutually orthogonal edge vectors, or
a center point plus an orientation matrix and three halfedge lengths. The latter is
commonly the preferred representation for OBBs, as it allows for a much cheaper
OBB-OBB intersection test than do the other representations. This test is based on
the separating axis theorem, which is discussed in more detail in Chapter 5.

// Region R = { x | x = c+r*u[0]+s*u[1]+t*u[2] }, |r|<=e[0], |s|<=e[1], |t|<=e[2]
struct OBB {

Point c; // OBB center point
Vector u[3]; // Local x-, y-, and z-axes
Vector e; // Positive halfwidth extents of OBB along each axis

};

At 15 floats, or 60 bytes for IEEE single-precision floats, the OBB is quite an expen-
sive bounding volume in terms of memory usage.The memory requirements could be
lowered by storing the orientation not as a matrix but as Euler angles or as a quater-
nion, using three to four floating-point components instead of nine. Unfortunately,
for an OBB-OBB intersection test these representations must be converted back to
a matrix for use in the effective separating axis test, which is a very expensive oper-
ation. A good compromise therefore may be to store just two of the rotation matrix
axes and compute the third from a cross product of the other two at test time. This
relatively cheap CPU operation saves three floating-point components, resulting in
a 20% memory saving.

4.4.1 OBB-OBB Intersection

Unlike the previous bounding volume intersection tests, the test for overlap between
two oriented bounding boxes is surprisingly complicated. At first, it seems a test to see
if either box that is fully outside a face of the other would suffice. In its simplest form,
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Figure 4.9 Two OBBs are separated if for some axis L the sum of their projected radii is less
than the distance between their projected centers.

this test could be performed by checking if the vertices of box A are all on the outside
of the planes defined by the faces of box B, and vice versa. However, although this
test works in 2D it does not work correctly in 3D. It fails to deal with, for example, the
case in which A and B are almost meeting edge to edge, the edges perpendicular to
each other. Here, neither box is fully outside any one face of the other. Consequently,
the simple test reports them as intersecting even though they are not. Even so, the
simple test may still be useful. Although it is not always correct, it is conservative in
that it never fails to detect a collision. Only in some cases does it incorrectly report
separated boxes as overlapping. As such, it can serve as a pretest for a more expensive
exact test.

An exact test for OBB-OBB intersection can be implemented in terms of what is
known as the separating axis test. This test is discussed in detail in Chapter 5, but
here it is sufficient to note that two OBBs are separated if, with respect to some axis
L, the sum of their projected radii is less than the distance between the projection of
their center points (as illustrated in Figure 4.9). That is, if

|T · L| > rA + rB.

For OBBs it is possible to show that at most 15 of these separating axes must be tested
to correctly determine the OBB overlap status. These axes correspond to the three
coordinate axes of A, the three coordinate axes of B, and the nine axes perpendicular
to an axis from each. If the boxes fail to overlap on any of the 15 axes, they are
not intersecting. If no axis provides this early out, it follows that the boxes must be
overlapping.

The number of operations in the test can be reduced by expressing B in the coor-
dinate frame of A. If t is the translation vector from A to B and R = [

rij
]

(the rotation
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Table 4.1 The 15 separating axis tests needed to determine OBB-OBB intersection. Super-
scripts indicate which OBB the value comes from.

L |T · L| rA rB

uA
0 |t0| eA

0 eB
0 |r00| + eB

1 |r01| + eB
2 |r02|

uA
1 |t1| eA

1 eB
0 |r10| + eB

1 |r11| + eB
2 |r12|

uA
2 |t2| eA

2 eB
0 |r20| + eB

1 |r21| + eB
2 |r22|

uB
0 |t0r00 + t1r10 + t2r20| eA

0 |r00| + eA
1 |r10| + eA

2 |r20| eB
0

uB
1 |t0r01 + t1r11 + t2r21| eA

0 |r01| + eA
1 |r11| + eA

2 |r21| eB
1

uB
2 |t0r02 + t1r12 + t2r22| eA

0 |r02| + eA
1 |r12| + eA

2 |r22| eB
2

uA
0 × uB

0 |t2r10 − t1r20| eA
1 |r20| + eA

2 |r10| eB
1 |r02| + eB

2 |r01|
uA

0 × uB
1 |t2r11 − t1r21| eA

1 |r21| + eA
2 |r11| eB

0 |r02| + eB
2 |r00|

uA
0 × uB

2 |t2r12 − t1r22| eA
1 |r22| + eA

2 |r12| eB
0 |r01| + eB

1 |r00|
uA

1 × uB
0 |t0r20 − t2r00| eA

0 |r20| + eA
2 |r00| eB

1 |r12| + eB
2 |r11|

uA
1 × uB

1 |t0r21 − t2r01| eA
0 |r21| + eA

2 |r01| eB
0 |r12| + eB

2 |r10|
uA

1 × uB
2 |t0r22 − t2r02| eA

0 |r22| + eA
2 |r02| eB

0 |r11| + eB
1 |r10|

uA
2 × uB

0 |t1r00 − t0r10| eA
0 |r10| + eA

1 |r00| eB
1 |r22| + eB

2 |r21|
uA

2 × uB
1 |t1r01 − t0r11| eA

0 |r11| + eA
1 |r01| eB

0 |r22| + eB
2 |r20|

uA
2 × uB

2 |t1r02 − t0r12| eA
0 |r12| + eA

1 |r02| eB
0 |r21| + eB

1 |r20|

matrix bringing B into A’s coordinate frame), the tests that must be performed for the
different axes L are summarized in Table 4.1.

This test can be implemented as follows:

int TestOBBOBB(OBB &a, OBB &b)
{

float ra, rb;
Matrix33 R, AbsR;

// Compute rotation matrix expressing b in a’s coordinate frame
for (int i = 0; i < 3; i++)

for (int j = 0; j < 3; j++)
R[i][j] = Dot(a.u[i], b.u[j]);
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// Compute translation vector t
Vector t = b.c - a.c;
// Bring translation into a’s coordinate frame
t = Vector(Dot(t, a.u[0]), Dot(t, a.u[2]), Dot(t, a.u[2]));

// Compute common subexpressions. Add in an epsilon term to
// counteract arithmetic errors when two edges are parallel and
// their cross product is (near) null (see text for details)
for (int i = 0; i < 3; i++)

for (int j = 0; j < 3; j++)
AbsR[i][j] = Abs(R[i][j]) + EPSILON;

// Test axes L = A0, L = A1, L = A2
for (int i = 0; i < 3; i++) {

ra = a.e[i];
rb = b.e[0] * AbsR[i][0] + b.e[1] * AbsR[i][1] + b.e[2] * AbsR[i][2];
if (Abs(t[i]) > ra + rb) return 0;

}

// Test axes L = B0, L = B1, L = B2
for (int i = 0; i < 3; i++) {

ra = a.e[0] * AbsR[0][i] + a.e[1] * AbsR[1][i] + a.e[2] * AbsR[2][i];
rb = b.e[i];
if (Abs(t[0] * R[0][i] + t[1] * R[1][i] + t[2] * R[2][i]) > ra + rb) return 0;

}

// Test axis L = A0 x B0
ra = a.e[1] * AbsR[2][0] + a.e[2] * AbsR[1][0];
rb = b.e[1] * AbsR[0][2] + b.e[2] * AbsR[0][1];
if (Abs(t[2] * R[1][0] - t[1] * R[2][0]) > ra + rb) return 0;

// Test axis L = A0 x B1
ra = a.e[1] * AbsR[2][1] + a.e[2] * AbsR[1][1];
rb = b.e[0] * AbsR[0][2] + b.e[2] * AbsR[0][0];
if (Abs(t[2] * R[1][1] - t[1] * R[2][1]) > ra + rb) return 0;

// Test axis L = A0 x B2
ra = a.e[1] * AbsR[2][2] + a.e[2] * AbsR[1][2];
rb = b.e[0] * AbsR[0][1] + b.e[1] * AbsR[0][0];
if (Abs(t[2] * R[1][2] - t[1] * R[2][2]) > ra + rb) return 0;

// Test axis L = A1 x B0
ra = a.e[0] * AbsR[2][0] + a.e[2] * AbsR[0][0];
rb = b.e[1] * AbsR[1][2] + b.e[2] * AbsR[1][1];
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if (Abs(t[0] * R[2][0] - t[2] * R[0][0]) > ra + rb) return 0;

// Test axis L = A1 x B1
ra = a.e[0] * AbsR[2][1] + a.e[2] * AbsR[0][1];
rb = b.e[0] * AbsR[1][2] + b.e[2] * AbsR[1][0];
if (Abs(t[0] * R[2][1] - t[2] * R[0][1]) > ra + rb) return 0;

// Test axis L = A1 x B2
ra = a.e[0] * AbsR[2][2] + a.e[2] * AbsR[0][2];
rb = b.e[0] * AbsR[1][1] + b.e[1] * AbsR[1][0];
if (Abs(t[0] * R[2][2] - t[2] * R[0][2]) > ra + rb) return 0;

// Test axis L = A2 x B0
ra = a.e[0] * AbsR[1][0] + a.e[1] * AbsR[0][0];
rb = b.e[1] * AbsR[2][2] + b.e[2] * AbsR[2][1];
if (Abs(t[1] * R[0][0] - t[0] * R[1][0]) > ra + rb) return 0;

// Test axis L = A2 x B1
ra = a.e[0] * AbsR[1][1] + a.e[1] * AbsR[0][1];
rb = b.e[0] * AbsR[2][2] + b.e[2] * AbsR[2][0];
if (Abs(t[1] * R[0][1] - t[0] * R[1][1]) > ra + rb) return 0;

// Test axis L = A2 x B2
ra = a.e[0] * AbsR[1][2] + a.e[1] * AbsR[0][2];
rb = b.e[0] * AbsR[2][1] + b.e[1] * AbsR[2][0];
if (Abs(t[1] * R[0][2] - t[0] * R[1][2]) > ra + rb) return 0;

// Since no separating axis is found, the OBBs must be intersecting
return 1;

}

To make the OBB-OBB test as efficient as possible, it is important that the axes are
tested in the order given in Table 4.1. The first reason for using this order is that by
testing three orthogonal axes first there is little spatial redundancy in the tests, and
the entire space is quickly covered. Second, with the setup given here, where A is
transformed to the origin and aligned with the coordinate system axes, testing the
axes of A is about half the cost of testing the axes of B. Although it is not done here,
the calculations of R and AbsR should be interleaved with the first three tests, so that
they are not unnecessarily performed in their entirety when the OBB test exits in one
of the first few if statements.

If OBBs are used in applications in which they often tend to have one axis aligned
with the current world up, for instance, when traveling on ground, it is worthwhile
special-casing these“vertically aligned”OBBs. This simplification allows for a much
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faster intersection test that only involves testing four separating axes in addition to a
cheap test in the vertical direction.

In some cases, performing just the first 6 of the 15 axis tests may result in faster
results overall. In empirical tests, [Bergen97] found that the last 9 tests in the OBB
overlap code determine nonintersection about 15% of the time. As perhaps half of
all queries are positive to start with, omitting these 9 tests results in false positives
about 6 to 7% of the time. When the OBB test is performed as a pretest for an exact
test on the bounded geometry, this still leaves the test conservative and no collisions
are missed.

4.4.2 Making the Separating-axis Test Robust

A very important issue overlooked in several popular treatments of the separating-
axis theorem is the robustness of the test. Unfortunately, any code implementing this
test must be very carefully crafted to work as intended. When a separating axis is
formed by taking the cross product of an edge from each bounding box there is a
possibility these edges are parallel. As a result, their cross product is the null vector,
all projections onto this null vector are zero, and the sum of products on each side of
the axis inequality vanishes. Remaining is the comparison 0 > 0. In the perfect world
of exact arithmetic mathematics, this expression would trivially evaluate to false. In
reality, any computer implementation must deal with inaccuracies introduced by the
use of floating-point arithmetic.

For the optimized inequalities presented earlier, the case of parallel edges cor-
responds to only the zero elements of the rotation matrix R being referenced.
Theoretically, this still results in the comparison 0 > 0. In practice, however, due
to accumulation of errors the rotation matrix will not be perfectly orthonormal and
its zero elements will not be exactly zero. Thus, the sum of products on both sides
of the inequality will also not be zero, but some small error quantity. As this accu-
mulation of errors can cause either side of the inequality to change sign or shift in
magnitude, the result will be quite random. Consequently, if the inequality tests are
not very carefully performed these arithmetic errors could lead to the (near) null vec-
tor incorrectly being interpreted as a separating axis. Two overlapping OBBs therefore
could be incorrectly reported as nonintersecting.

As the right-hand side of the inequalities should be larger when two OBBs are
interpenetrating, a simple solution to the problem is to add a small epsilon value to
the absolute values of the matrix elements occurring on the right-hand side of the
inequalities. For near-zero terms, this epsilon term will be dominating and axis tests
corresponding to (near) parallel edges are thus made disproportionately conservative.
For other, nonzero cases, the small epsilon term will simply disappear. Note that as
the absolute values of the components of a rotation matrix are bounded to the range
[0, 1] using a fixed-magnitude epsilon works fine regardless of the sizes of the boxes
involved. The robustness of the separating-axis test is revisited in Chapter 5.
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Figure 4.10 (a) A poorly aligned and (b) a well-aligned OBB.

4.4.3 Computing a Tight OBB

Computing tight-fitting oriented bounding boxes is a difficult problem, made worse
by the fact that the volume difference between a poorly aligned and a well-aligned
OBB can be quite large (Figure 4.10). There exists an algorithm for calculating the
minimum volume bounding box of a polyhedron, presented in [O’Rourke85]. The
key observation behind the algorithm is that given a polyhedron either one face and
one edge or three edges of the polyhedron will be on different faces of its bounding
box.Thus, these edge and face configurations can be searched in a systematic fashion,
resulting in an O(n3) algorithm. Although it is an interesting theoretical result, unfor-
tunately the algorithm is both too complicated and too slow to be of much practical
value.

Two other theoretical algorithms for computing near approximations of the
minimum-volumeboundingboxarepresented in [Barequet99]. However, theauthors
admit that these algorithms are probably too difficult to implement and would be
impractical even so, due to the large constant-factor overhead in the algorithms.
Thus, with the currently available theoretical algorithms of little practical use OBBs
must be computed using either approximation or brute-force methods.

A simpler algorithm offered in [Barequet99] provides a coarse approximation of the
optimal OBB for a point set by first computing the minimum AABB of the set. From
the point set, a pair of points on the two parallel box sides farthest apart are selected
to determine the length direction of the OBB.The set of points is then projected onto
the plane perpendicular to the OBB length direction. The same procedure is now
applied again, only this time computing the minimum axis-aligned rectangle, with
points on the two parallel sides farthest apart determining a second axis for the OBB.
The third OBB axis is the perpendicular to the first two axes. Although this algorithm is
very easy to code, in practice bounding boxes much closer to optimal can be obtained
through other algorithms of similar complexity, as described in the following.



108 Chapter 4 Bounding Volumes

For long and thin objects, an OBB axis should be aligned with the direction of the
objects. For a flat object, an OBB axis should be aligned with the normal of the flat
object. These directions correspond to the principal directions of the objects, and the
principal component analysis used in Section 4.3.3 can be used here.

Computing bounding boxes based on covariance of model vertices generally works
satisfactorily for models whose vertices are uniformly distributed over the model
space. Unfortunately, the influence of internal points often bias the covariance and
can make the OBB take on any orientation regardless of the extremal points. For
this reason, all methods for computing bounding volumes based on weighting vertex
positions should ideally be avoided. It is sufficient to note that the defining features
(center, dimensions, and orientation) of a minimum bounding volume are all inde-
pendent of clustering of object vertices. This can easily be seen by considering adding
(or taking away) extra vertices off-center, inside or on the boundary, of a bounding
volume. These actions do not affect the defining features of the volume and therefore
should not affect its calculation. However, adding extra points in this manner changes
the covariance matrix of the points, and consequently any OBB features directly com-
puted from the matrix. The situation can be improved by considering just extremal
points, using only those points on the convex hull of the model. This eliminates the
internal points, which can no longer misalign the OBB. However, even though all
remaining points are extremal the resulting OBB can still be arbitrarily bad due to
point distribution. A clustering of points will still bias an axis toward the cluster. In
other words, using vertices alone simply cannot produce reliable covariance matrices.

A suggested solution is to use a continuous formulation of covariance, computing
the covariance across the entire face of the primitives [Gottschalk00]. The convex hull
should still be used for the calculation. If not, small outlying geometry would extend
the bounding box, but not contribute enough significance to align the box properly.
In addition, interior geometry would still bias the covariance. If the convex hull is
already available, this algorithm is O(n). If the convex hull must be computed, it is
O(n log n).

Given n triangles
(
pk, qk, rk

)
, 0 ≤ k < n, in the convex hull, the covariance matrix

is given by

Cij =
⎛
⎝ 1

aH

∑
0≤k<n

ak

12

(
9mk,imk,j + pk,ipk,j + qk,iqk,j + rk,irk,j

)⎞⎠ − mH,imH,j,

where ak = ∥∥(qk − pk
) × (

rk − pk
)∥∥ /2 is the area and mk = (

pk + qk + rk
)/

3 is the
centroid of triangle k.

The total area of the convex hull is given by

aH =
∑

0≤k<n

ak,
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and the centroid of the convex hull,

mH = 1
aH

∑
0≤k<n

akmk,

is computed as the mean of the triangle centroids weighted by their area. The i and
j subscripts indicate which coordinate component is taken (that is, x, y, or z). Code
for this calculation can be found in the publicly available collision detection package
RAPID.A slightly different formulation of this covariance matrix is given in [Eberly01],
and code is available on the companion CD-ROM for this book.

The method just described treats the polyhedron as a hollow body, computing the
covariance matrix from the surface areas. A related method treating the polyhedron
as a solid body is described in [Mirtich96a]. Given an assumed uniform density poly-
hedron, Mirtich’s polyhedral mass property algorithm integrates over the volume of
the polyhedron, computing its 3 × 3 inertia tensor (also known as the inertia or mass
matrix). The eigenvectors of this symmetric matrix are called the principal axes of
inertia, and the eigenvalues the principal moments of inertia. Just as with the covari-
ance matrices before, the Jacobi method can be used to extract these axes, which in
turn can then serve as the orientation matrix of an OBB. Detailed pseudocode for
computing the inertia matrix is given in Mirtich’s article. A public domain implemen-
tation in C is also available for download on the Internet. Mirtich’s article is revisited
in [Eberly03], in which a more computationally efficient approach is derived and for
which pseudocode is provided.

Note that neither covariance-aligned nor inertia-aligned oriented bounding boxes
are optimal. Consider an object A and its associated OBB B. Let A be expanded by
adding some geometry to it, but staying within the bounds of B. For both methods,
this would in general result in a different OBB B′ for the new object A′. By construction,
B and B′ both cover the two objects A and A′. However, as the dimensions of the two
OBBs are in the general case different, one OBB must be suboptimal.

4.4.4 Optimizing PCA-based OBBs

As covariance-aligned OBBs are not optimal, it is reasonable to suspect they could
be improved through slight modification. For instance, perhaps the OBB could
be rotated about one of its axes to find the orientation for which its volume is
smallest. One improved approach to OBB fitting is to align the box along just
one principal component. The remaining two directions are determined from the
computed minimum-area bounding rectangle of the projection of all vertices onto
the perpendicular plane to the selected axis. Effectively, this method determines
the best rotation about the given axis for producing the smallest-volume OBB.
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This approach was suggested in [Barequet96], in which three different methods were
investigated.

● All-principal-components box

● Max-principal-component box

● Min-principal-component box

The all-principal-components box uses all three principal components to align
the OBB, and is equivalent to the method presented in the previous section. For
the max-principal-component box, the eigenvector corresponding to the largest
eigenvalue is selected as the length of the OBB. Then all points are projected onto
a plane perpendicular to that direction. The projection is followed by computing
the minimum-area bounding rectangle of the projected points, determining the
remaining two directions of the OBB. Finally, the min-principal-component box
selects the shortest principal component as the initial direction of the OBB, and
then proceeds as in the previous method. Based on empirical results, [Barequet96]
conclude that the min-principal-component method performs best. A compelling
reason max-principal-component does not do better is also given: as the max-
imum principal component is the direction with the maximum variance, it will
contribute the longest possible edge and is therefore likely to produce a larger
volume.

A local minimum volume can be reached by iterating this method on a given
starting OBB. The procedure would project all vertices onto the plane perpendicular
to one of the directions of the OBB, updating the OBB to align with the minimum-
area bounding rectangle of the projection. The iterations would be repeated until no
projection (along any direction of the OBB) gives an improvement, at which point
the local minimum has been found. This method serves as an excellent optimization
of boxes computed through other methods, such as Mirtich’s, when performed as a
preprocessing step.

Remaining is the problem of computing the minimum-area bounding rectan-
gle of a set of points in the plane. The key insight here is a result from the field
of computational geometry. It states that a minimum-area bounding rectangle of
a convex polygon has (at least) one side collinear with an edge of the polygon
[Freeman75].

Therefore, the minimum rectangle can trivially be computed by a simple algorithm.
First, the convex hull of the point set is computed, resulting in a convex polygon.
Then, an edge at a time of the polygon is considered as one direction of the bound-
ing box. The perpendicular to this direction is obtained, and all polygon vertices are
projected onto these two axes and the rectangle area is computed. When all poly-
gon edges have been tested, the edge (and its perpendicular) giving the smallest
area determines the directions of the minimum-area bounding rectangle. For each
edge considered, the rectangle area is computed in O(n) time, for a total complexity
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of O(n2) for the algorithm as a whole. This algorithm can be implemented as
follows:

// Compute the center point, ’c’, and axis orientation, u[0] and u[1], of
// the minimum area rectangle in the xy plane containing the points pt[].
float MinAreaRect(Point2D pt[], int numPts, Point2D &c, Vector2D u[2])
{

float minArea = FLT_MAX;

// Loop through all edges; j trails i by 1, modulo numPts
for (int i = 0, j = numPts - 1; i < numPts; j = i, i++) {

// Get current edge e0 (e0x,e0y), normalized
Vector2D e0 = pt[i] - pt[j];
e0 /= Length(e0);

// Get an axis e1 orthogonal to edge e0
Vector2D e1 = Vector2D(-e0.y, e0.x); // = Perp2D(e0)

// Loop through all points to get maximum extents
float min0 = 0.0f, min1 = 0.0f, max0 = 0.0f, max1 = 0.0f;
for (int k = 0; k < numPts; k++) {

// Project points onto axes e0 and e1 and keep track
// of minimum and maximum values along both axes
Vector2D d = pt[k] - pt[j];
float dot = Dot2D(d, e0);
if (dot < min0) min0 = dot;
if (dot > max0) max0 = dot;
dot = Dot2D(d, e1);
if (dot < min1) min1 = dot;
if (dot > max1) max1 = dot;

}
float area = (max0 - min0) * (max1 - min1);

// If best so far, remember area, center, and axes
if (area < minArea) {

minArea = area;
c = pt[j] + 0.5f * ((min0 + max0) * e0 + (min1 + max1) * e1);
u[0] = e0; u[1] = e1;

}
}
return minArea;

}
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The minimum-area bounding rectangle of a convex polygon can also be computed
in O(n log n) time, using the method of rotating calipers [Toussaint83]. The rotating
calipers algorithm starts out bounding the polygon by four lines through extreme
points of the polygon such that the lines determine a rectangle. At least one line is
chosen to be coincident with an edge of the polygon. For each iteration of the algo-
rithm, the lines are simultaneously rotated clockwise about their supporting points
until a line coincides with an edge of the polygon. The lines now form a new bound-
ing rectangle around the polygon. The process is repeated until the lines have been
rotated by an angle of 90 degrees from their original orientation. The minimum-area
bounding rectangle corresponds to the smallest-area rectangle determined by the
lines over all iterations. The time complexity of the algorithm is bounded by the cost
of computing the convex hull. If the convex hull is already available, the rotating
calipers algorithm is O(n).

4.4.5 Brute-force OBB Fitting

The last approach to OBB fitting considered here is simply to compute the OBB in
a brute-force manner. One way to perform brute-force fitting is to parameterize
the orientation of the OBB in some manner. The space of orientations is sampled
at regular intervals over the parameterization and the best OBB over all sampled
rotations is kept. The OBB orientation is then refined by sampling the interval in
which the best OBB was found at a higher subinterval resolution. This hill-climbing
approach is repeated with smaller and smaller interval resolutions until there is little
or no change in orientation for the best OBB.

For each tested coordinate system, computing the candidate OBB requires the
transformation of all vertices into the coordinate system. Because this transformation
is expensive, the search should exit as soon as the candidate OBB becomes worse
than the currently best OBB. In that it is cheap to compute and has a relatively good
fit, a PCA-fitted OBB provides a good initial guess, increasing the chances of an early
out during point transformation [Miettinen02a]. To further increase the chance of an
early out, the (up to) six extreme points determining the previous OBB should be the
first vertices transformed. In [Miettinen02b] it is reported that over 90% of the tests
are early-exited using this optimization. Brute-force fitting of OBBs generally results
in much tighter OBBs than those obtained through PCA-based fitting.

The hill-climbing approach just described considers many sample points in the
space of orientation before updating the currently best OBB.The optimization-based
OBB-fitting method described in [Lahanas00] hill climbs the search space one sample
at a time, but employs a multisample technique to aid the optimizer escape from local
minima.

4.5 Sphere-swept Volumes

After spheres and boxes, it is natural to consider cylinders as bounding volumes.
Unfortunately, when the mathematics is worked out it turns out that the overlap test
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(a) (b) (c)

Figure 4.11 (a) A sphere-swept point (SSP). (b) A sphere-swept line (SSL). (c) A sphere-swept
rectangle (SSR).

for cylinders is quite expensive, making them less attractive as bounding volumes.
However, if a cylinder is fitted with spherical end caps the resulting capped cylinder
volume becomes a more attractive bounding volume. Let the cylinder be described by
the points A and B (forming its medial axis) and a radius r. The capped cylinder would
be the resulting volume from sweeping a sphere of radius r along the line segment
AB. This volume is part of a family of volumes, extensions of the basic sphere.

Recall that the test between two spheres computes the distance between the
two center points, comparing the result against the sum of the radii (squaring the
quantities to avoid an expensive square root). By replacing the sphere center points
with arbitrary inner primitives or medial structures, new bounding volumes can be
obtained. The resultant volumes are equivalent to sweeping the inner primitive with
a sphere of radius r (or, technically, forming the Minkowski sum of the sphere and the
primitive). As such, this entire family of bounding volumes is therefore collectively
referred to as sphere-swept volumes (SSVs). All points within a distance r from the
inner medial structure belong to the SSV. Three types of sphere-swept volumes are
illustrated in Figure 4.11.

Following the sphere overlap test, the intersection test for two SSVs simply
becomes calculating the (squared) distance between the two inner primitives and
comparing it against the (squared) sum of their combined radii. The cost of sphere-
swept tests is completely determined by the cost of the distance function. To make
the distance test as inexpensive as possible, the inner primitives are usually limited
to points, line segments, or rectangles. The resulting SSVs — sphere-swept points
(SSPs), sphere-swept lines (SSLs), and sphere-swept rectangles (SSRs) — are com-
monly referred to, respectively, as spheres, capsules, and lozenges. The latter looks like
an OBB with rounded corners and edges. Capsules are also referred to as capped cylin-
ders or spherocylinders. The data structures for capsules and lozenges can be defined
as follows:

// Region R = { x | (x - [a + (b - a)*t])∧2 <= r }, 0 <= t <= 1
struct Capsule {

Point a; // Medial line segment start point
Point b; // Medial line segment endpoint
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float r; // Radius
};

// Region R = { x | (x - [a + u[0]*s + u[1]*t])∧2 <= r }, 0 <= s,t <= 1
struct Lozenge {

Point a; // Origin
Vector u[2]; // The two edges axes of the rectangle
float r; // Radius

};

Due to similarity in shape, lozenges can be a viable substitute for OBBs. In situ-
ations of close proximity, the lozenge distance computation becomes less expensive
than the OBB separating-axis test.

4.5.1 Sphere-swept Volume Intersection

By construction, all sphere-swept volume tests can be formulated in the same way.
First, the distance between the inner structures is computed. Then this distance is
compared against the sum of the radii. The only difference between any two types
of sphere-swept tests is in the calculation used to compute the distance between
the inner structures of the two volumes. A useful property of sphere-swept volumes
is that the distance computation between the inner structures does not rely on the
inner structures being of the same type. Mixed-type or hybrid tests can therefore
easily be constructed. Two tests are presented in the following: the sphere-capsule
and capsule-capsule tests.

int TestSphereCapsule(Sphere s, Capsule capsule)
{

// Compute (squared) distance between sphere center and capsule line segment
float dist2 = SqDistPointSegment(capsule.a, capsule.b, s.c);
// If (squared) distance smaller than (squared) sum of radii, they collide
float radius = s.r + capsule.r;
return dist2 <= radius * radius;

}

int TestCapsuleCapsule(Capsule capsule1, Capsule capsule2)
{

// Compute (squared) distance between the inner structures of the capsules
float s, t;
Point c1, c2;
float dist2 = ClosestPtSegmentSegment(capsule1.a, capsule1.b,

capsule2.a, capsule2.b, s, t, c1, c2);
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// If (squared) distance smaller than (squared) sum of radii, they collide
float radius = capsule1.r + capsule2.r;
return dist2 <= radius * radius;

}

The functions SqDistPointSegment() and ClosestPtSegmentSegment() used
here are found in Chapter 5 (Sections 5.1.2.1 and 5.1.9, respectively). A distance
test for SSRs (and thus, by reduction, also for SSLs and SSPs) based on halfspace
tests is given in [Larsen99] and [Larsen00].

4.5.2 Computing Sphere-swept Bounding Volumes

The machinery needed for computing SSVs has been described in previous sections.
For instance, by computing the principal axes a capsule can be fitted by using the
longest axis as the capsule length. The next longest axis determines the radius.
Alternatively, the length can also be fit using a least-square approach for fitting a
line to a set of points. For SSRs, all three axes would be used, with the shortest axis
forming the rectangle face normal. See [Eberly01], [Larsen99], and [Larsen00] for
further detail.

4.6 Halfspace Intersection Volumes

With the notable exception of spheres, most bounding volumes are convex polyhedra.
All of these polyhedral bounding volumes are representable as the intersection of a
set of halfspaces, wherein the halfspace dividing planes coincides with the sides of
the bounding volume. For instance, AABBs and OBBs are both the intersection of six
halfspaces. A tetrahedron is the intersection of four halfspaces — the smallest number
of halfspaces needed to form a closed volume. Generally, the more halfspaces used
the better the resulting intersection volume can fit an object. If the bounded object
is polyhedral, the tightest possible convex bounding volume is the convex hull of the
object. In this case, the number of faces on the hull serves as a practical upper limit
on how many halfspaces are needed to form the bounding volume. Convex hulls
are important bounding volumes, and an in-depth treatment of collision detection
algorithms for convex hulls is given in Chapter 9.

Although convex hulls form the tightest bounding volumes, they are not neces-
sarily the best choice of bounding volume. Some drawbacks of convex hulls include
their being expensive and difficult to compute, taking large amounts of memory
to represent, and potentially being costly to operate upon. By limiting the number
of halfspaces used in the intersection volume, several simpler alternative bounding
volumes can be formed. A few variants are described in the sections that follow.
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Figure 4.12 A slab is the infinite region of space between two planes, defined by a normal
n and two signed distances from the origin.

4.6.1 Kay–Kajiya Slab-based Volumes

First introduced by Kay and Kajiya for speeding up ray-object intersection tests,
Kay–Kajiya volumes are a family of many-sided parallelepipedal bounding volumes
based on the intersection of slabs [Kay86]. A slab is the infinite region of space
between two parallel planes (Figure 4.12). This plane set is represented by a unit
vector n (the plane-set normal) and two scalar values giving the signed distance from
the origin (along n) for both planes.

// Region R = { (x, y, z) | dNear <= a*x + b*y + c*z <= dFar }
struct Slab {

float n[3]; // Normal n = (a, b, c)
float dNear; // Signed distance from origin for near plane (dNear)
float dFar; // Signed distance from origin for far plane (dFar)

};

To form a bounding volume, a number of normals are chosen. Then, for each
normal, pairs of planes are positioned so that they bound the object on both its sides
along the direction of the normal. For polygonal objects, the positions of the planes
can be found by computing the dot product of the normal and each object vertex.
The minimum and maximum values are then the required scalar values defining the
plane positions.

To form a closed 3D volume, at least three slabs are required. BothAABBs and OBBs
are examples of volumes formed as the intersection of three slabs. By increasing the
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number of slabs, slab-based bounding volumes can be made to fit the convex hulls
of objects arbitrarily tightly.

For the original application of ray intersection, a quick test can be based on the
fact that a parameterized ray intersects a slab if and only if it is simultaneously inside
all (three) slabs for some interval, or equivalently if the intersection of the intervals
for ray-slab overlap is nonzero. With pairs of planes sharing the same normal, cal-
culations can be shared between the two ray-plane intersection tests, improving test
performance.

Although slab-based volumes allow for fast ray intersection tests, they cannot
easily be used as-is in object-object intersection testing. However, by sharing nor-
mals across all objects it is possible to perform fast object-object tests (explored in
the next section).

4.6.2 Discrete-orientation Polytopes (k-DOPs)

Based on the same idea as the Kay–Kajiya slab-based volumes are the volumes known
as discrete-orientation polytopes (k-DOPs) or fixed-direction hulls (FDHs), suggested by
[Konečný97] and [Klosowski98]. (Although the latter is perhaps a more descriptive
term, the former is more commonly used and is adopted here.) These k-DOPs are
convex polytopes, almost identical to the slab-based volumes except that the normals
are defined as a fixed set of axes shared among all k-DOP bounding volumes. The
normal components are typically limited to the set {−1, 0, 1}, and the normals are
not normalized. These normals make computation of k-DOPs cheaper, which is
important because k-DOPs must be dynamically realigned. By sharing the normals
among all objects, k-DOP storage is very cheap. Only the min-max intervals for each
axis must be stored. For instance, an 8-DOP becomes:

struct DOP8 {
float min[4]; // Minimum distance (from origin) along axes 0 to 3
float max[4]; // Maximum distance (from origin) along axes 0 to 3

};

A 6-DOP commonly refers to polytopes with faces aligned along the six directions
(±1, 0, 0), (0, ±1, 0), and (0, 0, ±1). This 6-DOP is of course an AABB, but the AABB
is just a special-case 6-DOP; any oriented bounding box could also be described as
a 6-DOP. An 8-DOP has faces aligned with the eight directions (±1, ±1, ±1) and a
12-DOP with the 12 directions (±1, ±1, 0), (±1, 0, ±1), and (0, ±1, ±1). An example
of a 2D 8-DOP is shown in Figure 4.13.

A 14-DOP is defined using the combined directions of the 6-DOP and 8-DOP.
The 18-DOP, 20-DOP, and 26-DOP are formed in a similar way. The 14-DOP corre-
sponds to an axis-aligned box with the eight corners cut off. The 18-DOP is an AABB
wherein the 12 edges have been cut off. The 18-DOP is also referred to as a tribox
[Crosnier99].
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T

Figure 4.13 8-DOP for triangle (3, 1), (5, 4), (1, 5) is {1, 1, 4, −4, 5, 5, 9, 2} for axes (1, 0), (0, 1),
(1, 1), (1, −1).

Note that the k-DOP is not just any intersection of slabs, but the tightest slabs that
form the body. For example, the triangle (0, 0), (1, 0), (0, 1) can be expressed as several
slab intersections, but there is only one k-DOP describing it. If and only if the slab
planes have a common point with the volume formed by the intersection of the slabs
are the slabs defining a k-DOP. This tightness criterion is important, as the overlap
test for k-DOPs does not work on the intersection volume but solely on the slab
definitions. Without the given restriction, the overlap test would be quite ineffective.

Compared to oriented bounding boxes, the overlap test for k-DOPs is much faster
(about an order of magnitude), even for large-numbered DOPs, thanks to the fixed-
direction planes. In terms of storage, the same amount of memory required for an
OBB roughly corresponds to a 14-DOP. k-DOPs have a (probable) tighter fit than
OBBs, certainly as k grows and the k-DOP resembles the convex hull. For geometry
that does not align well with the axes of the k-DOP, OBBs can still be tighter. OBBs
will also perform better in situations of close proximity.

The largest drawback to k-DOPs is that even if the volumes are rarely colliding the
k-DOPs must still be updated, or “tumbled.”As this operation is expensive, whenever
possible the tumbling operation should be avoided.This is usually done by pretesting
the objects using bounding spheres (not performing the k-DOP test if the sphere test
fails). In general, k-DOPs perform best when there are few dynamic objects being
tested against many static objects (few k-DOPs have to update) or when the same
object is involved in several tests (the cost of updating the k-DOP is amortized over
the tests).

A slightly different k-DOP is examined in [Zachmann00]. Here, the k-DOP axes
are selected using a simulated annealing process in which k points are randomly
distributed on a unit sphere, with the provision that for each point P, −P is also in
the set. A repelling force among points is used as the annealing temperature.

4.6.3 k-DOP–k-DOP Overlap Test

Due to the fixed set of axes being shared among all objects, intersection detection
for k-DOPs is similar to and no more difficult than testing two AABBs for overlap.
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The test simply checks the k/2 intervals for overlap. If any pair of intervals do not
overlap, the k-DOPs do not intersect. Only if all pairs of intervals are overlapping are
the k-DOPs intersecting.

int TestKDOPKDOP(KDOP &a, KDOP &b, int k)
{

// Check if any intervals are non-overlapping, return if so
for (int i = 0; i < k / 2; i++)

if (a.min[i] > b.max[i] || a.max[i] < b.min[i])
return 0;

// All intervals are overlapping, so k-DOPs must intersect
return 1;

}

As with oriented bounding boxes, the order in which axes are tested is likely to
have an effect on performance. As intervals along“near”directions are likely to have
similar overlap status, consecutive interval tests preferably should be performed on
largely different (perpendicular) directions. One way to achieve this is to preprocess
the order of the global axes using a simple greedy algorithm. Starting with any axis
to test first, it would order all axes so that the successor to the current axis is the one
whose dot product with the current axis is as close to zero as possible.

4.6.4 Computing and Realigning k-DOPs

Computing the k-DOP for an object can be seen as a generalization of the method
for computing an AABB, much as the overlap test for two k-DOPs is really a general-
ization of the AABB-AABB overlap test. As such, a k-DOP is simply computed from
the projection spread of the object vertices along the defining axes of the k-DOP.
Compared to the AABB calculation, the only differences are that the vertices have to
be projected onto the axes and there are more axes to consider. The restriction to keep
axis components in the set {−1, 0, 1} makes a hardcoded function for computing the
k-DOP less expensive than a general function for arbitrary directions, as the projec-
tion of vertices onto these axes now involves at most three additions. For example,
an 8-DOP is computed as follows:

// Compute 8-DOP for object vertices v[] in world space
// using the axes (1,1,1), (1,1,-1), (1,-1,1) and (-1,1,1)
void ComputeDOP8(Point v[], int numPts, DOP8 &dop8)
{

// Initialize 8-DOP to an empty volume
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dop8.min[0] = dop8.min[1] = dop8.min[2] = dop8.min[3] = FLT_MAX;
dop8.max[0] = dop8.max[1] = dop8.max[2] = dop8.max[3] = -FLT_MAX;

// For each point, update 8-DOP bounds if necessary
float value;
for (int i = 0; i < numPts; i++) {

// Axis 0 = (1,1,1)
value = v[i].x + v[i].y + v[i].z;
if (value < dop8.min[0]) dop8.min[0] = value;
else if (value > dop8.max[0]) dop8.max[0] = value;

// Axis 1 = (1,1,-1)
value = v[i].x + v[i].y - v[i].z;
if (value < dop8.min[1]) dop8.min[1] = value;
else if (value > dop8.max[1]) dop8.max[1] = value;

// Axis 2 = (1,-1,1)
value = v[i].x - v[i].y + v[i].z;
if (value < dop8.min[2]) dop8.min[2] = value;
else if (value > dop8.max[2]) dop8.max[2] = value;

// Axis 3 = (-1,1,1)
value = -v[i].x + v[i].y + v[i].z;
if (value < dop8.min[3]) dop8.min[3] = value;
else if (value > dop8.max[3]) dop8.max[3] = value;

}
}

Although k-DOPs are invariant under translation, a rotation leaves the volume
unaligned with the predefined axes. As with AABBs, k-DOPs must therefore be
realigned whenever the volume rotates. A simple solution is to recompute the k-DOP
from scratch, as described. However, because recomputing the k-DOP involves trans-
forming the object vertices into the new space this becomes expensive when the
number of object vertices is large. A more effective realignment approach is to use a
hill-climbing method similar to that described in Section 4.2.5 for computing AABBs.
The only difference is that instead of keeping track of six references to vertices of the
convex hull the hill climber would for a k-DOP now keep track of k vertex references,
one for each facial direction of the k-DOP. If frame-to-frame coherency is high and
objects rotate by small amounts between frames, tracking vertices is a good approach.
However, the worst-case complexity of this method is O(n2) and it can perform poorly
when coherency is low. Hill climbing results in a tight bounding volume.

Another, approximative, approach is based on computing and storing the vertices
of each k-DOP for its initial local orientation at preprocess time. Then at runtime
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the k-DOP is recomputed from these vertices and transformed into world space by
the current orientation matrix. This is equivalent to the AABB method described in
Section 4.2.6.

The vertex set of the k-DOP in its initial orientation can be computed with the help
of a duality transformation mapping. Here the dual mapping of a plane ax + by + cz =
1 is the point (a, b, c) and vice versa. Let the defining planes of the k-DOP be expressed
as plane equations.Then by computing the convex hull of the dual of these planes the
faces (edges and vertices) of the convex hull maps into the vertices (edges and faces)
of the intersection of the original planes when transformed back under the duality
mapping. For this duality procedure to work, the k-DOP must be translated to contain
the origin, if it is not already contained in the k-DOP. For volumes formed by the
intersection of halfspaces, a point in the volume interior can be obtained through
linear programming (see Section 9.4.1). Another, simpler, option is to compute an
interior point using the method of alternating projection (MAP). This method starts
with an arbitrary point in space. Looping over all halfspaces, in arbitrary order, the
point is updated by projecting it to the bounding hyperplane of the current halfspace
whenever it lies outside the halfspace. Guaranteed to converge, the loop over all
halfspaces is repeated until the point lies inside all halfspaces. If the starting point lies
outside the intersection volume, as is likely, the resulting point will lie on the boundary
of the intersection volume, and specifically on one of the bounding hyperplanes.
(If the point lies inside the volume, the point itself is returned by the method.) A point
interior to the volume is obtained by repeating the method of alternating projections
with different starting points until a second point, on a different bounding hyperplane,
is obtained.The interior point is then simply the midpoint of the two boundary points.
MAP may converge very slowly for certain inputs. However, for the volumes typically
used as bounding volumes, slow convergence is usually not a problem. For more
information on MAP, see [Deutsch01]. For more information on duality (or polarity)
transformations see, for example, [Preparata85], [O’Rourke98], or [Berg00].

A simpler way of computing the initial vertex set is to consider all combinations
of three non co-planar planes from the input set of k-DOP boundary planes. Each
such set of three planes intersects in a point (Section 5.4.5 describes how this point is
computed). After all intersection points have been computed, those that lie in front
of one or more of the k-DOP boundary planes are discarded. The remaining points
are then the vertices of the k-DOP.

k-DOPs can also be realigned using methods based on linear programming, as
described in [Konečný97] and [Konečný98]. A more elaborate realignment strategy
is presented in [Fünfzig03]. Linear programming is described in Section 9.4.

4.6.5 Approximate Convex Hull Intersection Tests

It is easy to test separation between two convex polygons (for example, using the
rotating calipers method mentioned in Section 4.4.4). Unfortunately, the problem
is not as simple for polytopes. Accurate methods for this problem are discussed in
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Chapter 9. In many situations, however, fully accurate polytope collision detection
might be neither necessary nor desired. By relaxing the test to allow approximate
solutions, it is possible to obtain both simpler and faster methods.

One such approach maintains both the defining planes and vertices of each convex
hull. To test two hulls against each other, the vertices of each hull are tested against
the planes of the other to see if they lie fully outside any one plane. If they do, the
hulls are not intersecting. If neither set of vertices is outside any face of the other hull,
the hulls are conservatively considered overlapping. In terms of the separating-axis
test, this corresponds to testing separation on the face normals of both hulls, but not
the edge-edge combinations of both.

Another approach is simply to replace the vertex set with a set of spheres. The
spheres are chosen so that their union approximates the convex hull. Now the test
proceeds by testing spheres (instead of vertices) against the planes. The idea is that
compared to vertex tests fewer sphere tests must be performed. Although this test is
faster, it is also less accurate. To improve accuracy while keeping the set size down,
the set of spheres is often hand optimized.

As with k-DOPs, testing can be sped up by ordering the stored planes to make
successive planes as perpendicular to each other as possible. Similarly, to avoid degen-
erate behavior due to clustering the vertices (or spheres) can be randomly ordered.
Bounding the vertex set with a sphere and testing the sphere against the plane before
testing all vertices often allow for early outs.

Compared to other bounding volume tests, these tests are still relatively expensive
and are typically preceded by a cheaper bounding volume test (such as a sphere-
sphere test) to avoid hull-testing objects that are sufficiently far apart to not be
intersecting. The coherency methods presented in Chapter 9 are also useful for
minimizing the number of hull tests that have to be performed.

4.7 Other Bounding Volumes

In addition to the bounding volumes covered here, many other types of volumes
have been suggested as bounding volumes.These include cones [Held97], [Eberly02],
cylinders [Held97], [Eberly00], [Schömer00], spherical shells [Krishnan98], ellipsoids
[Rimon92], [Wang01], [Choi02], [Wang02], [Chien03], and zonotopes [Guibas03].
Cones, cylinders, and ellipsoids are self-explanatory. Spherical shells are the inter-
section of the volume between two concentric spheres and a cone with its apex at
the sphere center. Zonotopes are centrally symmetric polytopes of certain properties.
These shapes have not found widespread use as bounding volumes, in part due to
having expensive intersection tests. For this reason, they are not covered here further.

It should be noted that whereas ellipsoid-ellipsoid is an expensive intersection test,
tests of ellipsoids against triangles and other polygons can be transformed into testing
a sphere against a skewed triangle by applying a nonuniform scaling to the coordinate
space. Thus, ellipsoids are feasible bounding volumes for certain sets of tests.
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4.8 Summary

Bounding volumes are simple geometric shapes used to encapsulate one or more
objects of greater geometrical complexity. Most frequently, spheres and boxes are
used as bounding volumes. If a really tight fit is required, slab volumes or convex hulls
may be used. Bounding volumes are used as early overlap rejection tests, before more
expensive tests are performed on the geometry enclosed within them. As discussed in
Section 4.1, there are trade-offs involved in the selection of bounding volume shapes.
By using bounding volumes of tighter fit, the chance of early rejection increases, but
at the same time the bounding volume test becomes more expensive and the storage
requirement for the bounding volume increases. Typically, bounding volumes are
computed in a preprocessing step and, as necessary, transformed with the bounded
objects at runtime to match the objects’movements.

In addition to detailing the most common bounding volumes and how to com-
pute them, this chapter described how to perform homogeneous intersection tests
(between volumes of the same type). These tests were meant as a teaser toward
Chapter 5, which in considerable detail covers (heterogeneous) intersection tests and
distance calculations between primitive geometrical shapes, such as lines and line
segments, spheres, boxes, triangles, polygons, and polyhedra.
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Chapter 5

Basic Primitive Tests

After a high-level system has ruled out as many objects as possible from further col-
lision tests, all collision systems must perform low-level tests between primitives or
bounding volumes to determine intersection status. In some cases, a simple indica-
tion whether there is an intersection is sufficient. In other cases, the actual point of
intersection is required. This chapter describes how these low-level tests can be effi-
ciently performed. In addition, the goal is to provide enough specific mathematical
detail to allow derivation of tests that go beyond the scope of this presentation, using
the mathematical ideas examined here.

Note that some of the mathematical expressions presented herein may be subject to
numerical accuracy problems when implemented in floating-point arithmetic. These
problems are only briefly touched on here. A deeper discussion of the robustness
issues due to numerical accuracy problems is found in Chapter 11.

5.1 Closest-point Computations

Closest-point queries are some of the most powerful of collision queries. Given the
closest points between two objects, the distance between the objects is obtained. If
the combined maximum movement of two objects is less than the distance between
them, a collision can be ruled out. In a hierarchical representation, closest-point
computations allow parts of the hierarchy that will never come close enough to collide
to be pruned from further consideration.

Obtaining the closest points between two objects can be seen as a minimization
problem. One approach is to formulate the minimization problem and solve it using
methods of calculus (such as the method of Lagrange multipliers). In this text a more
geometric approach is preferred, and the following subsections illustrate how the
closest points can be obtained for various geometric objects.

125
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Note that closest points between two objects can sometimes be maintained incre-
mentally at low cost, facilitating fast collision testing. Incremental computation of
closest points is further explored in Chapter 9, in the context of collision between
convex objects.

5.1.1 Closest Point on Plane to Point

Given a plane π , defined by a point P and a normal n, all points X on the plane satisfy
the equation n · (X − P) = 0 (that is, the vector from P to X is perpendicular to n).
Now let Q be an arbitrary point in space. The closest point R on the plane to Q is the
orthogonal projection of Q onto the plane, obtained by moving Q perpendicularly
(with respect to n) toward the plane. That is, R = Q − tn for some value of t, as
illustrated in Figure 5.1. Inserting this expression for R into the plane equation and
solving for t gives:

n · ((Q − tn) − P) = 0 ⇔ (inserting R for X in plane equation)

n · Q − t(n · n) − n · P = 0 ⇔ (expanding dot product)

n · (Q − P) = t(n · n) ⇔ (gathering similar terms and moving t expression to RHS)

t = n · (Q − P)/(n · n) (dividing both sides by n · n)

Substituting this expression for t in R = Q − tn gives the projection point R as

R = Q − (n · (Q − P)/(n · n))n.

When n is of unit length, t simplifies to t = n · (Q − P), giving R as simply
R = Q − (n · (Q − P))n. From this equation it is easy to see that for an arbitrary point
Q, t = n · (Q − P) corresponds to the signed distance of Q from the plane in units of
the length of n. If t is positive, Q is in front of the plane (and if negative, Q is behind
the plane).

When the plane is given in the four-component form n ·X = d, the corresponding
expression for t is t = ((n · Q) − d)/(n · n). The code for computing the closest point
on the plane to a point therefore becomes:

Point ClosestPtPointPlane(Point q, Plane p)
{

float t = (Dot(p.n, q) - p.d) / Dot(p.n, p.n);
return q - t * p.n;

}
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Figure 5.1 Plane π given by P and n. Orthogonal projection of Q onto π gives R, the closest
point on π to Q.

If the plane equation is known to be normalized, this simplifies to t = (n · Q) − d,
giving:

Point ClosestPtPointPlane(Point q, Plane p)
{

float t = Dot(p.n, q) - p.d;
return q - t * p.n;

}

The signed distance of Q to the plane is given by just returning the computed
value of t:

float DistPointPlane(Point q, Plane p)
{

// return Dot(q, p.n) - p.d; if plane equation normalized (||p.n||==1)
return (Dot(p.n, q) - p.d) / Dot(p.n, p.n);

}

5.1.2 Closest Point on Line Segment to Point

Let AB be a line segment specified by the endpoints A and B. Given an arbitrary
point C, the problem is to determine the point D on AB closest to C. As shown in
Figure 5.2, projecting C onto the extended line through AB provides the solution. If
the projection point P lies within the segment, P itself is the correct answer. If P lies
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Figure 5.2 The three cases of C projecting onto AB: (a) outside AB on side of A, (b) inside
AB, and (c) outside AB on side of B.

outside the segment, it is instead the segment endpoint closest to C that is the closest
point.

Any point on the line through AB can be expressed parametrically as P(t) = A +
t (B − A). Using the projective properties of the dot product, the t corresponding
to the projection of C onto the line is given by t = (C − A) · n/ ‖B − A‖, where
n = (B − A)/ ‖B − A‖ is a unit vector in the direction of AB.

Because the closest point on the line segment is required, t must be clamped to the
interval 0 ≤ t ≤ 1, after which D can be obtained by substituting t into the parametric
equation. Implemented, this becomes:

// Given segment ab and point c, computes closest point d on ab.
// Also returns t for the position of d, d(t) = a + t*(b - a)
void ClosestPtPointSegment(Point c, Point a, Point b, float &t, Point &d)
{

Vector ab = b – a;
// Project c onto ab, computing parameterized position d(t) = a + t*(b – a)
t = Dot(c – a, ab) / Dot(ab, ab);
// If outside segment, clamp t (and therefore d) to the closest endpoint
if (t < 0.0f) t = 0.0f;
if (t > 1.0f) t = 1.0f;
// Compute projected position from the clamped t
d = a + t * ab;

}

If divisions are expensive, the division operation can be postponed by multiply-
ing both sides of the comparisons by the denominator, which as a square term is
guaranteed to be nonnegative. Optimized in this fashion, the code becomes:

// Given segment ab and point c, computes closest point d on ab.
// Also returns t for the parametric position of d, d(t) = a + t*(b - a)
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void ClosestPtPointSegment(Point c, Point a, Point b, float &t, Point &d)
{

Vector ab = b – a;
// Project c onto ab, but deferring divide by Dot(ab, ab)
t = Dot(c – a, ab);
if (t <= 0.0f) {

// c projects outside the [a,b] interval, on the a side; clamp to a
t = 0.0f;
d = a;

} else {
float denom = Dot(ab, ab); // Always nonnegative since denom = ||ab||∧2
if (t >= denom) {

// c projects outside the [a,b] interval, on the b side; clamp to b
t = 1.0f;
d = b;

} else {
// c projects inside the [a,b] interval; must do deferred divide now
t = t / denom;
d = a + t * ab;

}
}

}

The same basic method can be used for finding the closest point on a ray or the
closest point on a line. For a ray, it is necessary to clamp t only when it goes negative.
For a line, there is no need to clamp t at all.

5.1.2.1 Distance of Point to Segment

The squared distance between a point C and a segment AB can be directly computed
without explicitly computing the point D on AB closest to C. As in the preceding
section, there are three cases to consider. When AC · AB ≤ 0, A is closest to C and
the squared distance is given by AC · AC. When AC · AB ≥ AB · AB, B is closest to C
and the squared distance is BC · BC. In the remaining case, 0 < AC · AB < AB · AB,
the squared distance is given by CD · CD, where

D = A + AC · AB
AB · AB

AB.

However, because the expression CD · CD simplifies to

AC · AC − (AC · AB)2

AB · AB
,



130 Chapter 5 Basic Primitive Tests

computing D is not required. Because several subterms recur, the implementation
can be efficiently written as follows:

// Returns the squared distance between point c and segment ab
float SqDistPointSegment(Point a, Point b, Point c)
{

Vector ab = b – a, ac = c – a, bc = c – b;
float e = Dot(ac, ab);
// Handle cases where c projects outside ab
if (e <= 0.0f) return Dot(ac, ac);
float f = Dot(ab, ab);
if (e >= f) return Dot(bc, bc);
// Handle cases where c projects onto ab
return Dot(ac, ac) – e * e / f;

}

5.1.3 Closest Point on AABB to Point

Let B be an axis-aligned bounding box and P an arbitrary point in space.The point Q on
(or in) B closest to P is obtained by clamping P to the bounds of B on a componentwise
basis. There are four cases to consider for verifying that clamping gives the desired
result. If P is inside B, the clamped point is P itself, which is also the point in B
closest to P. If P is in a face Voronoi region of B, the clamping operation will bring
P to that face of B. (Voronoi regions were introduced in Chapter 3.) The clamping
corresponds to an orthogonal projection of P onto B and must therefore result in
the closest point on B. When P is in a vertex Voronoi region of B, clamping P gives
the vertex as a result, which again is the closest point on B. Finally, when P is in
an edge Voronoi region, clamping P corresponds to an orthogonal projection onto
the edge, which also must be the closest point on B to P. This procedure works in
both two and three dimensions. The clamping procedure for a 2D box is illustrated
in Figure 5.3, for the point P lying in an edge Voronoi region (a) and in a vertex
Voronoi region (b).

The following code implements the closest-point operation:

// Given point p, return the point q on or in AABB b that is closest to p
void ClosestPtPointAABB(Point p, AABB b, Point &q)
{

// For each coordinate axis, if the point coordinate value is
// outside box, clamp it to the box, else keep it as is
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Figure 5.3 Clamping P to the bounds of B gives the closest point Q on B to P: (a) for an edge
Voronoi region, (b) for a vertex Voronoi region.

for (int i = 0; i < 3; i++) {
float v = p[i];
if (v < b.min[i]) v = b.min[i]; // v = max(v, b.min[i])
if (v > b.max[i]) v = b.max[i]; // v = min(v, b.max[i])
q[i] = v;

}
}

In CPU architectures supporting SIMD instructions this function can often be
implemented in just two instructions: a max instruction followed by a min instruction!

5.1.3.1 Distance of Point to AABB

When the point Q on an AABB B closest to a given point P is computed only
to determine the distance between P and Q, the distance can be calculated with-
out explicitly obtaining Q. This is illustrated by the following code. To simplify
the calculation and to avoid an expensive square root call, the squared distance is
computed.

// Computes the square distance between a point p and an AABB b
float SqDistPointAABB(Point p, AABB b)
{

float sqDist = 0.0f;



132 Chapter 5 Basic Primitive Tests

for (int i = 0; i < 3; i++) {
// For each axis count any excess distance outside box extents
float v = p[i];
if (v < b.min[i]) sqDist += (b.min[i] - v) * (b.min[i] - v);
if (v > b.max[i]) sqDist += (v - b.max[i]) * (v - b.max[i]);

}
return sqDist;

}

5.1.4 Closest Point on OBB to Point

Let B be an OBB given by a center point C; three orthogonal unit vectors u0, u1, and u2

specifying the orientation of the x, y, and z axes of B; and three scalar values e0, e1, and
e2 specifying the box halfwidths along each axis (Figure 5.4). In this representation,
all points S contained by B can be written as S = C + au0 + bu1 + cu2, where |a| ≤ e0,∣∣b∣∣ ≤ e1, and |c| ≤ e2.

A point P in world space relates to its corresponding point Q = (x, y, z) in
the coordinate system of the OBB B as P = C + xu0 + yu1 + zu2. Given P, the
OBB-space coordinates can be solved for as follows. Only the derivation of the x

C

y

P

x

e0

e1

u0u1

Figure 5.4 The point P, in world space, can be expressed as the point (x, y) in the coordinate
system of this 2D OBB.
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coordinate is shown here. The other coordinates can be solved for in a similar
manner.

P = C + xu0 + yu1 + zu2 ⇔ (original expression)

P − C = xu0 + yu1 + zu2 ⇔ (moving C to left side)

(P − C) · u0 = (xu0 + yu1 + zu2) · u0 ⇔ (taking dot product with u0 on both sides)

(P − C) · u0 = x(u0 · u0) + y(u1 · u0) + z(u2 · u0) ⇔ (expanding dot product expression)

(P − C) · u0 = x (simplifying using u0 · u0 = 1,
u1 · u0 = u2 · u0 = 0)

The full set of OBB coordinates are thus given by x = (P − C) · u0, y = (P − C) · u1,
and z = (P − C) · u2.

To compute the point R on (or in) B closest to P, the same approach as used for an
AABB can be applied by expressing P in the OBB coordinate system as Q, clamping
Q to the extents e0, e1, and e2, and reexpressing Q in world coordinates. The code for
this follows.

// Given point p, return point q on (or in) OBB b, closest to p
void ClosestPtPointOBB(Point p, OBB b, Point &q)
{

Vector d = p - b.c;
// Start result at center of box; make steps from there
q = b.c;
// For each OBB axis...
for (int i = 0; i < 3; i++) {

// ...project d onto that axis to get the distance
// along the axis of d from the box center
float dist = Dot(d, b.u[i]);
// If distance farther than the box extents, clamp to the box
if (dist > b.e[i]) dist = b.e[i];
if (dist < -b.e[i]) dist = -b.e[i];
// Step that distance along the axis to get world coordinate
q += dist * b.u[i];

}
}

Mathematically, the described method is equivalent to transforming the point P
into the local coordinate system of the OBB, computing the point on the OBB (now
effectively an AABB) closest to the transformed point, and transforming the resulting
point back into world coordinates.
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5.1.4.1 Distance of Point to OBB

To obtain the squared distance between the point P and the closest point on OBB B,
the previous function could be called in this way:

// Computes the square distance between point p and OBB b
float SqDistPointOBB(Point p, OBB b)
{

Point closest;
ClosestPtPointOBB(p, b, closest);
float sqDist = Dot(closest - p, closest - p);
return sqDist;

}

If only the squared distance and not the closest point is needed, this code can be
further simplified. By projecting the vector v from the center of B to P onto each of the
three OBB axes, the distance d from P to the box center along that axis is obtained.
Because the axes are orthogonal, any excess amount that d is beyond the extent of
the box for a given axis can be computed, squared, and added to the total squared
distance of P independently of the other two axes.

// Computes the square distance between point p and OBB b
float SqDistPointOBB(Point p, OBB b)
{

Vector v = p - b.c;
float sqDist = 0.0f;
for (int i = 0; i < 3; i++) {

// Project vector from box center to p on each axis, getting the distance
// of p along that axis, and count any excess distance outside box extents
float d = Dot(v, b.u[i]), excess = 0.0f;
if (d < -b.e[i])

excess = d + b.e[i];
else if (d > b.e[i])

excess = d - b.e[i];
sqDist += excess * excess;

}
return sqDist;

}
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5.1.4.2 Closest Point on 3D Rectangle to Point

Determining the point Q on a 3D rectangle R closest to a given point P is virtually
equivalent to the problem of finding the closest point on an OBB, in that a 3D rectangle
can be seen as an OBB with zero extent along the z axis.

As such, a rectangle is defined by a center point C, two orthogonal unit vectors u0

and u1 specifying the orientation of the x and y axes of R, and two scalar values e0 and
e1 specifying the rectangle halfwidth extents along each axis. In this representation,
all points S contained by R are given by S = C + au0 + bu1, where |a| ≤ e0 and∣∣b∣∣ ≤ e1. Expressed as code, this rectangle structure becomes:

struct Rect {
Point c; // center point of rectangle
Vector u[2]; // unit vectors determining local x and y axes for the rectangle
float e[2]; // the halfwidth extents of the rectangle along the axes

};

Rewriting the ClosestPtPointOBB() code to account for a zero-extent z axis
results in the following code for finding the closest point on a 3D rectangle.

// Given point p, return point q on (or in) Rect r, closest to p
void ClosestPtPointRect(Point p, Rect r, Point &q)
{

Vector d = p - r.c;
// Start result at center of rect; make steps from there
q = r.c;
// For each rect axis...
for (int i = 0; i < 2; i++) {

// ...project d onto that axis to get the distance
// along the axis of d from the rect center
float dist = Dot(d, r.u[i]);
// If distance farther than the rect extents, clamp to the rect
if (dist > r.e[i]) dist = r.e[i];
if (dist < -r.e[i]) dist = -r.e[i];
// Step that distance along the axis to get world coordinate
q += dist * r.u[i];

}
}

A 3D rectangle R can also be given by three points (A, B, and C) such that the
vectors B − A and C − A span the rectangle. All points S in R are now given by
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S = A + u(B − A) + v(C − A), 0 ≤ u ≤ 1, and 0 ≤ v ≤ 1. In this scenario, a
similar projection approach can be used (but adjusting for the new clamping inter-
vals). Optimizing the implementation for this case results in the following code.

// Return point q on (or in) rect (specified by a, b, and c), closest to given point p
void ClosestPtPointRect(Point p, Point a, Point b, Point c, Point &q)
{

Vector ab = b - a; // vector across rect
Vector ac = c - a; // vector down rect
Vector d = p - a;
// Start result at top-left corner of rect; make steps from there
q = a;
// Clamp p’ (projection of p to plane of r) to rectangle in the across direction
float dist = Dot(d, ab);
float maxdist = Dot(ab, ab);
if (dist >= maxdist)

q += ab;
else if (dist > 0.0f)

q += (dist / maxdist) * ab;
// Clamp p’ (projection of p to plane of r) to rectangle in the down direction
dist = Dot(d, ac);
maxdist = Dot(ac, ac);
if (dist >= maxdist)

q += ac;
else if (dist > 0.0f)

q += (dist / maxdist) * ac;
}

This is slightly more expensive than the initial approach, as it is not bene-
fitting from normalization of the rectangle’s across and down vectors during a
precalculation step.

5.1.5 Closest Point on Triangle to Point

Given a triangle ABC and a point P, let Q describe the point on ABC closest to P. One
way of obtaining Q is to rely on the fact that if P orthogonally projects inside ABC
the projection point is the closest point Q. If P projects outside ABC, the closest point
must instead lie on one of its edges. In this case, Q can be obtained by computing
the closest point to P for each of the line segments AB, BC, and CA and returning the
computed point closest to P. Although this works, it is not a very efficient approach.
A better solution is to compute which of the triangle’sVoronoi feature regions P is in.
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(X – A) • (B – A) ≤ 0

(X – A) • (C – A) ≤ 0

VR(A)

Figure 5.5 The Voronoi region of vertex A, VR(A), is the intersection of the negative halfspaces
of the two planes (X – A) · (B – A) = 0 and (X – A) · (C – A) = 0.

Once determined, only the orthogonal projection of P onto the corresponding fea-
ture must be computed to obtain Q.

To see how P can be determined to be in a vertex Voronoi region, consider the
vertex Voronoi region of A. This region is determined as the intersection of the
negative halfspaces of two planes through A, one with a normal of B – A and the other
with the normal C – A (as illustrated in Figure 5.5).

Determining if P lies in one of the edgeVoronoi regions can be done in a number
of ways. It turns out that an efficient test is to effectively compute the barycentric
coordinates of the orthogonal projection R of P onto ABC. Recall from Section 3.4
that the barycentric coordinates of R are given as the ratios of (anything propor-
tional to) the signed areas of triangles RAB, RBC, and RCA to the signed area of
ABC. Let n be the normal of ABC and let R = P − tn for some t. The barycen-
tric coordinates (u, v, w) of R, R = uA + vB + wC, can then be computed from the
quantities

Vector n = Cross(b - a, c - a);
float rab = Dot(n, Cross(a - r, b - r)); // proportional to signed area of RAB
float rbc = Dot(n, Cross(b - r, c - r)); // proportional to signed area of RBC
float rca = Dot(n, Cross(c - r, a - r)); // proportional to signed area of RCA
float abc = rab + rbc + rca; // proportional to signed area of ABC
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as u = rbc/abc, v = rca/abc, and w = rab/abc. However, a little vector arithmetic
shows that these expressions simplify. For example, the expression for rab simplifies
as follows:

n · ((A − R) × (B − R)) = (original expression)

n · (A × (B − R) − R × (B − R)) = (expanding cross product)

n · (A × B − A × R − R × B) = (expanding cross products; removing n · (R × R) = 0 term)

n · (A × B − A × (P − tn) − (P − tn) × B) = (substituting R = P − tn for R)

n · (A × B − A × P + tA × n − P × B + tn × B) = (expanding cross products)

n · (A × B − A × P − P × B + tn × (B − A)) = (gathering similar terms)

n · (A × B − A × P − P × B) = (removing n · (tn × (B − A)) = 0 term)

n · ((A − P) × (B − P)) (contracting cross product after adding n · (P × P) = 0 term)

In other words, the barycentric coordinates of R can be obtained directly from P
without computing R.

For P to lie in an edge Voronoi region — for example, the one corresponding to
edge AB — P would have to lie outside or on AB, signified by rab ≤ 0, as well as within
the positive halfspaces of the planes (X − A) · (B − A) = 0 and (X − B) · (A − B) = 0.
Note that it is not sufficient just to test if P is outside AB, in that for a triangle with an
obtuse angle at A, P could be outside AB and actually be located in theVoronoi region
of edge CA (Figure 5.6). (Similarly, it is a common mistake to assume, for example,
that A is the closest point to P if P lies outside AB and (P − A) · (B − A) < 0.) If P is
not found to be in any of the vertex or edge Voronoi regions, Q must lie inside ABC

P

C

A

B

Figure 5.6 When the angle at A is obtuse, P may lie in the Voronoi region of edge CA even
though P lies outside AB and not in the vertex Voronoi regions of either A or B.
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and, in fact, be the orthogonal projection R, which can now be easily computed per
the preceding. This information is now enough to produce a code solution.

Point ClosestPtPointTriangle(Point p, Point a, Point b, Point c)
{

Vector ab = b - a;
Vector ac = c - a;
Vector bc = c - b;

// Compute parametric position s for projection P’ of P on AB,
// P’ = A + s*AB, s = snom/(snom+sdenom)
float snom = Dot(p - a, ab), sdenom = Dot(p - b, a - b);

// Compute parametric position t for projection P’ of P on AC,
// P’ = A + t*AC, s = tnom/(tnom+tdenom)
float tnom = Dot(p - a, ac), tdenom = Dot(p - c, a - c);

if (snom <= 0.0f && tnom <= 0.0f) return a; // Vertex region early out

// Compute parametric position u for projection P’ of P on BC,
// P’ = B + u*BC, u = unom/(unom+udenom)
float unom = Dot(p - b, bc), udenom = Dot(p - c, b - c);

if (sdenom <= 0.0f && unom <= 0.0f) return b; // Vertex region early out
if (tdenom <= 0.0f && udenom <= 0.0f) return c; // Vertex region early out

// P is outside (or on) AB if the triple scalar product [N PA PB] <= 0
Vector n = Cross(b - a, c - a);
float vc = Dot(n, Cross(a - p, b - p));
// If P outside AB and within feature region of AB,
// return projection of P onto AB
if (vc <= 0.0f && snom >= 0.0f && sdenom >= 0.0f)

return a + snom / (snom + sdenom) * ab;

// P is outside (or on) BC if the triple scalar product [N PB PC] <= 0
float va = Dot(n, Cross(b - p, c - p));
// If P outside BC and within feature region of BC,
// return projection of P onto BC
if (va <= 0.0f && unom >= 0.0f && udenom >= 0.0f)

return b + unom / (unom + udenom) * bc;

// P is outside (or on) CA if the triple scalar product [N PC PA] <= 0
float vb = Dot(n, Cross(c - p, a - p));
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// If P outside CA and within feature region of CA,
// return projection of P onto CA
if (vb <= 0.0f && tnom >= 0.0f && tdenom >= 0.0f)

return a + tnom / (tnom + tdenom) * ac;

// P must project inside face region. Compute Q using barycentric coordinates
float u = va / (va + vb + vc);
float v = vb / (va + vb + vc);
float w = 1.0f - u - v; // = vc / (va + vb + vc)
return u * a + v * b + w * c;

}

As presented, this code contains four cross-product calls. Because cross products
are often more expensive to calculate than dot products, it is worthwhile exploring
whether these can be replaced by more economical expressions. It turns out that the
Lagrange identity

(a × b) · (c × d) = (a · c)(b · d) − (a · d)(b · c)

can be used to express the three scalar triple products

Vector n = Cross(b - a, c - a);
float va = Dot(n, Cross(b - p, c - p));
float vb = Dot(n, Cross(c - p, a - p));
float vc = Dot(n, Cross(a - p, b - p));

in terms of the six dot products

float d1 = Dot(b - a, p - a);
float d2 = Dot(c - a, p - a);
float d3 = Dot(b - a, p - b);
float d4 = Dot(c - a, p - b);
float d5 = Dot(b - a, p - c);
float d6 = Dot(c - a, p - c);

as

float va = d3*d6 - d5*d4;
float vb = d5*d2 - d1*d6;
float vc = d1*d4 - d3*d2;
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In fact, these six dot products, d1 to d6, can be used to compute the snom, sdenom,
tnom, tdenom, unom, and udenom terms as well:

float snom = d1;
float sdenom = -d3;
float tnom = d2;
float tdenom = -d6;
float unom = d4 - d3;
float udenom = d5 - d6;

The vector n is no longer needed. This allows the code to be optimized to the final
version.

Point ClosestPtPointTriangle(Point p, Point a, Point b, Point c)
{

// Check if P in vertex region outside A
Vector ab = b - a;
Vector ac = c - a;
Vector ap = p - a;
float d1 = Dot(ab, ap);
float d2 = Dot(ac, ap);
if (d1 <= 0.0f && d2 <= 0.0f) return a; // barycentric coordinates (1,0,0)

// Check if P in vertex region outside B
Vector bp = p - b;
float d3 = Dot(ab, bp);
float d4 = Dot(ac, bp);
if (d3 >= 0.0f && d4 <= d3) return b; // barycentric coordinates (0,1,0)

// Check if P in edge region of AB, if so return projection of P onto AB
float vc = d1*d4 - d3*d2;
if (vc <= 0.0f && d1 >= 0.0f && d3 <= 0.0f) {

float v = d1 / (d1 - d3);
return a + v * ab; // barycentric coordinates (1-v,v,0)

}

// Check if P in vertex region outside C
Vector cp = p - c;
float d5 = Dot(ab, cp);
float d6 = Dot(ac, cp);
if (d6 >= 0.0f && d5 <= d6) return c; // barycentric coordinates (0,0,1)
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// Check if P in edge region of AC, if so return projection of P onto AC
float vb = d5*d2 - d1*d6;
if (vb <= 0.0f && d2 >= 0.0f && d6 <= 0.0f) {

float w = d2 / (d2 - d6);
return a + w * ac; // barycentric coordinates (1-w,0,w)

}

// Check if P in edge region of BC, if so return projection of P onto BC
float va = d3*d6 - d5*d4;
if (va <= 0.0f && (d4 - d3) >= 0.0f && (d5 - d6) >= 0.0f) {

float w = (d4 - d3) / ((d4 - d3) + (d5 - d6));
return b + w * (c - b); // barycentric coordinates (0,1-w,w)

}

// P inside face region. Compute Q through its barycentric coordinates (u,v,w)
float denom = 1.0f / (va + vb + vc);
float v = vb * denom;
float w = vc * denom;
return a + ab * v + ac * w; // = u*a + v*b + w*c, u = va * denom = 1.0f - v - w

}

A third way of obtaining the closest point is to use a vector calculus approach,
as suggested in [Eberly01]. Briefly, the triangle ABC is parameterized as T(s, t) =
A + s(B − A) + t(C − A), where s ≥ 0, t ≥ 0, and s + t ≤ 1. The closest point to
a given point P now corresponds to the minimum of the squared distance function
d(s, t) = ∥∥T(s, t) − P

∥∥2, which is a quadratic expression in s and t. The minimum of
this function must occur in one of three cases: at a vertex, on an edge, or in the interior
of the triangle. By first differentiating d(s, t) with respect to these different cases (that
is, substituting s = 0, t = 0, or t = 1 − s as necessary), setting the derivatives to zero
and solving, and then comparing the resulting s and t values to the triangle bounds,
it is possible to find out which case corresponds to the minimum.

For this particular application, the vector calculus solution becomes more com-
plicated than just described. However, the general approach of viewing the problem
as a quadratic minimization problem is valuable, and the same idea can be used to
determine the distance between, say, a line or line segment and a triangle. Addi-
tional information on the vector calculus approach, including pseudocode, is given
in [Eberly01].

5.1.6 Closest Point on Tetrahedron to Point

Given a point P, the problem is determining the point Q on (or in) a tetrahedron ABCD
closest to P (as illustrated in Figure 5.7). A straightforward solution is to compute Q
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Figure 5.7 The point Q on the tetrahedron ABCD closest to P.

by calling the ClosestPtPointTriangle() function (defined in the previous section)
once for each face plane of the tetrahedron P. Of all computed points, the one closest
to P is returned as Q. Separately from the distance tests, a different test is made to
see if P lies inside all face planes. When it does, P itself is the closest point.

Assuming the tetrahedron ABCD has been defined so that its faces ABC, ACD,
ADB, and BDC all are arranged counterclockwise when viewed from outside the
tetrahedron, this solution can be implemented as follows.

Point ClosestPtPointTetrahedron(Point p, Point a, Point b, Point c, Point d)
{

// Start out assuming point inside all halfspaces, so closest to itself
Point closestPt = p;
float bestSqDist = FLT_MAX;
// If point outside face abc then compute closest point on abc
if (PointOutsideOfPlane(p, a, b, c)) {

Point q = ClosestPtPointTriangle(p, a, b, c);
float sqDist = Dot(q - p, q - p);
// Update best closest point if (squared) distance is less than current best
if (sqDist < bestSqDist) bestSqDist = sqDist, closestPt = q;

}
// Repeat test for face acd
if (PointOutsideOfPlane(p, a, c, d)) {

Point q = ClosestPtPointTriangle(p, a, c, d);
float sqDist = Dot(q - p, q - p);
if (sqDist < bestSqDist) bestSqDist = sqDist, closestPt = q;

}
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// Repeat test for face adb
if (PointOutsideOfPlane(p, a, d, b)) {

Point q = ClosestPtPointTriangle(p, a, d, b);
float sqDist = Dot(q - p, q - p);
if (sqDist < bestSqDist) bestSqDist = sqDist, closestPt = q;

}
// Repeat test for face bdc
if (PointOutsideOfPlane(p, b, d, c)) {

Point q = ClosestPtPointTriangle(p, b, d, c);
float sqDist = Dot(q - p, q - p);
if (sqDist < bestSqDist) bestSqDist = sqDist, closestPt = q;

}
return closestPt;

}

Here the value of PointOutsideOfPlane(P, A, B, C) corresponds to the sign of
the scalar triple product of the vectors P − A, B − A, and C − A.

// Test if point p lies outside plane through abc
int PointOutsideOfPlane(Point p, Point a, Point b, Point c)
{

return Dot(p - a, Cross(b - a, c - a)) >= 0.0f; // [AP AB AC] >= 0
}

Often the winding of the tetrahedron vertices is not known beforehand, meaning
it cannot be assumed, say, that face ABC is counterclockwise when viewed from
outside the tetrahedron. In this case, the solution is to additionally pass the fourth
tetrahedron vertex to PointOutsideOfPlane() and make sure it and the tested point
lie on opposite sides of the tested tetrahedron face. In other words, the function then
becomes:

// Test if point p and d lie on opposite sides of plane through abc
int PointOutsideOfPlane(Point p, Point a, Point b, Point c, Point d)
{

float signp = Dot(p - a, Cross(b - a, c - a)); // [AP AB AC]
float signd = Dot(d - a, Cross(b - a, c - a)); // [AD AB AC]
// Points on opposite sides if expression signs are opposite
return signp * signd < 0.0f;

}
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This overall approach works well and is simple to implement. However, it is pos-
sible to derive a more efficient solution by applying the same basic method used for
finding the closest point on a triangle. First, theVoronoi feature region in which the
point P is located is determined. Once the feature has been obtained, Q is given by
the orthogonal projection of P onto this feature. For a tetrahedron there are 14 overall
Voronoi feature regions that must be considered: four vertex regions, six edge regions,
and four face regions. If P does not lie in one of the feature regions, P must by default
be contained in the tetrahedron. The tests for containment in a feature region are
similar to those made earlier for the triangle. For example, P is now determined to lie
in the vertexVoronoi region of A if the following expressions are satisfied.

(P − A) · (B − A) ≤ 0

(P − A) · (C − A) ≤ 0

(P − A) · (D − A) ≤ 0

For P to lie in theVoronoi region associated with edge AB, the following tests would
have to be satisfied (again assuming a known counterclockwise winding of the faces).

(P − A) · (B − A) ≥ 0

(P − B) · (A − B) ≥ 0

(P − A) · ((B − A) × nABC) ≥ 0, where nABC = (B − A) × (C − A)

(P − A) · (nADB × (B − A)) ≥ 0, where nADB = (D − A) × (B − A)

Analogous sets of expressions can be defined for testing containment in the
remaining regions. At first glance, this may not seem like an improvement over
the earlier test. However, many of the computed quantities are shared between dif-
ferent Voronoi regions and need not be recomputed. It is also possible to simplify
the expressions involved in testing the Voronoi regions using the Lagrange identity,
similar to the optimization done for the closest-point-on-triangle test. In this case, it
turns out that all tests can be composed in terms of just 10 different dot products.

5.1.7 Closest Point on Convex Polyhedron to Point

Several approaches are available for locating the point on a convex polyhedron H
closest to a point P in space. A simple-to-implement O(n) method is to compute
the point on each polyhedron face closest to P and return the one closest to P. A
concurrently run test determines if P lies inside all faces of H, in which case P is
interior to H. To speed up the test, the face distance calculation would have to be run
only when P lies in front of the face.
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For larger polyhedra, a faster approach is to construct, as a precomputation, a
hierarchy over the parts of the polyhedron. Utilizing a preconstructed hierarchy
allows the closest point to be located in logarithmic time. An example of such a
hierarchy is the Dobkin–Kirkpatrick hierarchy, described in Chapter 9. Chapter 9
also describes other approaches that can efficiently locate the closest point on the
polyhedra (such as the GJK algorithm).

5.1.8 Closest Points of Two Lines

Whereas a pair of lines in two dimensions always intersect unless they are parallel, a
pair of lines in three dimensions almost never intersect. Furthermore, even if two 3D
lines intersect in exact real arithmetic, under floating-point arithmetic they are quite
likely not to, due to rounding errors. Thus, to be able to robustly test the intersection
of two 3D lines it is best to assume that the lines might not intersect but only come
sufficiently close to each other. The intersection test then becomes determining the
distance between the lines and checking whether this distance is less than a given
threshold value.

The closest points of two lines can be determined as follows. Let the lines L1 and
L2 be specified parametrically by the points P1 and Q1 and P2 and Q2:

L1(s) = P1 + sd1, d1 = Q1 − P1

L2(t) = P2 + td2, d2 = Q2 − P2

For some pair of values for s and t, L1(s) and L2(t) correspond to the closest points
on the lines, and v(s, t) = L1(s) − L2(t) describes a vector between them (Figure 5.8).
The points are at their closest when v is of minimum length. The key realization is
that this happens when v is perpendicular to both L1 and L2. To see this, consider that
the shortest distance between a point P and a line L is the length of a straight line

P1

P2

Q1

Q2
L1(s) = P1 + sd1,d1 = Q1 – P1

L2(t) = P2 + td2,d2 = Q2 – P2

v(s, t) = L1(s) – L2(t)

Figure 5.8 The vector v(s, t) connecting the two closest points of two lines, L1(s) and L2(t),
is always perpendicular to both lines.
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between P and the point Q corresponding to the orthogonal projection of P onto L.
Consequently, the line PQ is orthogonal to L. Because this reasoning holds for both
L1(s) with respect to L2 and L2(t) with respect to L1, v must be perpendicular to both
lines. For nonparallel lines, v is unique.

The problem is now finding values for s and t satisfying these two perpendicularity
constraints:

d1 · v(s, t) = 0

d2 · v(s, t) = 0.

Substituting the parametric equation for v(s, t) gives:

d1 · (L1(s) − L2(t)) = d1 · ((P1 − P2) + sd1 − td2) = 0

d2 · (L1(s) − L2(t)) = d2 · ((P1 − P2) + sd1 − td2) = 0.

This can be expressed as the 2 × 2 system of linear equations

(d1 · d1)s − (d1 · d2)t = −(d1 · r)

(d2 · d1)s − (d2 · d2)t = −(d2 · r),

where r = P1 − P2.
Written symbolically, in matrix notation, this corresponds to

[
a −b
b −e

] [
s
t

]
=
[−c
−f

]
,

where a = d1 · d1, b = d1 · d2, c = d1 · r, e = d2 · d2, and f = d2 · r. This system of
equations is solved, for example, using Cramer’s rule to give

s = (bf − ce)/d

t = (af − bc)/d,

where d = ae − b2. Note that d ≥ 0, in that d = ∥∥d1
∥∥2 ∥∥d2

∥∥2 − (
∥∥d1

∥∥ ∥∥d2
∥∥ cos(θ ))2 =

(
∥∥d1

∥∥ ∥∥d2
∥∥ sin(θ))2. When d = 0, the two lines are parallel, which must be han-

dled separately. In this case, any point P can be selected on the one line. On the
other line, the point closest to P is selected using the projection method described in
Section 5.1.2.
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5.1.9 Closest Points of Two Line Segments

The problem of determining the closest points of two line segments S1 and S2,

S1(s) = P1 + sd1, d1 = Q1 − P1, 0 ≤ s ≤ 1

S2(t) = P2 + td2, d2 = Q2 − P2, 0 ≤ t ≤ 1,

is more complicated than computing the closest points of the lines L1 and L2 of
which the segments are a part. Only when the closest points of L1 and L2 happen to
lie on the segments does the method for closest points between lines apply. For the
case in which the closest points between L1 and L2 lie outside one or both segments,
a common misconception is that it is sufficient to clamp the outside points to the
nearest segment endpoint. However, as cases (b) and (c) of Figure 5.9 illustrate, this
is not a valid assumption.

It can be shown that if just one of the closest points between the lines is outside
its corresponding segment that point can be clamped to the appropriate endpoint of
the segment and the point on the other segment closest to the endpoint is computed
[Lumelsky85]. This corresponds to case (b) in Figure 5.9, in which the closest point on
L1 is clamped to endpoint Q1 on segment S1. The closest point R on L2 to Q1 is then
computed and found to be on segment S2, leaving the closest points as Q1 and R.

If both points are outside their respective segments, the same clamping procedure
must be repeated twice, as illustrated by case (c) in Figure 5.9. Again the closest point
on L1 gets clamped to endpoint Q1 on S1. The closest point R on L2 to Q1 is computed.
Because R is found to be outside segment S2, it is clamped to the nearest segment
endpoint, Q2. The closest point S on L1 to Q2 is then computed and now found to be
on segment S1, leaving the closest points as Q2 and S.

Given a point S2(t) = P2 + td2 on the second segment, the closest point L1(s) on
L1 is given by

s = (S2(t) − P1) · d1/d1 · d1 = (P2 + td2 − P1) · d1/d1 · d1.

P1

P2 Q1

Q2

(a)

P1

P2

Q1

Q2
R

(b)

P1

P2

Q1

Q2 R

(c)

S

P1

P2Q1

Q2

(d)

Figure 5.9 Closest points (a) inside both segments, (b) and (c) inside one segment endpoint
of other, (d) endpoints of both segments (after [Lumelsky85]).
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Similarly, given the point S1(s) = P1 + sd1 on S1, the closest point L2(t) on L2 is
computed as

t = (S1(s) − P2) · d2/d2 · d2 = (P1 + sd1 − P2) · d2/d2 · d2.

Alternatively, Gaussian elimination can be used on the 2 × 2 system of linear
equations to solve for the one unknown in terms of the other. In either case, the
expressions for s and t simplify to

s = (bt − c)/a

t = (bs + f )/e,

with a = d1 · d1, b = d1 · d2, c = d1 · r, e = d2 · d2, and f = d2 · r.
Code implementing this function follows.

// Clamp n to lie within the range [min, max]
float Clamp(float n, float min, float max) {

if (n < min) return min;
if (n > max) return max;
return n;

}

// Computes closest points C1 and C2 of S1(s)=P1+s*(Q1-P1) and
// S2(t)=P2+t*(Q2-P2), returning s and t. Function result is squared
// distance between between S1(s) and S2(t)
float ClosestPtSegmentSegment(Point p1, Point q1, Point p2, Point q2,

float &s, float &t, Point &c1, Point &c2)
{

Vector d1 = q1 - p1; // Direction vector of segment S1
Vector d2 = q2 - p2; // Direction vector of segment S2
Vector r = p1 - p2;
float a = Dot(d1, d1); // Squared length of segment S1, always nonnegative
float e = Dot(d2, d2); // Squared length of segment S2, always nonnegative
float f = Dot(d2, r);

// Check if either or both segments degenerate into points
if (a <= EPSILON && e <= EPSILON) {

// Both segments degenerate into points
s = t = 0.0f;
c1 = p1;
c2 = p2;
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return Dot(c1 - c2, c1 - c2);
}
if (a <= EPSILON) {

// First segment degenerates into a point
s = 0.0f;
t = f / e; // s = 0 => t = (b*s + f) / e = f / e
t = Clamp(t, 0.0f, 1.0f);

} else {
float c = Dot(d1, r);
if (e <= EPSILON) {

// Second segment degenerates into a point
t = 0.0f;
s = Clamp(-c / a, 0.0f, 1.0f); // t = 0 => s = (b*t - c) / a = -c / a

} else {
// The general nondegenerate case starts here
float b = Dot(d1, d2);
float denom = a*e-b*b; // Always nonnegative

// If segments not parallel, compute closest point on L1 to L2 and
// clamp to segment S1. Else pick arbitrary s (here 0)
if (denom != 0.0f) {

s = Clamp((b*f - c*e) / denom, 0.0f, 1.0f);
} else s = 0.0f;
// Compute point on L2 closest to S1(s) using
// t = Dot((P1 + D1*s) - P2,D2) / Dot(D2,D2) = (b*s + f) / e
t = (b*s + f) / e;

// If t in [0,1] done. Else clamp t, recompute s for the new value
// of t using s = Dot((P2 + D2*t) - P1,D1) / Dot(D1,D1)= (t*b - c) / a
// and clamp s to [0, 1]
if (t < 0.0f) {

t = 0.0f;
s = Clamp(-c / a, 0.0f, 1.0f);

} else if (t > 1.0f) {
t = 1.0f;
s = Clamp((b - c) / a, 0.0f, 1.0f);

}
}

}

c1 = p1 + d1 * s;
c2 = p2 + d2 * t;
return Dot(c1 - c2, c1 - c2);

}
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As an optimization, the division by e can be deferred until t is known to be in the
range [0, 1], making the code at the end of the large else statement read:

...
float tnom = b*s + f;
if (tnom < 0.0f) {

t = 0.0f;
s = Clamp(-c / a, 0.0f, 1.0f);

} else if (tnom > e) {
t = 1.0f;
s = Clamp((b - c) / a, 0.0f, 1.0f);

} else {
t = tnom / e;

}

This deferral saves one, often expensive, division operation in the general case.

5.1.9.1 2D Segment Intersection

Testing whether two 2D segments AB and CD intersect can be done by first computing
the intersection point of their extended lines and then verifying that the intersection
point lies within the bounding box of each segment. Refer to Figures 5.10a and b for
examples. The case of the lines being parallel has to be handled separately.

The intersection between the extended lines can be computed by writing the first
line in explicit form, L1(t) = A + t(B − A), and the second line in implicit form,
n · (X − C) = 0, where n = (D − C)⊥ is a perpendicular to CD. Substituting the first
line equation for the unknown point in the second equation and solving for t then
gives:

n · (A + t(B − A) − C) = 0 ⇔ (substituting A + t(B − A) for X)

n · (A − C) + t(n · (B − A)) = 0 ⇔ (expanding the dot product; gathering similar terms)

t(n · (B − A)) = −n · (A − C) ⇔ (isolating t term on LHS)

t(n · (B − A)) = n · (C − A) ⇔ (removing negation on RHS by inverting vector)

t = n · (C − A)/n · (B − A) (dividing both sides by n · (B − A))

The actual intersection point P = L1(t) can now be obtained by substituting t into
the explicit equation. An alternative to testing if P lies within the bounding box of AB
is to verify that 0 ≤ t ≤ 1.

An alternative overlap test for 2D segments can be based on the insight that the
segments overlap only if the endpoints of either segment are located on different sides
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Figure 5.10 (a) Segments AB and CD do not intersect because the intersection point P of
their extended lines lies outside the bounding box of CD. (b) Segments AB and CD intersect
because P lies inside the bounding boxes of both AB and CD. (c) Segment CD intersects the
line through AB because the triangles ABD and ABC have opposite winding.

of the extended line through the other segment. That is, for AB and CD to overlap, A
and B must be on different sides of CD and C and D must be on different sides of AB.

Testing whether the endpoints C and D are on different sides of AB can be done by
verifying that the triangles ABD and ABC wind in different directions (illustrated in
Figure 5.10c). To determine the winding, the signed triangle area can be computed.
Recall that the signed area is positive if the triangle winds counterclockwise, negative
if it winds clockwise, and zero if the triangle is degenerate (collinear or coincident
points).

// Returns 2 times the signed triangle area. The result is positive if
// abc is ccw, negative if abc is cw, zero if abc is degenerate.
float Signed2DTriArea(Point a, Point b, Point c)
{

return (a.x - c.x) * (b.y - c.y) - (a.y - c.y) * (b.x - c.x);
}

In the case in which the segments are intersecting, it turns out that the signed
areas computed to detect this can also be used to compute the intersection point. The
computation and its derivation are given in the following implementation.

// Test if segments ab and cd overlap. If they do, compute and return
// intersection t value along ab and intersection position p
int Test2DSegmentSegment(Point a, Point b, Point c, Point d, float &t, Point &p)
{

// Sign of areas correspond to which side of ab points c and d are
float a1 = Signed2DTriArea(a, b, d); // Compute winding of abd (+ or -)
float a2 = Signed2DTriArea(a, b, c); // To intersect, must have sign opposite of a1
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// If c and d are on different sides of ab, areas have different signs
if (a1 * a2 < 0.0f) {

// Compute signs for a and b with respect to segment cd
float a3 = Signed2DTriArea(c, d, a); // Compute winding of cda (+ or -)
// Since area is constant a1 - a2 = a3 - a4, or a4 = a3 + a2 - a1

// float a4 = Signed2DTriArea(c, d, b); // Must have opposite sign of a3
float a4 = a3 + a2 - a1;
// Points a and b on different sides of cd if areas have different signs
if (a3 * a4 < 0.0f) {

// Segments intersect. Find intersection point along L(t) = a + t * (b - a).
// Given height h1 of an over cd and height h2 of b over cd,
// t = h1 / (h1 - h2) = (b*h1/2) / (b*h1/2 - b*h2/2) = a3 / (a3 - a4),
// where b (the base of the triangles cda and cdb, i.e., the length
// of cd) cancels out.
t = a3 / (a3 - a4);
p = a + t * (b - a);
return 1;

}
}
// Segments not intersecting (or collinear)
return 0;

}

Here, the expression a1 * a2 < 0.0f is used to test if a1 and a2 have different signs
(and similarly for a3 and a4). When working with signed integers, a better alternative
is to use exclusive-or instead of multiplication, a1 ∧ a2 < 0, thereby avoiding potential
problems with overflow. In the presence of collinear points, either or both of a1 and
a2 may be zero. To detect proper intersections in these cases, the test would have to
be written along the lines of:

if (a1 != 0.0f && a2 != 0.0f && a1*a2 < 0.0f) ... // for floating-point variables
if ((a1 | a2) != 0 && a1 ∧ a2 < 0) ... // for integer variables

Finally, note that for some applications it is worthwhile to test if the bounding
boxes of AB and CD overlap before proceeding with one of these segment intersec-
tion tests. This is especially true for determining intersection of line segments in 3D,
for which the involved computations are more expensive.

5.1.10 Closest Points of a Line Segment and a Triangle

The closest pair of points between a line segment PQ and a triangle ABC is not
necessarily unique. When the segment is parallel to the plane of the triangle, there



154 Chapter 5 Basic Primitive Tests

P

A

C

(a)

P�

Q

B

(b)

P

A

C

Q

B

Figure 5.11 The closest pair of points between a line segment and a triangle can always be
found either (a) between an endpoint of the segment and the triangle interior or (b) between
the segment and an edge of the triangle.

may be an infinite number of pairs equally close. However, regardless of whether the
segment is parallel to the plane or not it is always possible to locate points such that
the minimum distance occurs either (a) between an endpoint of the segment and the
interior of the triangle or (b) between the segment and an edge of the triangle. These
two cases are illustrated in Figure 5.11.

Case (a) can occur only if the projection of a segment endpoint onto the suppor-
ting plane of the triangle lies inside the triangle. However, even when a segment
endpoint projects inside the triangle an edge of the triangle may provide a closer
point to the segment. Thus, the closest pair of points can be found by computing the
closest pairs of points between the entities

segment PQ and triangle edge AB,

segment PQ and triangle edge BC,

segment PQ and triangle edge CA,

segment endpoint P and plane of triangle (when P projects inside ABC), and

segment endpoint Q and plane of triangle (when Q projects inside ABC)

and returning the pair with the overall smallest minimum separating distance as the
result.

Thenumberof tests required canbe reduced in somecases. For example,whenboth
endpoints project inside the triangle no segment-edge tests are necessary, because
either endpoint projection must correspond to a closest point. When one endpoint
projects inside the triangle, only one segment-edge test is required. When both end-
points project outside the triangle, one of the segment-edge tests is not needed.
For the latter two cases, the necessary segment-edge tests can be determined by
examining whichVoronoi regions the segment endpoints lie in.

A remaining case is when the segment intersects the triangle. For a transverse inter-
section, the intersection point corresponds to the closest points. When the segment
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lies in the plane of the triangle, any point on the segment in intersection with the
triangle realizes the closest points. An alternative method for determining the closest
points between a segment and a triangle, based on a vector calculus approach, is
outlined in [Eberly01] and [Schneider02].

5.1.11 Closest Points of Two Triangles

As for the case of determining the closest pair of points between a segment and a tri-
angle, there may be an infinite number of equally close points between two triangles.
However, the closest points between two triangles T1 and T2 can always be realized in
such a way that one point lies on the boundary of one of the triangles. Consequently,
a pair of closest points between two triangles can be found by computing the closest
points between segment and triangle for all six possible combinations of an edge
from one triangle tested against the other triangle. The pair of points having the least
(squared) distance then corresponds to the closest pair of points of minimum global
distance.

Segment-triangle distance tests are fairly expensive, and thus a better realization
is that the closest pair of points between T1 and T2 can be found to occur either
on an edge from each triangle (Figure 5.12a) or as a vertex of one triangle and a
point interior to the other triangle (Figure 5.12b). The problem now becomes that
of computing the closest points among all pairs of edges, one from each triangle,
and the closest point on the opposite triangle for each vertex of each triangle (when
said vertex projects interior to the other triangle). In all, six vertex-triangle tests and
nine edge-edge tests are required. Out of all pairs of closest points, the one with the
overall smallest distance corresponds to the globally closest pair of points between
the triangles.

If the triangles are not known a priori to be disjoint, an additional test is required to
rule out the intersection of the two triangles. When intersecting, the distance between

(a) (b)

Figure 5.12 The closest pair of points between two triangles can be realized (a) as lying on
an edge from either triangle or (b) as a vertex of one triangle and a point interior to the other
triangle.
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the triangles is trivially zero, but the closest points are not likely to be well defined
because there may be infinitely many (for example, if the triangles are parallel and
overlapping).

5.2 Testing Primitives

The testing of primitives is less general than the computation of distance between
them. Generally, a test will indicate only that the primitives are intersecting, not
determine where or how they are intersecting. Therefore, these intersection tests are
often much faster than tests returning additional information.

5.2.1 Separating-axis Test

An extremely useful tool for implementing various intersection tests is the separating-
axis test. It follows from the separating hyperplane theorem, a fundamental result of
convex analysis. This theorem states that given two convex sets A and B, either the
two sets are intersecting or there exists a separating hyperplane P such that A is on
one side of P and B is on the other.

The separating-axis test follows intuitively from the theorem, because two con-
vex objects cannot “curve”around each other. Thus, when they are not intersecting
there will be a gap between them into which a plane can be inserted to separate the
two objects. When either or both objects are concave, a plane would in general no
longer be sufficient to separate the nonintersecting objects. Instead, a curved sur-
face would be required to separate the objects. When the objects are intersecting, no
surface — curved or not — can be inserted between the objects to separate them.

Given a hyperplane P separating A and B, a separating axis is a line L perpendicular
to P. It is called a separating axis because the orthogonal projections of A and B
onto L result in two nonoverlapping intervals (Figure 5.13). Because the two intervals
do not overlap, the conclusion is that the geometries must be disjoint. Because a
separating axis exists if and only if a separating hyperplane exists, either can be tested
for. However, in practice it turns out to be better to test for separation on an axis, in
that it results in a less expensive test.

For performing a separating-axis test, it is worth noting that many collision
primitives — such as segments, AABBs, OBBs, k-DOPs, and spheres — are sym-
metrical in the sense that they have a center point C, which always projects into the
middle of the projection interval of their projection onto an axis. Given a potentially
separating axis L, an efficient separation test of two symmetrical objects A and B is
therefore to compute the halfwidth, or radii, of their projection intervals and compare
the sum of them against the distance between their center projections. If the sum is
less than the distance between the center projections, the objects must be disjoint.
An example is given in Figure 5.14, in which A and B correspond to a circle and an
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Figure 5.13 (a) Two convex objects, A and B, separated by a hyperplane P (one of many
possible hyperplanes). Stated equivalently, A and B are nonoverlapping in their projection
onto the separating axis L (which is perpendicular to P). (b) The same convex objects are in an
intersecting situation and therefore not separable by any hyperplane.
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Figure 5.14 Two objects are separated if the sum of the radius (halfwidth) of their projections
is less than the distance between their center projections.

oriented rectangle (or, equivalently, a sphere and an OBB, as seen from the side).
First, for each object, a supporting point along L is obtained; that is, a point most
distant from the object center along either direction of L (in that the projections are
symmetrical, the direction does not matter; there will be a point equally distant in
both directions). The two object radii, rA and rB, are then obtained by computing the
distance between the projections onto L of the object centers and their respective
most distant points. The distance d between the center projections is also computed.
Given these computed quantities, the objects are now separated if rA + rB < d.
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The separating-axis test applies even when an object is not symmetric — as in the
case of an arbitrary convex hull, for instance — but the test would have to be modified
to project the hull vertices onto the axis in order to find the projection intervals.

Separating axes are easy to find by inspection. However, for an implementation
it is important to be able to automatically limit an infinite number of potentially sep-
arating axes to just a few axes tested. For convex polyhedra, it is possible to drastically
reduce the number of axes to test. Ignoring ordering, two polyhedral objects may
come into contact in six different ways with respect to their features. They can meet
face-face, face-edge, face-vertex, edge-edge, edge-vertex, or vertex-vertex. Because
vertices can be considered part of the edges, the combinations involving vertices are
subsumed by the same situations involving edges. This reduces the contact situations
to three essentially different combinations: face-face, face-edge, and edge-edge.

For the face-face and face-edge cases, it is sufficient to test the face normals of both
objects as potential separating axes. For the edge-edge case, the potential separating
axis to be tested corresponds to the cross product of the two edges. The reason the
cross product is used for the separating-axis test in the edge-edge case can be justified
by considering what happens when two objects come into contact edge to edge. The
points on the edges closest to each other form the feet of a perpendicular between
the two edges. Because this perpendicular is the cross product of the edges, it is the
correct candidate to test as a separating axis. In summary, to test the separability of
two polyhedral objects the following axes must be tested.

● Axes parallel to face normals of object A

● Axes parallel to face normals of object B

● Axes parallel to the vectors resulting from the cross products of all edges in
A with all edges in B

As soon as a separating axis is found, a test can immediately exit with“no intersection.”
If all axes are tested, with no separating axis found, the objects must be intersecting.

For two general polytopes with the same number of faces (F) and edges (E) there
are 2F + E2 potential separating axes. Because the number of separating axes is
quadratic in the number of edges, a separating-axis test may be infeasible for objects
of moderate to high complexity. However, it is possible to speed up a separating-axis
test by caching the last successful separating axis and testing it first on a subsequent
query, in the hope of getting an early nonintersection exit thanks to spatial and
temporal coherency of the objects between queries.

When two polytopes are colliding, the separating-axis test can also assist in com-
puting contact information. Instead of exiting early when an overlap is detected on
an axis, all axes are tested for overlap. After all axes have been tested, the axis with
the least (normalized) overlap can be used as the contact normal, and the overlap can
be used to estimate the penetration depth. With some extra work, contact points can
also be computed with the help of the separating axis. For those interested in reading
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further, the separating-axis test was suggested for the collision detection of oriented
bounding boxes by [Larcombe95].

5.2.1.1 Robustness of the Separating-axis Test

A potential problem with the separating-axis test is robustness in the case of a sep-
arating axis being formed by the cross product of an edge from each object. When
these two edges become parallel, the result is the zero vector and all projections onto
this axis, and sums of these projections, are therefore zero. Thus, if the test is not
carefully crafted, a zero vector may incorrectly be interpreted as a separating axis.
Due to the use of floating-point arithmetic, this problem may occur even in the case
of a near-zero vector for two near-parallel edges. In fact, the robustness problem of
the separating-axis test was encountered in Section 4.4.2 in the context of the OBB-
OBB intersection test, and a solution for the problem in that particular context can
be found there.

When possible, it is best to analyze the robustness problem in the context in which
it will occur. A generic solution to the problem is to test if the resulting cross-product
vector is a (near) zero vector, and if so attempt to deal with the problem either by
producing another axis that is perpendicular to the two vectors or by ignoring the
axis if separation on the axis can be ruled out.

The following code fragment outlines how a more robust separating-axis test for
edges AB and CD could be implemented.

// Compute a tentative separating axis for ab and cd
Vector m = Cross(ab, cd);
if (!IsZeroVector(m)) {

// Edges ab and cd not parallel, continue with m as a potential separating axis
...

} else {
// Edges ab and cd must be (near) parallel, and therefore lie in some plane P.
// Thus, as a separating axis try an axis perpendicular to ab and lying in P
Vector n = Cross(ab, c - a);
m = Cross(ab, n);
if (!IsZeroVector(m)) {

// Continue with m as a potential separating axis
...

}
// ab and ac are parallel too, so edges must be on a line. Ignore testing
// the axis for this combination of edges as it won’t be a separating axis.
// (Alternatively, test if edges overlap on this line, in which case the
// objects are overlapping.)
...

}
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Figure 5.15 Illustrating the three sphere-plane tests. (a) Spheres intersecting the plane. (b)
Spheres fully behind the plane. (c) Spheres intersecting the negative halfspace of the plane.
Spheres testing true are shown in gray.

The IsZeroVector() function tests if its argument is a vector with a magnitude
sufficiently close to zero (according to some tolerance value; see Section 11.3.1).
Widening the tolerance intervals and treating near-parallel edges as parallel may
result in near-intersections being interpreted as intersections. Overall, this is much
more attractive than the alternative: two intersecting objects falsely reported as
nonintersecting due to the projection onto a zero-vector separating axis, for example.

A related source of robustness errors is when the vectors used in the cross product
have a large magnitude, which may result in additional loss of precision in the calcu-
lations involving the cross product. If a bound on the magnitude of the input vectors
it not known, it is prudent to normalize them before computing the cross product to
maintain precision.

5.2.2 Testing Sphere Against Plane

It is possible to test a sphere against a plane in several ways. This section describes
three such tests: testing if the sphere intersects the plane, if the sphere lies fully behind
the plane, and if the sphere intersects the negative halfspace of the plane. Figure 5.15
illustrates these three scenarios.

Let a sphere S be specified by a center position C and a radius r, and let a plane π be
specified by (n · X) = d, where n is a unit vector; that is, ‖n‖ = 1. To determine if the
sphere is intersected by the plane, the plane equation can be evaluated for the sphere
center. Because n is unit, the resulting value corresponds to the signed distance of
the sphere center from the plane. If the absolute value of the distance is within the
sphere radius, the plane intersects the sphere:

// Determine whether plane p intersects sphere s
int TestSpherePlane(Sphere s, Plane p)
{

// For a normalized plane (|p.n| = 1), evaluating the plane equation
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// for a point gives the signed distance of the point to the plane
float dist = Dot(s.c, p.n) - p.d;
// If sphere center within +/-radius from plane, plane intersects sphere
return Abs(dist) <= s.r;

}

To determine if the sphere lies fully behind (inside the negative halfspace of)
plane π , the test changes to:

// Determine whether sphere s is fully behind (inside negative halfspace of) plane p
int InsideSpherePlane(Sphere s, Plane p)
{

float dist = Dot(s.c, p.n) - p.d;
return dist < -s.r;

}

If instead the negative halfspace of the plane is to be considered solid for the test
with the sphere, the test changes to:

// Determine whether sphere s intersects negative halfspace of plane p
int TestSphereHalfspace(Sphere s, Plane p)
{

float dist = Dot(s.c, p.n) - p.d;
return dist <= s.r;

}

5.2.3 Testing Box Against Plane

Let a plane P be given by (n · X) = d. Testing if a box B intersects P can also be
accomplished with the separating-axis test. Here, only the axis parallel to the plane
normal n need be tested. Because the plane extends indefinitely, there are no edges
with which to form edge-edge axis combinations. Axes corresponding to the face
normals of the box can be eliminated from testing because the infinite extent of the
plane means the plane will never sit fully outside one of the box faces unless it is
parallel to the face, a case already handled by the plane normal axis.

Consider first the case of B being an OBB, given by the usual representation of
a center C; local coordinate axes u0, u1, and u2; and three scalars e0, e1, and e2

(making the OBB sides 2 ei wide for 0 ≤ i ≤ 2). Points R in the OBB are given by
R = C ± a0u0 ± a1u1 ± a2u2, where |ai| ≤ ei. Similarly, the eight vertices Vi,
0 ≤ i ≤ 7, of the OBB are given by Vi = C ± e0u0 ± e1u1 ± e2u2.
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In that any line L parallel to n serves as a separating axis, a good choice is to have
L go through the box center, giving L as L(t) = C + tn. The box center C projects
onto L at t = 0. Because the OBB is symmetrical about its center, the projection onto
L results in a symmetric interval of projection [C − r n, C + r n], centered at C, with
a halfwidth (or radius) of r. Testing if B intersects P now amounts to computing the
radius r of the projection interval and checking if the distance of the center point of
B to P is less than r.

Because points of the OBB farthest away from its center are the vertices of the OBB,
the overall maximum projection radius onto any vector n will be realized by one of
the vertices. Thus, it is sufficient to consider only these when computing the radius
r. The projection radii ri of the eight vertices are given by

ri = (Vi − C) · n = (C ± e0u0 ± e1u1 ± e2u2 − C) · n = (±e0u0 ± e1u1 ± e2u2) · n.

Due to the distributive properties of the dot product, this expression can be
written as

ri = ±(e0u0 · n) ± (e1u1 · n) ± (e2u2 · n).

The maximum positive radius r is obtained when all involved terms are positive,
corresponding to only positive steps along n, which is achieved by taking the absolute
value of the terms before adding them up:

r = |e0u0 · n| + |e1u1 · n| + |e2u2 · n| .

Because the extents are assumed positive, r can be written as

r = e0 |u0 · n| + e1 |u1 · n| + e2 |u2 · n| .

When the separating-axis vector n is not a unit vector, r instead becomes

r = (e0 |u0 · n| + e1 |u1 · n| + e2 |u2 · n|)/ ‖n‖ .

The signed distance s of C from P is obtained by evaluating the plane equation
for C, giving s = n · C − d. Another way of obtaining s is to compute the distance
u of P from C, s = −u. Recall that P is n · X = d, where d = Q · n for some point
Q on the plane. As all points on P project to a single point on L, it is sufficient to
work with the projection of Q onto L. The distance u can therefore be computed as
u = (Q − C) · n = Q · n − C · n = d − C · n, which up to a sign change is equivalent
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Figure 5.16 Testing intersection of an OBB against a plane.

to the evaluation of the plane equation for the box center. Figure 5.16 illustrates the
quantities used in the test.

Because the intersection between the OBB B and the plane P occurs when
−r ≤ s ≤ r, or equivalently when |s| ≤ r, there is now sufficient information to
implement the test.

// Test if OBB b intersects plane p
int TestOBBPlane(OBB b, Plane p)
{

// Compute the projection interval radius of b onto L(t) = b.c + t * p.n
float r = b.e[0]*Abs(Dot(p.n, b.u[0])) +

b.e[1]*Abs(Dot(p.n, b.u[1])) +
b.e[2]*Abs(Dot(p.n, b.u[2]));

// Compute distance of box center from plane
float s = Dot(p.n, b.c) - p.d;
// Intersection occurs when distance s falls within [-r,+r] interval
return Abs(s) <= r;

}

It is not necessary for n to be normalized for the test to work. If n is nonunit, both
r and s will be a factor ‖n‖ larger, which does not affect the test.

Other tests can be easily implemented in a similar vein. For example, the OBB falls
inside the negative halfspace of the plane if s ≤ −r. If r ≤ s, the OBB lies fully in
the positive halfspace of the plane. For an OBB given as B = C + k0v0 + k1v1 + k2v2,
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0 ≤ k0, k1, k2 ≤ 1, the radius r of the OBB is instead obtained by r = (|v0 · n| +
|v1 · n|+|v2 · n|)/2. For an axis-aligned box B, the local axes u0, u1, and u2 are known
in advance, and thus the code can be simplified accordingly.

// Test if AABB b intersects plane p
int TestAABBPlane(AABB b, Plane p)
{

// These two lines not necessary with a (center, extents) AABB representation
Point c = (b.max + b.min) * 0.5f; // Compute AABB center
Point e = b.max - c; // Compute positive extents

// Compute the projection interval radius of b onto L(t) = b.c + t * p.n
float r = e[0]*Abs(p.n[0]) + e[1]*Abs(p.n[1]) + e[2]*Abs(p.n[2]);
// Compute distance of box center from plane
float s = Dot(p.n, c) - p.d;
// Intersection occurs when distance s falls within [-r,+r] interval
return Abs(s) <= r;

}

This test is equivalent to finding an AABB vertex most distant along the plane
normal and making sure that vertex and the vertex diagonally opposite lie on opposite
sides of the plane.

5.2.4 Testing Cone Against Plane

Let a plane be given by (n ·X) = d, where d = −P ·n for a point P on the plane and n
is unit. Let a cone be specified by its tip T, normalized axis direction d, height h, and
a bottom radius r (Figure 5.17). The cone is intersecting the negative halfspace of the
plane if any point of the cone lies inside the negative halfspace; that is, if there is a
point X of the cone for which (n · X) < d. For a cone only two points must be tested
for this condition.

● The tip T of the cone

● The point Q on the circular endcap of the cone, farthest in the direction of −n

For the second test, Q must be located. Thanks to the format the cone is given in, Q
is easily obtained by stepping from the tip along the direction vector to the circular
bottom endcap and down the endcap toward the plane:

Q = T + h v + r m.
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Figure 5.17 Illustrating the variables involved in the intersection test of a cone against a
plane or halfspace.

The vector m is given by m = (n × v) × v.
If n × v is zero, the cone axis is parallel to the plane normal, in which case,

Q = T + h v is the correct point to test against the halfspace. However, in this case
m is also zero and thus it is not necessary to handle this case specially.

Often cones are specified by giving the halfangle α at the cone apex, rather than
the bottom radius r. In that tan α = r/h, in these cases r is obtained as r = h tan α.
Giving r rather than α is clearly a better representation for this test.

If the intersection test is against the plane itself and not a halfspace, the computa-
tion of Q must be changed to lie farthest in the direction of n in the caseT lies behind
the plane. The test for intersection now becomes testing that T and Q lie on different
sides of the plane, indicated by (n · T) − d and (n · Q) − d having different signs. Of
these, (n · T) − d has already been computed to determine which side of the plane
T lies on.

5.2.5 Testing Sphere Against AABB

Testing whether a sphere intersects an axis-aligned bounding box is best done by com-
puting the distance between the sphere center and theAABB (see Section 5.1.3.1) and
comparing this distance with the sphere radius. If the distance is less than the radius,
the sphere andAABB must be intersecting.To avoid expensive square root operations,
both distance and radius can be squared before the comparison is made without
changing the result of the test. Using the function SqDistPointAABB() defined in
Section 5.1.3.1, the implementation becomes:

// Returns true if sphere s intersects AABB b, false otherwise
int TestSphereAABB(Sphere s, AABB b)
{

// Compute squared distance between sphere center and AABB
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float sqDist = SqDistPointAABB(s.c, b);
// Sphere and AABB intersect if the (squared) distance
// between them is less than the (squared) sphere radius
return sqDist <= s.r * s.r;

}

For collision handling, it is often useful to have the point on the AABB clos-
est to the sphere center returned, in which case the test can be written using
ClosestPtPointAABB() instead:

// Returns true if sphere s intersects AABB b, false otherwise.
// The point p on the AABB closest to the sphere center is also returned
int TestSphereAABB(Sphere s, AABB b, Point &p)
{

// Find point p on AABB closest to sphere center
ClosestPtPointAABB(s.c, b, p);

// Sphere and AABB intersect if the (squared) distance from sphere
// center to point p is less than the (squared) sphere radius
Vector v = p - s.c;
return Dot(v, v) <= s.r * s.r;

}

Note that testing whether the sphere is fully outside one or more faces of the
AABB is not a sufficient test for determining intersection between the sphere and the
AABB. For example, a sphere may be in a nonintersecting position just outside an
edge of an AABB but not lie fully outside either of the two AABB faces meeting at
the edge, as illustrated in Figure 5.18.

5.2.6 Testing Sphere Against OBB

Testing a sphere against an oriented bounding box is almost identical to testing against
an axis-aligned bounding box, substituting the call to ClosestPtPointAABB() for a
call to ClosestPtPointOBB():

// Returns true if sphere s intersects OBB b, false otherwise.
// The point p on the OBB closest to the sphere center is also returned
int TestSphereOBB(Sphere s, OBB b, Point &p)
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Figure 5.18 A sphere that does not lie fully outside any face plane of an AABB but never-
theless does not intersect the AABB.

{
// Find point p on OBB closest to sphere center
ClosestPtPointOBB(s.c, b, p);

// Sphere and OBB intersect if the (squared) distance from sphere
// center to point p is less than the (squared) sphere radius
Vector v = p - s.c;
return Dot(v, v) <= s.r * s.r;

}

5.2.7 Testing Sphere Against Triangle

The test for intersection between a sphere and a triangle follows the same pattern as
testing a sphere against a box. First, the point P on the triangle closest to the sphere
center is computed. The distance between P and the sphere center is then compared
against the sphere radius to detect possible intersection:

// Returns true if sphere s intersects triangle ABC, false otherwise.
// The point p on abc closest to the sphere center is also returned
int TestSphereTriangle(Sphere s, Point a, Point b, Point c, Point &p)
{

// Find point P on triangle ABC closest to sphere center
p = ClosestPtPointTriangle(s.c, a, b, c);



168 Chapter 5 Basic Primitive Tests

// Sphere and triangle intersect if the (squared) distance from sphere
// center to point p is less than the (squared) sphere radius
Vector v = p - s.c;
return Dot(v, v) <= s.r * s.r;

}

To avoid an expensive square root operation, the squared distances are compared
in the code.

5.2.8 Testing Sphere Against Polygon

Testing whether a sphere intersects a polygon could be done analogously to the
last few tests: computing the closest point on the polygon to the sphere center and
comparing the distance between these two points to the sphere radius. The closest
point on a polygon to a given point P can be computed by triangulating the polygon
and computing the closest point to P for each triangle, and returning the point closest
to P as the result.This is not very efficient for large polygons, however, as n−2 triangle
tests would have to be performed for a polygon with n vertices.

An alternative method is to perform the following tests in turn:

1. Test if the sphere intersects the plane of the polygon. Exit with false if not.

2. Test each edge of the polygon to see if it pierces the sphere. Exit with true if so.

3. Project the sphere center onto the plane of the polygon. Perform a point-in-
polygon test (see Section 5.4.1) to see if this point is inside the polygon. If so, exit
with true. Otherwise, exit with false, as the sphere does not intersect the polygon.

The following code fragment illustrates how the test can be implemented.

// Test whether sphere s intersects polygon p
int TestSpherePolygon(Sphere s, Polygon p)
{

// Compute normal for the plane of the polygon
Vector n = Normalize(Cross(p.v[1] - p.v[0], p.v[2] - p.v[0]));
// Compute the plane equation for p
Plane m; m.n = n; m.d = -Dot(n, p.v[0]);
// No intersection if sphere not intersecting plane of polygon
if (!TestSpherePlane(s, m)) return 0;
// Test to see if any one of the polygon edges pierces the sphere
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for (int k = p.numVerts, i = 0, j = k - 1; i < k; j = i, i++) {
float t;
Point q;
// Test if edge (p.v[j], p.v[i]) intersects s
if (IntersectRaySphere(p.v[j], p.v[i] - p.v[j], s, t, q) && t <= 1.0f)

return 1;
}
// Test if the orthogonal projection q of the sphere center onto m is inside p
Point q = ClosestPtPointPlane(s.c, m);
return PointInPolygon(q, p);

}

As an optimization, for steps 2 and onward it is possible to project the sphere and
polygon into the principal plane where the polygon has the largest area and treat the
problem as the 2D test of a circle against a polygon. This reduces the overall number
of arithmetic operations required for the test.

5.2.9 Testing AABB Against Triangle

The test of a triangle T intersecting a box B can be efficiently implemented using a
separating-axis approach ([Eberly01], [Akenine-Möller01]). There are 13 axes that
must be considered for projection:

1. Three face normals from the AABB

2. One face normal from the triangle

3. Nine axes given by the cross products of combination of edges from both

As before, as soon as a separating axis is found the test can immediately exit with
a“no intersection”result. If all axes are tested and no separating axis is found, the box
and the triangle must be intersecting. It has been suggested that the most efficient
order in which to perform these three sets of tests is 3-1-2 [Akenine-Möller01].

The same 13 axis tests apply to both OBBs and AABBs. However, for an AABB
(because the local axes of the box are known) some optimizations can be made to
speed up the runtime calculations required for the test. Here, only the AABB test is
presented, but to better illustrate the similarities — as well as to facilitate the AABB-
specific optimizations — the AABB is assumed to be given in a form commonly
used for OBBs. That is, by a center C; local axes u0 = (1, 0, 0), u1 = (0, 1, 0), and
u2 = (0, 0, 1); and extents e0, e1, and e2. The triangle it is tested against is given by
points V0 = (v0x , v0y, v0z), V1 = (v1x , v1y, v1z), and V2 = (v2x , v2y, v2z).
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The three face normals (u0, u1, u2) from the AABB are trivially tested by computing
the AABB of the triangle and testing B and the AABB of the triangle for overlap. If
the two AABBs do not intersect, neither do B and T. Testing the axis parallel to the
triangle face normal corresponds to testing if the AABB intersects the plane of the
triangle. As this test was described in Section 5.2.3, it is not further elaborated on
here. Remaining is testing the nine axes corresponding to the cross products of the
three edge directions from B and the three edge directions from T.

As with most separating-axis tests, the computations are simplified by moving one
object (the symmetrical one, if present) to the origin. Here, the box center is moved
to align with the origin, resulting in the following variable updates: V0 ← V0 − C,
V1 ← V1 −C, V2 ← V2 −C, and C ← (0, 0, 0). Let the triangle edges be given by f0 =
V1 − V0 = ( f0x , f0y, f0z), f1 = V2 − V1 = ( f1x , f1y, f1z), and f2 = V0 − V2 = ( f2x , f2y, f2z).
The nine axes considered as separating axes can then be specified as aij = ui × fj.
Because u0, u1, and u2 have a simple form, these axes simplify as follows:

a00 = u0 × f0 = (1, 0, 0) × f0 = (0, −f0z , f0y)

a01 = u0 × f1 = (1, 0, 0) × f1 = (0, −f1z , f1y)

a02 = u0 × f2 = (1, 0, 0) × f2 = (0, −f2z , f2y)

a10 = u1 × f0 = (0, 1, 0) × f0 = ( f0z , 0, −f0x)

a11 = u1 × f1 = (0, 1, 0) × f1 = ( f1z , 0, −f1x)

a12 = u1 × f2 = (0, 1, 0) × f2 = ( f2z , 0, −f2x)

a20 = u2 × f0 = (0, 0, 1) × f0 = (−f0y, f0x , 0)

a21 = u2 × f1 = (0, 0, 1) × f1 = (−f1y, f1x , 0)

a22 = u2 × f2 = (0, 0, 1) × f2 = (−f2y, f2x , 0)

Recall that the projection radius of a box with respect to an axis n is given by

r = e0 |u0 · n| + e1 |u1 · n| + e2 |u2 · n| .

In the case of n = a00, this simplifies to

r = e0 |u0 · a00| + e1 |u1 · a00| + e2 |u2 · a00| ⇔
r = e0 |0| + e1 |−a00z| + e2

∣∣a00y
∣∣ ⇔

r = e1
∣∣ f0z

∣∣ + e2
∣∣ f0y

∣∣ .

Similarly, simple expressions for the AABB projection radius are easily obtained for
the remaining aij axes. In all cases, the projection interval of the box is simply [−r, r].



5.2 Testing Primitives 171

Projecting T onto a given axis n results in the projection interval
[
min(p0,

p1, p2), max(p0, p1, p2)
]
, where p0, p1, and p2 are the distances from the origin to the

projections of the triangle vertices onto n. For n = a00 this gives:

p0 = V0 · a00 = V0 · (0, −f0z , f0y) = −v0yf0z + v0z f0y = −v0y(v1z − v0z) + v0z(v1y − v0y)

= −v0yv1z + v0zv1y

p1 = V1 · a00 = V1 · (0, −f0z , f0y) = −v1yf0z + v1z f0y = −v1y(v1z − v0z) + v1z(v1y − v0y)

= v1yv0z − v1zv0y = p0

p2 = V2 · a00 = V2 · (0, −f0z , f0y) = −v2yf0z + v2z f0y = −v2y(v1z − v0z) + v2z(v1y − v0y)

If the projection intervals [−r, r] and
[
min(p0, p1, p2), max(p0, p1, p2)

]
are disjoint

for the given axis, the axis is a separating axis and the triangle and the AABB do not
overlap.

For this axis, n = a00, it holds that p0 = p1 and the projection interval for the triangle
simplifies to

[
min(p0, p2), max(p0, p2)

]
. The triangle projection intervals simplify in the

same manner for all nine projection axes, as they all contain one zero component.
Here, theAABB and triangle projection intervals are therefore disjoint if max(p0, p2) <

−r or min(p0, p2) > r. If min() and max() operations are available as native floating-
point instructions on the target architecture, an equivalent expression that avoids one
(potentially expensive) comparison is max(− max(p0, p2), min(p0, p2)) > r. The latter
formulation is especially useful in an SIMD implementation (see Chapter 13 for more
on SIMD implementations).

The following code fragment illustrates how this test can be implemented.

int TestTriangleAABB(Point v0, Point v1, Point v2, AABB b)
{

float p0, p1, p2, r;

// Compute box center and extents (if not already given in that format)
Vector c = (b.min + b.max) * 0.5f;
float e0 = (b.max.x - b.min.x) * 0.5f;
float e1 = (b.max.y - b.min.y) * 0.5f;
float e2 = (b.max.z - b.min.z) * 0.5f;

// Translate triangle as conceptually moving AABB to origin
v0 = v0 - c;
v1 = v1 - c;
v2 = v2 - c;

// Compute edge vectors for triangle
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Vector f0 = v1 - v0, f1 = v2 - v1, f2 = v0 - v2;

// Test axes a00..a22 (category 3)
// Test axis a00
p0 = v0.z*v1.y - v0.y*v1.z;
p2 = v2.z*(v1.y - v0.y) - v2.z*(v1.z - v0.z);
r = e1 * Abs(f0.z) + e2 * Abs(f0.y);
if (Max(-Max(p0, p2), Min(p0, p2)) > r) return 0; // Axis is a separating axis

// Repeat similar tests for remaining axes a01..a22
...

// Test the three axes corresponding to the face normals of AABB b (category 1).
// Exit if...
// ... [-e0, e0] and [min(v0.x,v1.x,v2.x), max(v0.x,v1.x,v2.x)] do not overlap
if (Max(v0.x, v1.x, v2.x) < -e0 || Min(v0.x, v1.x, v2.x) > e0) return 0;
// ... [-e1, e1] and [min(v0.y,v1.y,v2.y), max(v0.y,v1.y,v2.y)] do not overlap
if (Max(v0.y, v1.y, v2.y) < -e1 || Min(v0.y, v1.y, v2.y) > e1) return 0;
// ... [-e2, e2] and [min(v0.z,v1.z,v2.z), max(v0.z,v1.z,v2.z)] do not overlap
if (Max(v0.z, v1.z, v2.z) < -e2 || Min(v0.z, v1.z, v2.z) > e2) return 0;

// Test separating axis corresponding to triangle face normal (category 2)
Plane p;
p.n = Cross(f0, f1);
p.d = Dot(p.n, v0);
return TestAABBPlane(b, p);

}

Note that there are robustness issues related to the tests of categories 2 (in com-
puting the face normal for a degenerate or oversized triangle) and 3 (the cross product
of two parallel edges giving a zero vector). See Section 5.2.1.1 for a discussion of what
has to be done to cover these cases in a fully robust implementation.

The topic of triangle-AABB overlap testing is discussed in [Voorhies92]. A test of
arbitrary polygons against an AABB is given in [Green95].

5.2.10 Testing Triangle Against Triangle

Many algorithms have been suggested for detecting the intersection of two triangles
ABC and DEF. The most straightforward test is based on the fact that in general when
two triangles intersect either two edges of one triangle pierce the interior of the other
or one edge from each triangle pierces the interior of the other triangle (Figure 5.19).
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Figure 5.19 In the general case, two triangles intersect (a) when two edges of one triangle
pierce the interior of the other or (b) when one edge from each pierces the interior of the
other.

A triangle-triangle test can therefore be implemented in terms of (up to) six edge-
triangle tests. If an edge of one triangle intersects the other triangle, the triangles
intersect. If all six tests fail, they are not intersecting.

The case in which the triangles are coplanar, or one or both triangles are degenerate
(with two or more coincident vertices, turning the triangles into lines or points), is not
handled correctly by this test. In fact, none of the suggested algorithms for triangle-
triangle intersectionhandle these casesbydefault: theyall relyon theirs beinghandled
as special cases.

A second approach is to apply the separating-axis test. For intersecting two trian-
gles, 11 separating axes must be tested: one axis parallel to the face normal for each of
the two triangles, plus nine combinations of edges, with one edge from each triangle.
For each axis, the triangles are projected onto the axis and the projection intervals
are tested for overlap. If the projection intervals are found disjoint on any axis, the
triangles are nonintersecting and the test can immediately exit. However, when the
projection intervals overlap on all 11 axes the triangles must be intersecting.

A test similar in spirit to the separating-axis test is the interval overlap method
suggested by [Möller97b]. However, it is much less expensive than the previous two
tests. As a first step, it tests if the two face normals act as separating axes. This is done
by testing, for both triangles, whether the vertices of one triangle lie fully on one side
of the plane of the other triangle. If so, the triangles are nonintersecting. If not, at this
point, the planes of the triangles must be intersecting in a line L, L(t) = P+ t d, where
d = n1 × n2 is the cross product of the two triangle normals n1 and n2. Furthermore,
this line must also be intersecting both triangles. The scalar intersection intervals
between each triangle and L are now computed (these correspond to the intersection
points marked with black dots in Figure 5.19). Now, only if these scalar intervals
intersect do the triangles intersect. As an optimization, instead of directly computing
the triangle intersection intervals with L the intervals are computed and intersected on
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the principal coordinate axis most parallel with L. To summarize, the interval overlap
method proceeds as follows.

1. Compute the plane equation of triangle 1. Exit with no intersection if the vertices
of triangle 2 are all on the same side of this plane.

2. Compute the plane equation of triangle 2. Exit with no intersection if the vertices
of triangle 1 are all on the same side of this plane.

3. Compute the line L of intersection between the two planes.

4. Determine which principal coordinate axis is most parallel with the intersection
line L.

5. Compute scalar intersection intervals for each triangle with L, as projected onto
this principal axis.

6. The triangles intersect if the intersection intervals overlap; otherwise, they do not.

C code for this test is publicly available for download on the Internet.
A test of roughly the same time complexity as the interval overlap method, but

conceptually easier, is the penetration method used in the ERIT package of inter-
section tests [Held97]. It tests if the second triangle straddles the plane of the first
triangle, exiting with “no intersection”if not. Otherwise, the line segment realizing
this intersection is computed. This segment is then tested for intersection and con-
tainment against the first triangle, to determine the final intersection status of the
two triangles. This penetration method can be summarized as follows.

1. Compute the plane equation of triangle 1. Exit with no intersection if the vertices
of triangle 2 are all on the same side of this plane.

2. Compute the intersection between triangle 2 and the plane of triangle 1. This is a
line segment in the plane of triangle 1.

3. Test if the line segment intersects or is contained in triangle 2. If so, the triangles
intersect; otherwise, they do not.

As an optimization to step 3, Held suggests projecting the line segment and triangle
2 to the principal plane the triangle is most parallel with and solving the intersection
as a 2D triangle/line-segment test.

The final method mentioned here, similar to the interval overlap method, is pre-
sented in [Devillers02].The first two steps are identical, but then the Devillers method
relies on bringing the two triangles into a canonical form to simplify the interval over-
lap test on the line L of intersection between the two planes. The canonical form is
achieved by cyclical permutation of the triangle vertices so that the vertex that lies
alone on one side of the plane of the other triangle is the first vertex of each triangle
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(that is, vertices A and D). The remaining vertices are also swapped to ensure that
A and D lie above the plane of the other triangle (viewing the other triangle in its
counterclockwise order).

After the triangles have been brought into the canonical form, the edges incident
to A and D (that is, AB and AC, and DE and DF, respectively) are now guaranteed to
intersect the line L of intersection between the two planes. Furthermore, the overlap
of the intersection intervals on L can now be determined through two scalar triple
product tests on the vertices, without explicitly computing the intervals themselves.

Overall, the logic for Devillers’ test is more involved than the other methods pre-
sented here, but if implemented correctly the authors suggest the resulting code
becomes somewhat faster as well as more robust. Refer to the original presentation
for full implementational details.

5.3 Intersecting Lines, Rays, and (Directed) Segments

Tests involving lines, rays, and segments are frequently used, for example, to simulate
bullets fired or for testing line of sight. Line tests are sometimes used instead of more
complicated queries. For example, the contact of a hand or foot of a player character
against the environment or the contact of a vehicle wheel against the ground can often
be efficiently modeled with a simple line test. The following sections explore efficient
tests of lines, rays, and segments against various common collision primitives.

5.3.1 Intersecting Segment Against Plane

Let a plane P be given by (n · X) = d and a segment by the parametric equation
S(t) = A + t (B − A) for 0 ≤ t ≤ 1 (Figure 5.20). The t value of intersection of the
segment with the plane is obtained by substituting the parametric equation for X in
the plane equation and solving for t:

(n · (A + t (B − A))) = d (substituting S(t) = A + t (B − A) for X in (n · X) = d)

n · A + t n · (B − A) = d (expanding the dot product)

t n · (B − A) = d − n · A (moving scalar term to RHS)

t = (d − n · A)
/

(n · (B − A)) (dividing both sides by n · (B − A) to isolate t)

The expression for t can now be inserted into the parametric equation for the seg-
ment to find the actual intersection point Q:

Q = A + [(d − n · A)
/

(n · (B − A))](B − A).
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Figure 5.20 Intersecting the segment AB against a plane.

This can now be implemented as follows.

int IntersectSegmentPlane(Point a, Point b, Plane p, float &t, Point &q)
{

// Compute the t value for the directed line ab intersecting the plane
Vector ab = b - a;
t = (p.d - Dot(p.n, a)) / Dot(p.n, ab);

// If t in [0..1] compute and return intersection point
if (t >= 0.0f && t <= 1.0f) {

q = a + t * ab;
return 1;

}
// Else no intersection
return 0;

}

Note that this code does not explicitly handle division by zero. Assuming IEEE-
754 floating-point arithmetic, it does still give the correct result in the case of the
denominator being zero. Refer to Section 11.2.2 on infinity arithmetic for details of
how to correctly deal with division-by-zero errors without having to explicitly test for
them.

If the plane is not explicitly given, but only implicitly specified by three (non-
collinear) points on the plane, the test can be written in the following manner
instead.
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// Intersect segment ab against plane of triangle def. If intersecting,
// return t value and position q of intersection
int IntersectSegmentPlane(Point a, Point b, Point d, Point e, Point f,

float &t, Point &q)
{

Plane p;
p.n = Cross(e - d, f - d);
p.d = Dot(p.n, d);
return IntersectSegmentPlane(a, b, p, t, q);

}

5.3.2 Intersecting Ray or Segment Against Sphere

Let a ray be given by R(t) = P + td, t ≥ 0, where P is the ray origin and d a
normalized direction vector,

∥∥d
∥∥ = 1. If R(t) describes a segment rather than a ray,

then 0 ≤ t ≤ tmax. Let the sphere boundary be defined by (X − C) · (X − C) = r2,
where C is the sphere center and r its radius. To find the t value at which the ray
intersects the surface of the sphere, R(t) is substituted for X, giving

(P + td − C) · (P + td − C) = r2.

Let m = P − C, then:

(m + t d) · (m + t d) = r2 ⇔ (substituting m = P − C)

(d · d)t2 + 2(m · d)t + (m · m) = r2 ⇔ (expanding the dot product)

t2 + 2(m · d)t + (m · m) − r2 = 0 (simplifying d · d = 1;

canonical form for quadratic equation)

This is a quadratic equation in t. For the quadratic formula t2 + 2bt + c = 0, the
solutions are given by t = −b ± √

b2 − c. Here, b = m · d and c = (m · m) − r2.
Solving the quadratic has three outcomes, categorized by the discriminant d =

b2 − c. If d < 0, there are no real roots, which corresponds to the ray missing the
sphere completely. If d = 0, there is one real (double) root, corresponding to the
ray hitting the sphere tangentially in a point. If d > 0, there are two real roots
and the ray intersects the sphere twice: once entering and once leaving the sphere
boundary. In the latter case, the smaller intersection t value is the relevant one, given
by t = −b − √

b2 − c. However, it is important to distinguish the false intersection
case of the ray starting outside the sphere and pointing away from it, resulting in an
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(a) (b) (c) (d) (e)

Figure 5.21 Different cases of ray-sphere intersection: (a) ray intersects sphere (twice) with
t > 0, (b) false intersection with t < 0, (c) ray intersects sphere tangentially, (d) ray starts inside
sphere, and (e) no intersection.

intersection value of t < 0. This case is illustrated in Figure 5.21, along with all other
ray-sphere intersection relationships.

The following code implements the ray-sphere intersection test.

// Intersects ray r = p + td, |d| = 1, with sphere s and, if intersecting,
// returns t value of intersection and intersection point q
int IntersectRaySphere(Point p, Vector d, Sphere s, float &t, Point &q)
{

Vector m = p - s.c;
float b = Dot(m, d);
float c = Dot(m, m) - s.r * s.r;
// Exit if r’s origin outside s (c > 0) and r pointing away from s (b > 0)
if (c > 0.0f && b > 0.0f) return 0;
float discr = b*b - c;
// A negative discriminant corresponds to ray missing sphere
if (discr < 0.0f) return 0;
// Ray now found to intersect sphere, compute smallest t value of intersection
t = -b - Sqrt(discr);
// If t is negative, ray started inside sphere so clamp t to zero
if (t < 0.0f) t = 0.0f;
q = p + t * d;
return 1;

}

For intersecting a directed segment AB against a sphere, the same code can be
used by setting P = A and d = (B − A)

/ ‖B − A‖. On intersection, it is important to
verify that t ≤ ‖B − A‖ so that the detected intersection does not lie beyond the end
of the segment.

To just test if the ray intersects the sphere (but not when or where), the code can
be optimized to not have to perform a potentially expensive square root operation.
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Making early exits as soon as possible, the code becomes:

// Test if ray r = p + td intersects sphere s
int TestRaySphere(Point p, Vector d, Sphere s)
{

Vector m = p - s.c;
float c = Dot(m, m) - s.r * s.r;
// If there is definitely at least one real root, there must be an intersection
if (c <= 0.0f) return 1;
float b = Dot(m, d);
// Early exit if ray origin outside sphere and ray pointing away from sphere
if (b > 0.0f) return 0;
float disc = b*b - c;
// A negative discriminant corresponds to ray missing sphere
if (disc < 0.0f) return 0;
// Now ray must hit sphere
return 1;

}

If d is not normalized, the quadratic equation to solve becomes (d · d)t2 +
2(m · d)t + (m · m) − r2 = 0. For a quadratic equation such as this one, of the
form at2 + 2bt + c = 0, the solutions are given by

t = −b ± √
b2 − ac

a
,

with the discriminant d = b2 − ac.

5.3.3 Intersecting Ray or Segment Against Box

Recalling the definition of a slab as being the space between a pair of parallel planes,
the volume of a rectangular box can be seen as the intersection of three such slabs
at right angles to one another. Now, just as a point is inside the box if and only if it
lies inside all three slabs a segment intersects the box if and only if the intersections
between the segment and the slabs all overlap. If the intersections of the segment
with the slabs do not overlap, the segment cannot lie inside the slabs at the same
time, and therefore cannot be intersecting the volume formed by the intersection of
the slabs. The same principle also applies for the intersection of a ray or a line with
a box. The intersection and nonintersection of a ray against a 2D box, formed as the
intersection of an x slab and a y slab, is illustrated in Figure 5.22.
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Figure 5.22 Ray R1 does not intersect the box because its intersections with the x slab and
the y slab do not overlap. Ray R2 does intersect the box because the slab intersections overlap.

A test for intersecting a ray against a box therefore only needs to compute the
intersection intervals of the ray with the planes of the slabs and perform some simple
comparison operations to maintain the logical intersection of all intersection intervals
along the ray. All that is required is to keep track of the farthest of all entries into a
slab, and the nearest of all exits out of a slab. If the farthest entry ever becomes farther
than the nearest exit, the ray cannot be intersecting the slab intersection volume and
the test can exit early (with a result of nonintersection).

The intersection intervals of the ray with the slabs are obtained by inserting the
parametric equation of the ray, R(t) = P + t d, into the plane equations of the slab
planes, X · ni = di, and solving for t, giving t = (d − P · ni)

/
(d · ni). For an AABB, two

components of the normal are zero, and thus given P = (px , py, pz) and d = (dx , dy, dz)
the expression simplifies to, for example, t = (d − px)

/
dx for a plane perpendicular to

the x axis, where d simply corresponds to the position of the plane along the x axis.
To avoid a division by zero when the ray is parallel to a slab, this case is best handled
separately by substituting a test for the ray origin being contained in the slab. The
following code is an implementation of the test of a ray against an AABB.

// Intersect ray R(t) = p + t*d against AABB a. When intersecting,
// return intersection distance tmin and point q of intersection
int IntersectRayAABB(Point p, Vector d, AABB a, float &tmin, Point &q)
{

tmin = 0.0f; // set to -FLT_MAX to get first hit on line
float tmax = FLT_MAX; // set to max distance ray can travel (for segment)
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// For all three slabs
for (int i = 0; i < 3; i++) {

if (Abs(d[i]) < EPSILON) {
// Ray is parallel to slab. No hit if origin not within slab
if (p[i] < a.min[i] || p[i] > a.max[i]) return 0;

} else {
// Compute intersection t value of ray with near and far plane of slab
float ood = 1.0f / d[i];
float t1 = (a.min[i] - p[i]) * ood;
float t2 = (a.max[i] - p[i]) * ood;
// Make t1 be intersection with near plane, t2 with far plane
if (t1 > t2) Swap(t1, t2);
// Compute the intersection of slab intersection intervals
if (t1 > tmin) tmin = t1;
if (t2 > tmax) tmax = t2;
// Exit with no collision as soon as slab intersection becomes empty
if (tmin > tmax) return 0;

}
}
// Ray intersects all 3 slabs. Return point (q) and intersection t value (tmin)
q = p + d * tmin;
return 1;

}

If the same ray is being intersected against a large number of boxes, the three
divisions involved can be precomputed once for the ray and then be reused for all tests.
As a further optimization, the outcome of the statement if (t1 > t2) Swap(t1, t2)
is also completely predetermined by the signs of the components of the ray direction
vector. It could therefore be removed by determining in advance which one of eight (or
four for a 2D test) alternative routines to call, in which the effects of the if statements
have been folded into the surrounding code.

Note that the presented ray-box intersection test is a special case of the intersection
test of a ray against the Kay–Kajiya slab volume, described in Section 4.6.1. Increasing
the number of slabs allows an arbitrarily good fit of the convex hulls of objects to be
achieved. The Kay–Kajiya test is, in turn, really just a specialization of the Cyrus–Beck
clipping algorithm [Cyrus78]. A Cyrus–Beck-like clipping approach is also used in
Section 5.3.8 for the intersection of a ray or segment against a convex polyhedron.

If the problem is just to test if the segment intersects with the box, without deter-
mining the intersection point an alternative solution is to use the separating-axis
test. Without loss of generality, a coordinate system can be chosen in which the box
is centered at the origin and oriented with the coordinate axes. For an AABB, the
centering is accomplished by translating the segment along with the AABB to the
origin. For an OBB, the segment endpoints can be transformed from world space into
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the OBB space, after which both can be translated to the origin in the same way as
for the AABB. Assuming the OBB is given by a center point C; a halfwidth extent
vector e = (e0, e1, e2); and local coordinate axes u0, u1, and u2; then a point P in world
space can be expressed in the OBB coordinate system as the point (x, y, z), where
x = (P − C) · u0, y = (P − C) · u1, and z = (P − C) · u2.

Let the segment be described by a midpoint M = (mx , my, mz) and endpoints
M − d and M + d, where d = (dx , dy, dz) is a direction vector for the segment. The
halflength of the segment is

∥∥d
∥∥. Projecting the segment onto some separating axis

v = (vx , vy, vz) through the origin results in a projection interval centered at a signed
distance ds = (M ·v)

/ ‖v‖ away from the origin (along v), with a radius (or halflength)
of rs = ∣∣d · v

∣∣ / ‖v‖. Letting rb denote the projection interval radius of the box onto
the vector v, v acts as a separating axis if and only if

∣∣ds
∣∣ > rb + rs (Figure 5.23).

For an OBB specified by three orthogonal unit vectors u0, u1, and u2 and three
halflength extents e0, e1, and e2, the projection interval radius rb is given by

rb = (e0 |u0 · v| + e1 |u1 · v| + e2 |u2 · v|)/ ‖v‖ .

By substituting u0 = (1, 0, 0), u1 = (0, 1, 0), and u2 = (0, 0, 1), the corresponding
expression for an AABB is given by

rb = (e0 |vx| + e1
∣∣vy

∣∣ + e2 |vz|)
/ ‖v‖ .

rb

M – v

rs

�ds�

Vk

C

M + v

M

Figure 5.23 Testing intersection between a segment and an AABB using a separating-
axis test.
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Table 5.1 The six separating axes for testing intersection between a segment and an AABB.

vi ds rb rs
∣∣ds

∣∣ > rb + rs

(1, 0, 0) mx e0
∣∣dx

∣∣ |mx | > e0 + ∣∣dx
∣∣

(0, 1, 0) my e1
∣∣dy

∣∣ ∣∣my
∣∣ > e1 + ∣∣dy

∣∣
(0, 0, 1) mz e2

∣∣dz
∣∣ |mz | > e2 + ∣∣dz

∣∣
d × (1, 0, 0) (mydz − mzdy)/

∥∥d
∥∥ (e1

∣∣dz
∣∣ + e2

∣∣dy
∣∣)/ ∥∥d

∥∥ 0
∣∣mydz − mzdy

∣∣ > e1
∣∣dz

∣∣ + e2
∣∣dy

∣∣
d × (0, 1, 0) (mzdx − mxdz)/

∥∥d
∥∥ (e0

∣∣dz
∣∣ + e2

∣∣dx
∣∣)/ ∥∥d

∥∥ 0
∣∣mzdx − mxdz

∣∣ > e0
∣∣dz

∣∣ + e2
∣∣dx

∣∣
d × (0, 0, 1) (mxdy − mydx)/

∥∥d
∥∥ (e0

∣∣dy
∣∣ + e1

∣∣dx
∣∣)/ ∥∥d

∥∥ 0
∣∣mxdy − mydx

∣∣ > e0
∣∣dy

∣∣ + e1
∣∣dx

∣∣

There are six axes that must be tested as separating axes: three corresponding to
the AABB face normals (v0 = (1, 0, 0), v1 = (0, 1, 0), and v2 = (0, 0, 1)) and three
corresponding to cross products between the segment direction vector and the face
normals (v3 = d × (1, 0, 0), v4 = d × (0, 1, 0), and v5 = d × (0, 0, 1)). Table 5.1 gives
the results of working out the expressions for ds, rb, rs, and

∣∣ds
∣∣ > rb + rs for these six

axes.
The expressions for separation given in Table 5.1 directly translate into an efficient

implementation.

// Test if segment specified by points p0 and p1 intersects AABB b
int TestSegmentAABB(Point p0, Point p1, AABB b)
{

Point c = (b.min + b.max) * 0.5f; // Box center-point
Vector e = b.max - c; // Box halflength extents
Point m = (p0 + p1) * 0.5f; // Segment midpoint
Vector d = p1 - m; // Segment halflength vector
m = m - c; // Translate box and segment to origin
// Try world coordinate axes as separating axes
float adx = Abs(d.x);
if (Abs(m.x) > e.x + adx) return 0;
float ady = Abs(d.y);
if (Abs(m.y) > e.y + ady) return 0;
float adz = Abs(d.z);
if (Abs(m.z) > e.z + adz) return 0;

// Add in an epsilon term to counteract arithmetic errors when segment is
// (near) parallel to a coordinate axis (see text for detail)
adx += EPSILON; ady += EPSILON; adz += EPSILON;
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// Try cross products of segment direction vector with coordinate axes
if (Abs(m.y * d.z - m.z * d.y) > e.y * adz + e.z * ady) return 0;
if (Abs(m.z * d.x - m.x * d.z) > e.x * adz + e.z * adx) return 0;
if (Abs(m.x * d.y - m.y * d.x) > e.x * ady + e.y * adx) return 0;
// No separating axis found; segment must be overlapping AABB
return 1;

}

As written, the expressions for e, d, and m all have a factor 0.5 that can be removed,
allowing the first five lines of initial setup code to be simplified to:

Vector e = b.max - b.min;
Vector d = p1 - p0;
Point m = p0 + p1 - b.min - b.max;

Remaining to address is the robustness of the code for when the segment direction
vector d is parallel to one of the coordinate axes, making the three cross products give
a zero vector result. If the segment does not intersect the AABB, the first three if tests
will correctly detect this. If the segment does intersect, the latter three if statements
correspond to 0 > 0 tests. To avoid rounding errors causing the axis to be incorrectly
interpreted as separating, a small epsilon term can be added to the adx, ady, and adz
values to bias the comparison, similar to what was done for the OBB-OBB test in
Chapter 4.

5.3.4 Intersecting Line Against Triangle

The intersection of lines (as well as rays and segments) against triangles is a very
common test. For this reason, this test is discussed in detail in this and the two fol-
lowing sections. Starting with the test involving lines, let a triangle ABC and a line
through the points P and Q be given.The line PQ intersects ABC if the point R of inter-
section between the line and the plane of ABC lies inside the triangle (Figure 5.24).
One solution to the intersection problem is therefore to compute R and perform a
point-in-triangle test with it. Note that if ABC is arranged counterclockwise from
a given viewing direction R is inside ABC if R lies to the left of the triangle edges
AB, BC, and CA (where the edges are considered as directed line segments). Simi-
larly, if ABC is arranged clockwise R is inside ABC if R is to the right of all triangle
edges.

Instead of explicitly computing R for use in the sidedness test, the test can be
performed directly with the line PQ against the triangle edges. Consider the scalar
triple products:

u = [PQ PC PB]
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A

CP

R

B

Q

Figure 5.24 Intersecting the line through P and Q against the triangle ABC.

v = [PQ PA PC]
w = [PQ PB PA]

If ABC is counterclockwise, for PQ to pass to the left of the edges BC, CA, and
AB the expressions u ≥ 0, v ≥ 0, and w ≥ 0 (respectively) must be true. Similarly,
when ABC is clockwise the scalar triple products must be nonpositive for PQ to pass
to the right of the edges. For a double-sided triangle, which is both clockwise and
counterclockwise depending on from which side it is viewed, PQ passes on the inside
if all three scalar triple products have the same sign (ignoring zeroes).

For obtaining the intersection point with ABC, it can be shown that u, v, and w are
proportional to u∗, v∗, and w∗:

u∗ = ku = [PR PC PB]
v∗ = kv = [PR PA PC]

w∗ = kw = [PR PB PA],

where k = ‖PR‖/‖PQ‖.
Here, u∗, v∗, and w∗ are proportional to the volumes of the tetrahedra RBCP, RCAP,

and RABP. As these tetrahedra all have the same height (as shown in Section 3.4 on
barycentric coordinates), the volumes are accordingly proportional to the areas of
their base triangles RBC, RCA, and RAB. It follows that u∗, v∗, and w∗ (and more
importantly, u, v, and w) therefore can be directly used to compute the barycentric
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coordinates of R. It is now straightforward to derive the code for testing a line PQ
against a counterclockwise triangle ABC and computing the barycentric coordinates
of the intersection point, if any.

//Given line pq and ccw triangle abc, return whether line pierces triangle. If
//so, also return the barycentric coordinates (u,v,w) of the intersection point
int IntersectLineTriangle(Point p, Point q, Point a, Point b, Point c,

float &u, float &v, float &w)
{

Vector pq = q - p;
Vector pa = a - p;
Vector pb = b - p;
Vector pc = c - p;
// Test if pq is inside the edges bc, ca and ab. Done by testing
// that the signed tetrahedral volumes, computed using scalar triple
// products, are all positive
u = ScalarTriple(pq, pc, pb);
if (u < 0.0f) return 0;
v = ScalarTriple(pq, pa, pc);
if (v < 0.0f) return 0;
w = ScalarTriple(pq, pb, pa);
if (w < 0.0f) return 0;

// Compute the barycentric coordinates (u, v, w) determining the
// intersection point r, r = u*a + v*b + w*c
float denom = 1.0f / (u + v + w);
u *= denom;
v *= denom;
w *= denom; // w = 1.0f - u - v;
return 1;

}

For robustness, the case in which PQ lies in the plane of ABC must be handled
separately. PQ is in the plane of ABC when u = v = w = 0, which would result in a
division-by-zero error if left unhandled.

The code can be optimized further by rearranging the terms in the triple scalar
products’expressions so that a cross product is shared between two of them, turning
the middle section of code into:

Vector m = Cross(pq, pc);
u = Dot(pb, m); // ScalarTriple(pq, pc, pb);
if (u < 0.0f) return 0;
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v = -Dot(pa, m); // ScalarTriple(pq, pa, pc);
if (v < 0.0f) return 0;
w = ScalarTriple(pq, pb, pa);
if (w < 0.0f) return 0;

For a double-sided test the same code would instead read:

Vector m = Cross(pq, pc);
u = Dot(pb, m); // ScalarTriple(pq, pc, pb);
v = -Dot(pa, m); // ScalarTriple(pq, pa, pc);
if (!SameSign(u, v)) return 0;
w = ScalarTriple(pq, pb, pa);
if (!SameSign(u, w)) return 0;

It is also possible to recast the arithmetic of this test as

Vector m = Cross(pq, p);
u = Dot(pq, Cross(c, b)) + Dot(m, c - b);
v = Dot(pq, Cross(a, c)) + Dot(m, a - c);
w = Dot(pq, Cross(b, a)) + Dot(m, b - a);

or equivalently as

Vector m = Cross(pq, q);
float s = Dot(m, c - b);
float t = Dot(m, a - c);
u = Dot(pq, Cross(c, b)) + s;
v = Dot(pq, Cross(a, c)) + t;
w = Dot(pq, Cross(b, a)) - s - t;

The three cross products C × B, A × C, and B × A are constant for a given tri-
angle, as are the vectors e0 = c − b and e1 = a − c. If these are stored with the
triangle, at runtime only one cross product and five dot products need to be evalu-
ated. Because the remaining cross product only depends on values from the line, it
only has to be evaluated once even if the line is tested against many triangles. This
last formulation is equivalent to performing the intersection test with the line PQ
and the triangle edges expressed as lines using Plücker coordinates [Amanatides97].
Brief but good introductions to Plücker coordinates are given in [Erickson97] and
[Shoemake98]. Although a Plücker coordinate formulation results in slightly fewer
floating-point operations (assuming no special dot or cross-product instructions are
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available), in practice the extra memory accesses incurred are likely to make it slower
than the scalar triple product solution. In addition, the higher memory overhead of the
Plücker coordinate approach isunappealing. Finally, note that the triangle facenormal
n = (B − A) × (C − A) can be recovered from the three stored cross products as
n = −(C × B) − (A × C) − (B × A).

This type of test can be extended into a segment test by explicitly computing the
intersection t value of L(t) = P + t(Q − P) with the plane of ABC once the line
PQ has been found intersecting ABC, discarding an intersection unless 0 ≤ t ≤ 1.
An alternative approach for intersecting a segment against a triangle is given in
Section 5.3.6.

Determining directly in 3D whether a line or a segment intersects with the interior
of a triangle by computing the sidedness of the line against the triangle edges is
overall the most robust way of performing a triangle intersection test. Section 11.3.3
discusses the reasons for this inherent robustness.

The approach of using triple scalar products to determine if the intersection takes
place outside an edge can also be applied to arbitrary convex polygons, but for effi-
ciency it is better to test the point of intersection between the line and the plane
against the polygon interior. The triple scalar method does, however, extend nicely
to intersection against quadrilaterals, as shown in the following section.

5.3.5 Intersecting Line Against Quadrilateral

The triple scalar method described in the previous section can be used almost unmod-
ified for computing the intersection point R of a line with a quadrilateral ABCD.
Assume ABCD is convex and given counterclockwise. A point inside ABCD must
then be either inside the triangle ABC or inside the triangle DAC.

Because the edge CA is shared between both triangles, if this edge is tested first
it can be used to effectively discriminate which triangle R must not lie inside. For
example, if R lies to the left of CA, R cannot lie inside DAC, and thus only ABC has
to be tested, with only two additional edges to test against. If instead R lies to the
right of CA, only DAC must be tested, in that R cannot lie inside ABC. Again, only
two additional edges must be tested. The case of R lying on CA can be arbitrarily
assigned to either triangle. Whether R lies to the left or to the right of CA, in both
cases only three edges are tested in all. In terms of floating-point operations, the cost
of intersecting a line against a quadrilateral is therefore the same as that of intersecting
against a triangle!

For this intersection test, it is not possible to return the barycentric coordinates
of the intersection point directly. Additionally, to which one of the two triangles
the coordinates relate would have to be specified or, alternatively, the coordinates
would always have to be given with respect to, say, ABC, even if the intersection
point lies inside DAC. In the following sample implementation, the intersection
point is computed inside the function and returned instead of the point’s barycentric
coordinates.
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// Given line pq and ccw quadrilateral abcd, return whether the line
// pierces the triangle. If so, also return the point r of intersection
int IntersectLineQuad(Point p, Point q, Point a, Point b, Point c, Point d, Point &r)
{

Vector pq = q - p;
Vector pa = a - p;
Vector pb = b - p;
Vector pc = c - p;
// Determine which triangle to test against by testing against diagonal first
Vector m = Cross(pc, pq);
float v = Dot(pa, m); // ScalarTriple(pq, pa, pc);
if (v >= 0.0f) {

// Test intersection against triangle abc
float u = -Dot(pb, m); // ScalarTriple(pq, pc, pb);
if (u < 0.0f) return 0;
float w = ScalarTriple(pq, pb, pa);
if (w < 0.0f) return 0;
// Compute r, r = u*a + v*b + w*c, from barycentric coordinates (u, v, w)
float denom = 1.0f / (u + v + w);
u *= denom;
v *= denom;
w *= denom; // w = 1.0f - u - v;
r = u*a + v*b + w*c;

} else {
// Test intersection against triangle dac
Vector pd = d - p;
float u = Dot(pd, m); // ScalarTriple(pq, pd, pc);
if (u < 0.0f) return 0;
float w = ScalarTriple(pq, pa, pd);
if (w < 0.0f) return 0;
v = -v;
// Compute r, r = u*a + v*d + w*c, from barycentric coordinates (u, v, w)
float denom = 1.0f / (u + v + w);
u *= denom;
v *= denom;
w *= denom; // w = 1.0f - u - v;
r = u*a + v*d + w*c;

}
return 1;

}

This particular intersection method can also be used for testing against a concave
quadrilateral, assuming the diagonal fully interior to the quadrilateral is used for the
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first test. One way of effectively accomplishing this is to determine the interior diag-
onal during preprocessing and outputting either of its end vertices as the first vertex,
thus making the diagonal CA the interior diagonal. Self-intersecting quadrilaterals,
however, cannot be directly tested with this method.

5.3.6 Intersecting Ray or Segment Against Triangle

Compared to the method presented in the previous section, a slightly different
approach to intersecting a ray or line segment against a triangle is described in
[Möller97a]. Recall that points (of the plane) of the triangle ABC are given by
T(u, v, w) = uA + vB + wC, where (u, v, w) are the barycentric coordinates of
the point such that u + v + w = 1. T is inside ABC if and only if its barycen-
tric coordinates satisfy 0 ≤ u, v, w ≤ 1. Alternatively, this may also be written as
T(v, w) = A + v(B − A) + w(C − A), with u = 1 − v − w. T is now inside ABC if v ≥ 0,
w ≥ 0, and v + w ≤ 1.

Let a directed line segment between the two points P and Q be defined paramet-
rically as R(t) = P + t(Q − P), 0 ≤ t ≤ 1. By setting T(v, w) equal to R(t) it is possible
to solve for t, v, and w to later verify if these are within the bounds required for an
intersection:

T(v, w) = R(t) ⇔ (original expression)

A + v(B − A) + w(C − A) = P + t(Q − P) ⇔ (substituting parameterized expressions)

(P − Q)t + (B − A)v + (C − A)w = P − A (rearranging terms)

This is a 3 × 3 system of linear equations, and thus it can be written in matrix
notation as

[
(P − Q) (B − A) (C − A)

]⎡⎣ t
v
w

⎤
⎦ = [(P − A)] ,

where the vectors are given as column vectors. Now t, v, and w can be solved for
using Cramer’s rule:

t = det
[
(P − A) (B − A) (C − A)

]/
det

[
(P − Q) (B − A) (C − A)

]
v = det

[
(P − Q) (P − A) (C − A)

]/
det

[
(P − Q) (B − A) (C − A)

]
w = det

[
(P − Q) (B − A) (P − A)

]/
det

[
(P − Q) (B − A) (C − A)

]
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As det
[
a b c

] = a · (b × c), the algebraic identities for scalar triple products
allow these expressions to be simplified to

t = (P − A) · n/d

v = (C − A) · e/d

w = −(B − A) · e/d,

where

n = (B − A) × (C − A)

d = (P − Q) · n

e = (P − Q) × (P − A).

Note that if d < 0 the segment points away from the triangle, and if d = 0 the
segment runs parallel to the plane of the triangle.

The following code implements this variant of segment-triangle intersection.

// Given segment pq and triangle abc, returns whether segment intersects
// triangle and if so, also returns the barycentric coordinates (u,v,w)
// of the intersection point
int IntersectSegmentTriangle(Point p, Point q, Point a, Point b, Point c,

float &u, float &v, float &w, float &t)
{

Vector ab = b - a;
Vector ac = c - a;
Vector qp = p - q;

// Compute triangle normal. Can be precalculated or cached if
// intersecting multiple segments against the same triangle
Vector n = Cross(ab, ac);

// Compute denominator d. If d <= 0, segment is parallel to or points
// away from triangle, so exit early
float d = Dot(qp, n);
if (d <= 0.0f) return 0;

// Compute intersection t value of pq with plane of triangle. A ray
// intersects iff 0 <= t. Segment intersects iff 0 <= t <= 1. Delay
// dividing by d until intersection has been found to pierce triangle
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Vector ap = p - a;
t = Dot(ap, n);
if (t < 0.0f) return 0;
if (t > d) return 0; // For segment; exclude this code line for a ray test

// Compute barycentric coordinate components and test if within bounds
Vector e = Cross(qp, ap);
v = Dot(ac, e);
if (v < 0.0f || v > d) return 0;
w = -Dot(ab, e);
if (w < 0.0f || v + w > d) return 0;

// Segment/ray intersects triangle. Perform delayed division and
// compute the last barycentric coordinate component
float ood = 1.0f / d;
t *= ood;
v *= ood;
w *= ood;
u = 1.0f - v - w;
return 1;

}

This formulation differs slightly from the one given in [Möller97a] because as a
byproduct it computes the normal n of the triangle ABC, which is often useful to
have.

Another way of looking at this test is as consisting of first computing the intersec-
tion point S between the segment and the plane of the triangle. This point is then
tested for containment in the triangle through the computation of its barycentric
coordinates with respect to the triangle (as described in Section 3.4). Some of the
calculations in computing S and its barycentric coordinates can be shared, including
those for the normal of the triangle plane.These calculations can also be precomputed
and stored with the triangle.

When precomputation is allowed, the method can be further optimized by com-
puting and storing plane equations for the plane of the triangle as well as for what
could be considered the“edge planes”of the triangle (the three planes perpendicular
to the triangle plane, through each of the edges, as shown in Figure 5.25). By scaling
the edge plane equations so that they report a distance of one for the opposing tri-
angle vertex (not on the edge plane), the evaluation of the edge plane equations for
S directly give the barycentric coordinates of S (with respect to the opposing triangle
vertex). Note that it is only necessary to store two of the three edge planes, as the third
barycentric coordinate is directly obtained from the other two. The segment-triangle
test can now be implemented in four plane equation evaluations (plus a few stray
operations), exemplified by the following code.
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A

CB

Figure 5.25 The “edge planes” of triangle ABC perpendicular to the plane of ABC and
passing through ABC ’s edges.

struct Triangle {
Plane p; // Plane equation for triangle plane
Plane edgePlaneBC; // When evaluated gives barycentric weight u (for vertex A)
Plane edgePlaneCA; // When evaluated gives barycentric weight v (for vertex B)

};

// Given segment pq and precomputed triangle tri, returns whether segment intersects
// triangle. If so, also returns the barycentric coordinates (u,v,w) of the
// intersection point s, and the parameterized intersection t value
int IntersectSegmentTriangle(Point p, Point q, Triangle tri,

float &u, float &v, float &w, float &t, Point &s)
{

// Compute distance of p to triangle plane. Exit if p lies behind plane
float distp = Dot(p, tri.p.n) – tri.p.d;
if (distp < 0.0f) return 0;

// Compute distance of q to triangle plane. Exit if q lies in front of plane
float distq = Dot(q, tri.p.n) – tri.p.d;
if (distq >= 0.0f) return 0;

// Compute t value and point s of intersection with triangle plane
float denom = distp – distq;
t = distp / denom;
s = p + t * (q – p);

// Compute the barycentric coordinate u; exit if outside 0..1 range
u = Dot(s, tri.edgePlaneBC.n) – tri.edgePlaneBC.d;
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if (u < 0.0f || u > 1.0f) return 0;
// Compute the barycentric coordinate v; exit if negative
v = Dot(s, tri.edgePlaneCA.n) – tri.edgePlaneCA.d;
if (v < 0.0f) return 0;
// Compute the barycentric coordinate w; exit if negative
w = 1.0f – u – v;
if (w < 0.0f) return 0;

// Segment intersects tri at distance t in position s (s = u*A + v*B + w*C)
return 1;

}

By multiplying with denom throughout, it is possible to defer the (often expensive)
division until the segment has been found actually intersecting the triangle.

For a triangle ABC, the triangle structure tri can be initialized as follows.

Triangle tri;
Vector n = Cross(b – a, c – a);
tri.p = Plane(n, a);
tri.edgePlaneBC = Plane(Cross(n, c – b), b);
tri.edgePlaneCA = Plane(Cross(n, a – c), c);

To have the edge planes compute the barycentric coordinates of the point for
which they are evaluated, they must be scaled to return a distance of one for the
opposing triangle vertex (not on the plane).

tri.edgePlaneBC *= 1.0f / (Dot(a, tri.edgePlaneBC.n) – tri.edgePlaneBC.d);
tri.edgePlaneCA *= 1.0f / (Dot(b, tri.edgePlaneCA.n) – tri.edgePlaneCA.d);

The triangle record is now completely initialized and can be stored. Note that
no triangle vertices are required for performing the intersection test. This triangle
record requires 12 floating-point components, compared to the nine floating-point
components required for storing the three vertices of the triangle as used by the initial
method.

5.3.7 Intersecting Ray or Segment Against Cylinder

An infinite cylinder of any orientation can be specified by a line, defined by two points
P and Q and by a radius r. If X denotes a point on the surface of the cylinder, the
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A Q
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r

Figure 5.26 The line, ray, or segment specified by points A and B is intersected against the
cylinder given by points P and Q and the radius r.

cylinder surface can be stated as satisfying the implicit equation

(v − w) · (v − w) − r2 = 0, where v = X − P, d = Q − P, and w = v · d
d · d

d.

This equation simply states that when taking the vector v from P to a point X
and subtracting w (the component of v parallel to d) the resulting vector (which is
perpendicular to d, the direction of the cylinder) must have a length equal to r for X
to be on the cylinder surface. The equation has been squared to avoid a square root
term, which simplifies further processing.

The intersection of a line L(t) = A + t (B − A), defined by the points A and B
(Figure 5.26), with the cylinder can be found by substituting L(t) for X in the previous
equation and solving for t. Writing v = L(t) − P = (A − P) + t (B − A) as v = m + t n,
with m = A − P and n = B − A, after some manipulation the equation turns into

(
n · n − (n · d)2

d · d

)
t2 + 2

(
m · n − (n · d)(m · d)

d · d

)
t + m · m − (m · d)2

d · d
− r2 = 0.

The repeated division by d ·d can be eliminated by multiplying both sides by d ·d,
giving

(
(d · d)(n · n) − (n · d)2) t2 + 2

(
(d · d)(m · n) − (n · d)(m · d)

)
t + (d · d)((m · m) − r2)

− (m · d)2 = 0.
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Note that although multiplying the original quadratic equation by d · d removes
the need for an often expensive division this may have undesirable effects on the
overall robustness of the solution (due to the size of the intermediary terms). Ideally,
the cylinder direction is given as a unit vector d, in which case all d · d terms dis-
appear. (In fact, if d is unit the cylinder surface can be more succinctly defined as
(v × d) · (v × d) = r2.)

In either case, both equations are quadratic equations in t on the form at2 +
2bt + c = 0. For the latter formulation, the terms are:

a = (d · d)(n · n) − (n · d)2

b = (d · d)(m · n) − (n · d)(m · d)

c = (d · d)((m · m) − r2) − (m · d)2.

These terms can be rewritten using Lagrange’s identity as

a = (d × n) · (d × n)

b = (d × m) · (d × n)

c = (d × m) · (d × m) − r2(d · d),

thus revealing that a = 0 indicates that d and n are parallel and that a is always
positive (although small errors may make it negative when working with floating-
point arithmetic). The sign of c indicates whether A lies inside (c < 0) or outside
(c > 0) the surface of the cylinder. Solving for t gives

t = −b ± √
b2 − ac

a
.

The sign of the discriminant b2 − ac determines how many real roots the quadratic
has. If negative, there are no real roots, which corresponds to the line not intersecting
the cylinder. If positive, there are two real roots, the smaller of which being the
parameterized value at which the line enters and the larger when it exits the cylinder.
When the discriminant is zero, there is a single root signifying that the line is touching
the cylinder tangentially in a single point at parameterized value t.

To detect intersection against a finite cylinder rather than an infinite cylinder, inter-
sections beyond the endcap planes through P and Q and perpendicular to d must
not be treated as intersections with the cylinder. Unless the (directed) line query
points away from the endcap plane, an intersection test against the plane must be
performed to detect a potential intersection with the side of the finite cylinder. Given
a valid t, L(t) lies outside the plane through P if (L(t) − P) · d < 0, or equivalently
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if (m · d) + t(n · d) < 0. When L(t) lies outside the cylinder, if n · d ≤ 0, L points
away from or runs parallel to the P endcap. Only when n ·d > 0 must an intersection
test against the P endcap be performed. Let the endcap plane through P be given
by (X − P) · d = 0. Inserting L(t) for X and solving gives the intersection with the
plane occuring at t = −(m · d)

/
(n · d). The intersection point lies within the endcap

if (L(t) − P) · (L(t) − P) ≤ r2.
Similarly, L(t) lies outside the plane through Q if (L(t) − P) · d > d · d, or if

(m · d) + t(n · d) > d · d. With L(t) outside the cylinder on the Q side, an intersection
test against the Q endcap must only be performed when n · d < 0. When n · d ≥ 0
there is no intersection with the cylinder. The intersection with the endcap plane
through Q, (X − Q) · d = 0, occurs at t = ((d · d) − (m · d))

/
(n · d), and the inter-

section point with the plane lies within the endcap if (L(t) − Q) · (L(t) − Q) ≤ r2.
The following code sample illustrates how the preceding derivation can be used
to implement the test of a segment against a finite cylinder.

// Intersect segment S(t)=sa+t(sb-sa), 0<=t<=1 against cylinder specified by p, q and r
int IntersectSegmentCylinder(Point sa, Point sb, Point p, Point q, float r, float &t)
{

Vector d = q – p, m = sa – p, n = sb – sa;
float md = Dot(m, d);
float nd = Dot(n, d);
float dd = Dot(d, d);
// Test if segment fully outside either endcap of cylinder
if (md < 0.0f && md + nd < 0.0f) return 0; // Segment outside ’p’ side of cylinder
if (md > dd && md + nd > dd) return 0; // Segment outside ’q’ side of cylinder
float nn = Dot(n, n);
float mn = Dot(m, n);
float a = dd * nn – nd * nd;
float k = Dot(m, m) – r * r;
float c = dd * k – md * md;
if (Abs(a) < EPSILON) {

// Segment runs parallel to cylinder axis
if (c > 0.0f) return 0; // ’a’ and thus the segment lie outside cylinder
// Now known that segment intersects cylinder; figure out how it intersects
if (md < 0.0f) t = -mn / nn; // Intersect segment against ’p’ endcap
else if (md > dd) t = (nd - mn) / nn; // Intersect segment against ’q’ endcap
else t = 0.0f; // ’a’ lies inside cylinder
return 1;

}
float b = dd * mn – nd * md;
float discr = b * b – a * c;
if (discr < 0.0f) return 0; // No real roots; no intersection
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t = (-b – Sqrt(discr)) / a;
if (t < 0.0f || t > 1.0f) return 0; // Intersection lies outside segment
if (md + t * nd < 0.0f) {

// Intersection outside cylinder on ’p’ side
if (nd <= 0.0f) return 0; // Segment pointing away from endcap
t = -md / nd;
// Keep intersection if Dot(S(t) - p, S(t) - p) <= r∧2
return k + 2 * t * (mn + t * nn) <= 0.0f;

} else if (md + t * nd > dd) {
// Intersection outside cylinder on ’q’ side
if (nd >= 0.0f) return 0; // Segment pointing away from endcap
t = (dd – md) / nd;
// Keep intersection if Dot(S(t) - q, S(t) - q) <= r∧2
return k + dd – 2 * md + t * (2 * (mn – nd) + t * nn) <= 0.0f;

}
// Segment intersects cylinder between the endcaps; t is correct
return 1;

}

With minor adjustments, the same approach can be used to intersect a ray (not a
segment) against the finite cylinder. The intersection against a capsule, rather than a
cylinder, is performed in a comparable manner by replacing the intersection with the
endcap planes with intersection against hemispherical endcaps. Tests for intersecting
lines, rays, and segments with a cylinder have previously been described in [Shene94],
[Cychosz94], and [Held97].

5.3.8 Intersecting Ray or Segment Against Convex Polyhedron

To intersect a segment S(t) = A + t (B − A), 0 ≤ t ≤ 1, against a convex polyhedron
it turns out that a convenient representation for the polyhedron is to describe it as
the intersection of a set of halfspaces [Haines91b]. For such a format, the segment
intersects the polyhedron if there exists some value for t, 0 ≤ t ≤ 1, for which S(t) lies
inside all halfspaces. An efficient way of determining if this is the case is simply to
clip the segment against each halfspace, trimming away the portion of the segment
that lies outside the halfspace. If during this clipping process the segment becomes
zero length, the segment cannot intersect the polyhedron and the process can stop
with a result of“no intersection.”After the segment has been intersected against all
halfspaces, what remains of the segment must be the intersection of the segment and
the polyhedron.

The clipping process can be implemented as keeping track of the segment defined
over the interval tfirst ≤ t ≤ tlast , where tfirst and tlast are initially set to 0 and 1,
respectively, but are adjusted as the segment is intersected against the planes defining
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the halfspaces. (To intersect a ray against the intersection volume, tlast would instead
initially be set to +∞. For a line, additionally tfirst would be initially set to −∞.)

Now recall that for a segment S(t) = A+ t (B−A), 0 ≤ t ≤ 1, and a plane n ·X = d
the intersection of the segment and the plane is given by t = (d −n ·A)

/
(n · (B−A)).

Thus, the plane faces the segment if the denominator n · (B−A) is negative, and if the
denominator is positive the plane faces away from the segment. When the denomina-
tor is zero, the segment is parallel to the plane. When the plane faces the segment, the
computed t is the parameterized value corresponding to the point at which the seg-
ment is entering the halfspace. As a consequence, if t is greater than tfirst the segment
must be clipped by setting tfirst to the current value of t. When the plane faces away
from the segment, t corresponds to the parameterized value at the point the segment
is exiting the halfspace. Therefore, if t is less than tlast , tlast must be set to the current
value of t. If ever tlast < tfirst , the segment has disappeared and there is no intersection.

The segment running parallel to the plane must be handled as a special case. If the
segment lies outside the halfspace, parallel to the defining plane, the segment cannot
be intersecting thepolyhedronand the test can immediately return“no intersection.”If
the segment lies inside the halfspace, the plane can simply be ignored and processing
may continue with the next plane. To determine whether the segment lies inside or
outside the halfspace, either endpoint of the segment may be tested against the plane
by insertion into the plane equation, the sign of the result determining the sidedness
of the point.

Figure 5.27 gives a 2D illustration of how a ray is clipped against a number of half-
spaces and how the logical intersection of the ray being clipped against each halfspace
forms the part of the ray that overlaps the intersection volume.The following function
implements the test just described.

// Intersect segment S(t)=A+t(B-A), 0<=t<=1 against convex polyhedron specified
// by the n halfspaces defined by the planes p[]. On exit tfirst and tlast
// define the intersection, if any
int IntersectSegmentPolyhedron(Point a, Point b, Plane p[], int n,

float &tfirst, float &tlast)
{

// Compute direction vector for the segment
Vector d = b – a;
// Set initial interval to being the whole segment. For a ray, tlast should be
// set to +FLT_MAX. For a line, additionally tfirst should be set to –FLT_MAX
tfirst = 0.0f;
tlast = 1.0f;
// Intersect segment against each plane
for (int i = 0; i < n; i++) {

float denom = Dot(p[i].n, d);
float dist = p[i].d - Dot(p[i].n, a);
// Test if segment runs parallel to the plane
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Entering

Exiting

Logical intersection

Figure 5.27 The intersection of a ray (or segment) against a convex polyhedron (defined as
the intersection of a set of halfspaces) is the logical intersection of the ray clipped against all
halfspaces. (Illustration after [Haines91b].)

if (denom == 0.0f) {
// If so, return “no intersection” if segment lies outside plane
if (dist > 0.0f) return 0;

} else {
// Compute parameterized t value for intersection with current plane
float t = dist / denom;
if (denom < 0.0f) {

// When entering halfspace, update tfirst if t is larger
if (t > tfirst) tfirst = t;

} else {
// When exiting halfspace, update tlast if t is smaller
if (t < tlast) tlast = t;

}
// Exit with “no intersection” if intersection becomes empty
if (tfirst > tlast) return 0;

}
}
// A nonzero logical intersection, so the segment intersects the polyhedron
return 1;

}
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Overall, this problem is very similar to that of the intersecting of a segment against
a box defined as the intersection of three slabs (as in Section 5.3.3). Because a box
is just a special case of a convex polyhedron, this code could also be used for the
segment-box test.

5.4 Additional Tests

This section describes a number of tests and computations that do not directly fit into
the classifications of the earlier sections but are still either commonly encountered or
illustrate a technique that can be applied to related problems.

5.4.1 Testing Point in Polygon

A large number of approaches exist for testing the containment of a point in a polygon.
An excellent survey of point-in-polygon methods is given in [Haines94]. An addi-
tional method, based on quadrant testing, is presented in [Weiler94]. An approach
based on a CSG representation of the polygon is described in [Walker99]. A good
survey is also given in [Huang97].

Most point-in-polygon tests required in real-time collision detection applications
can be limited to involve convex polygons only. Whereas the point containment
for concave n-gons may require O(n) time, the special structure of convex polygons
allows a fast point-containment test to be performed in O(log n) time, through an
interval-halving approach.

Assume a convex n-gon is given counterclockwise by the vertices V0, V1, . . . , Vn−1.
By testing whether the query point P is to the left or right of the directed line through
V0 and Vk, k = �n/2�, half the polygon can be excluded from further tests. The
procedure is repeated, with the value of k adjusted accordingly until P either has been
found to lie outside the polygon (right of the directed line through V0 and V1, or left
of the one through V0 and Vn−1) or between the directed lines through V0 and Vk and
through V0 and Vk+1. In the latter case, P is contained in the polygon if P also lies to
the left of the directed line through Vk and Vk+1.

As an example, consider the eight-sided convex polygon of Figure 5.28. Initially, P
is tested against the directed line A through V0 and V4, dividing the polygon in half
vertex-wise. Because P lies to the left of A, the right polygon half is discarded and
the left half is now processed in the same manner. Next, P is tested against the line
B, followed by a test against C. At this point, P lies between the lines through two
consecutive vertices, and thus a final test is performed against the directed line D
through these two vertices, here confirming that P indeed lies inside the polygon.

By using the predicate TriangleIsCCW(), which determines if the triangle speci-
fied by three points is defined counterclockwise, this test can be efficiently imple-
mented as follows.
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Figure 5.28 A binary search over the vertices of the convex polygon allows the containment
test for P to be performed in O(log n) time (here using four sidedness tests, A through D).

// Test if point p lies inside ccw-specified convex n-gon given by vertices v[]
int PointInConvexPolygon(Point p, int n, Point v[])
{

// Do binary search over polygon vertices to find the fan triangle
// (v[0], v[low], v[high]) the point p lies within the near sides of
int low = 0, high = n;
do {

int mid = (low + high) / 2;
if (TriangleIsCCW(v[0], v[mid], p))

low = mid;
else

high = mid;
} while (low + 1 < high);

// If point outside last (or first) edge, then it is not inside the n-gon
if (low == 0 || high == n) return 0;

// p is inside the polygon if it is left of
// the directed edge from v[low] to v[high]
return TriangleIsCCW(v[low], v[high], p);

}
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Figure 5.29 Shooting rays from four different query points. An odd number of boundary
crossings indicates that the query point is inside the polygon.

This point containment test is similar in structure to the one presented in
[Preparata85], where a point interior to the n-gon fills the role played here by the
vertex V0.

Another O(n) test that works for concave polygons is based on shooting a ray
from the point along some direction (commonly the positive x axis) and counting
the number of times it crosses the polygon boundary. If the ray crosses the boundary
once, the point must be inside the polygon. If it crosses twice, the point must be
outside, with the ray first entering and then exiting the polygon. In general, the point
will be inside the polygon for an odd number of crossings and outside for an even
number of crossings. This test, commonly referred to as the crossings test, is illustrated
in Figure 5.29.

Some care must be exercised to properly handle cases where the ray passes through
a polygon vertex or coincides with an edge of the polygon. If not dealt with correctly,
multiple crossings could be detected in these cases, giving an incorrect crossings
count. In practice, this problem can be dealt with effectively by arranging the tests
performed so as to treat vertices on the ray as lying infinitesimally above the ray.
Several variations on the crossings test are presented in [Haines94].

5.4.2 Testing Point in Triangle

The case of testing whether a point is contained in a triangle comes up frequently
enough that it is worth studying separately from point-in-polygon tests. Two effec-
tive solutions to the point-in-triangle problem have already been presented: one
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for unprocessed triangles in Section 3.4 (on barycentric coordinates) and one for
preprocessed triangles in Section 5.3.6.

A third solution is to take the triangle ABC and the query point P in the plane
of the triangle and translate both so that P lies at the origin. The test now becomes
that of checking if the origin is contained in the translated triangle (which will still
be referred to as ABC throughout).

P lies inside ABC if and only if the triangles PAB, PBC, and PCA are all either
clockwise or counterclockwise. Because P is at the origin, this is now equivalent to
testing if the cross products u = B × C, v = C × A, and w = A × B all point
in the same direction; that is, if u · v ≥ 0 and u · w ≥ 0. Implemented, this test
becomes:

// Test if point P lies inside the counterclockwise triangle ABC
int PointInTriangle(Point p, Point a, Point b, Point c)
{

// Translate point and triangle so that point lies at origin
a -= p; b -= p; c -= p;
// Compute normal vectors for triangles pab and pbc
Vector u = Cross(b, c);
Vector v = Cross(c, a);
// Make sure they are both pointing in the same direction
if (Dot(u, v) < 0.0f) return 0;
// Compute normal vector for triangle pca
Vector w = Cross(a, b);
// Make sure it points in the same direction as the first two
if (Dot(u, w) < 0.0f) return 0;
// Otherwise P must be in (or on) the triangle
return 1;

}

If cross products are more expensive than dot products, Lagrange’s identity allows
this test to be written in terms of just five dot products.

// Test if point P lies inside the counterclockwise 3D triangle ABC
int PointInTriangle(Point p, Point a, Point b, Point c)
{

// Translate point and triangle so that point lies at origin
a -= p; b -= p; c -= p;
float ab = Dot(a, b);
float ac = Dot(a, c);
float bc = Dot(b, c);
float cc = Dot(c, c);
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// Make sure plane normals for pab and pbc point in the same direction
if (bc * ac – cc * ab < 0.0f) return 0;
// Make sure plane normals for pab and pca point in the same direction
float bb = Dot(b, b);
if (ab * bc – ac * bb < 0.0f) return 0;
// Otherwise P must be in (or on) the triangle
return 1;

}

Note the strong similarities between this function and the function Barycentric()
of Section 3.4.

In 2D, this test becomes even simpler. Without loss of generality, assume the
triangle ABC is defined counterclockwise. Then, the point P lies inside the triangle
if and only if P lies to the left of the directed line segments AB, BC, and CA. These
tests are easily performed with the help of the 2D pseudo cross product, as defined
in Chapter 3. That is, given the function

// Compute the 2D pseudo cross product Dot(Perp(u), v)
float Cross2D(Vector2D u, Vector2D v)
{

return u.y * v.x – u.x * v.y;
}

the test of P lying to the left of the segment AB becomes a call to this function with
the arguments P − A and B − A, followed by a test to see if the result is positive. The
entire test then becomes:

// Test if 2D point P lies inside the counterclockwise 2D triangle ABC
int PointInTriangle(Point2D p, Point2D a, Point2D b, Point2D c)
{

// If P to the right of AB then outside triangle
if (Cross2D(p – a, b – a) < 0.0f) return 0;
// If P to the right of BC then outside triangle
if (Cross2D(p – b, c – b) < 0.0f) return 0;
// If P to the right of CA then outside triangle
if (Cross2D(p – c, a – c) < 0.0f) return 0;
// Otherwise P must be in (or on) the triangle
return 1;

}



206 Chapter 5 Basic Primitive Tests

If it is not known whether the triangle is clockwise or counterclockwise, the same
approach can still be used. Containment of P in ABC is then indicated by P lying on
the same side of all edges of the triangle. That is, either P lies to the left of all edges
or to the right of all edges. If neither is true, P is not contained in the triangle. In
terms of implementation, the code must be changed to test that the 2D pseudo cross
products all have the same sign.

// Test if 2D point P lies inside 2D triangle ABC
int PointInTriangle2D(Point2D p, Point2D a, Point2D b, Point2D c)
{

float pab = Cross2D(p – a, b – a);
float pbc = Cross2D(p – b, c – b);
// If P left of one of AB and BC and right of the other, not inside triangle
if (!SameSign(pab, pbc)) return 0;
float pca = Cross2D(p – c, a – c);
// If P left of one of AB and CA and right of the other, not inside triangle
if (!SameSign(pab, pca)) return 0;
// P left or right of all edges, so must be in (or on) the triangle
return 1;

}

Because the value returned by Cross2D(p – a, b – a) is twice the signed area
of the triangle PAB (positive if PAB is counterclockwise, otherwise negative), yet
another version of this test is to compute the areas of PAB, PBC, and PCA and see if
their sum exceeds that of the area of ABC, in which case P lies outside ABC. To save
on computations, the area of ABC could be stored with the triangle. As with the 3D
test, this test can be optimized by storing plane equations for each edge that have
been normalized to compute the barycentric coordinates of the query point.

5.4.3 Testing Point in Polyhedron

There are several available methods for testing if a point lies inside a given polyhedron.
How the polyhedron is specified and whether it is convex or concave determine which
methods are appropriate in a given situation. This section outlines a few different
approaches, some of which are discussed in more detail in Chapters 8 and 9.

The simplest test is when the polyhedron is convex and given implicitly as the
intersection volume of a number of halfspaces. In this case, the point lies inside the
polyhedron if it lies inside each halfspace.

// Test if point p inside polyhedron given as the intersection volume of n halfspaces
int TestPointPolyhedron(Point p, Plane *h, int n)
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{
for (int i = 0; i < n; i++) {

// Exit with ‘no containment’ if p ever found outside a halfspace
if (DistPointPlane(p, h[i]) > 0.0f) return 0;

}
// p inside all halfspaces, so p must be inside intersection volume

return 1;
}

If the polyhedron is given as a set of vertices without any connectivity information,
the GJK method described in Chapter 9 serves as an efficient point containment
approach. Only a convex polyhedron can be given in this format.

If the polyhedron is given as a closed mesh, one approach is to first build a solid-
leaf BSP tree (see Chapter 8) from the mesh. Then, given this BSP tree if a point query
on the tree ends up in a solid leaf the point is inside the polyhedron (otherwise, it is
not). This method works for both convex and concave polyhedra.

A method that works with a polyhedron given either as a mesh or as an intersection
of halfspaces is to shoot a ray from the tested point in any direction (typically along
a major axis, such as the +x axis) and count the number of faces intersected. If an
odd number of faces is intersected, the point lies inside the polyhedron; otherwise,
the point lies outside it. Due to floating-point classification errors, this method has
robustness issues when a ray strikes (near) an edge or a vertex. To avoid dealing with
the degeneracies of these cases, one effective approach is simply to recast the ray,
although care must be taken not to hit an edge or vertex again. This method also
works for both convex and concave polyhedra.

With a custom prebuilt data structure such as the Dobkin–Kirkpatrick hierar-
chical structure (see Section 9.3.1), a point containment query can be performed
in O(log n) time.

5.4.4 Intersection of Two Planes

Let two planes, π1 and π2, be given by the plane equations n1 ·X = d1 and n2 ·X = d2.
When the planes are not parallel, they intersect in a line L, L = P + td. As L lies
in both planes, it must be perpendicular to the normals of both planes. Thus, the
direction vector d of L can be computed as the cross product of the two plane normals,
d = n1×n2 (Figure 5.30). If d is the zero vector, the planes are parallel (and separated)
or coincident; otherwise, they are intersecting.

For L to be fully determined, a point P on the line must also be given. One way of
obtaining a point on the line is to express the point as being in a plane perpendicular
to d. Such a plane is spanned by n1 and n2, and thus P is given by P = k1n1 + k2n2

for some values of k1 and k2. Furthermore, P must lie on both π1 and π2, and thus it
must satisfy both plane equations. Substituting this expression for P (in place of X)
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Figure 5.30 The intersection of two planes.

in the plane equations forms a 2 × 2 system of linear equations.

n1 · (k1n1 + k2n2) = d1

n2 · (k1n1 + k2n2) = d2.

By virtue of the linearity of the dot product, this is equivalent to

k1(n1 · n1) + k2(n1 · n2) = d1

k1(n1 · n2) + k2(n2 · n2) = d2,

which can be solved for k1 and k2 (by Cramer’s rule, for example) to give the solution

k1 = (d1(n2 · n2) − d2(n1 · n2))/denom

k2 = (d2(n1 · n1) − d1(n1 · n2))/denom,

where

denom = (n1 · n1)(n2 · n2) − (n1 · n2)2.

A direct implementation of these expressions gives the following code.

// Given planes p1 and p2, compute line L = p+t*d of their intersection.
// Return 0 if no such line exists
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int IntersectPlanes(Plane p1, Plane p2, Point &p, Vector &d)
{

// Compute direction of intersection line
d = Cross(p1.n, p2.n);

// If d is zero, the planes are parallel (and separated)
// or coincident, so they’re not considered intersecting
if (Dot(d, d) < EPSILON) return 0;

float d11 = Dot(p1.n, p1.n);
float d12 = Dot(p1.n, p2.n);
float d22 = Dot(p2.n, p2.n);

float denom = d11*d22 - d12*d12;
float k1 = (p1.d*d22 - p2.d*d12) / denom;
float k2 = (p2.d*d11 - p1.d*d12) / denom;
p = k1*p1.n + k2*p2.n;
return 1;

}

This code can be optimized by realizing that the denominator expression is really
just the result of applying Lagrange’s identity to (n1 ×n2) ·(n1 ×n2). The denominator
is therefore equivalent to

denom = d · d.

Using the vector identity

u × (v × w) = (u · w)v − (v · w)u,

the expression for P = k1n1 + k2n2 can also be further simplified as follows.

P = k1n1 + k2n2 ⇔ (original expression)

P = [(d1(n2 · n2) − d2(n1 · n2))n1 + (d2(n1 · n1) − d1(n1 · n2))n2]/denom ⇔
(substituting k1 and k2)

P denom = (d1(n2 · n2) − d2(n1 · n2))n1 + (d2(n1 · n1) − d1(n1 · n2))n2 ⇔
(multiplying both sides by denom)

P denom = (d1(n2 · n2)n1 − d2(n1 · n2)n1) + (d2(n1 · n1)n2 − d1(n1 · n2)n2) ⇔
(distributing scalar multiply)
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P denom = d1((n2 · n2)n1 − (n1 · n2)n2) + d2((n1 · n1)n2 − (n1 · n2)n1) ⇔
(gathering similar terms)

P denom = d1(n2 × (n1 × n2)) + d2(n1 × (n2 × n1)) ⇔
(rewriting using vector identity)

P denom = d1(n2 × (n1 × n2)) − d2(n1 × (n1 × n2)) ⇔
(changing sign to make inner cross products equal)

P denom = (d1n2 − d2n1) × (n1 × n2) ⇔ (gathering similar terms)

P = (d1n2 − d2n1) × d/denom

(substituting d for n1 × n2; dividing by denom on both sides)

The final terms in the expression of the line L = P + td are therefore

P = (d1n2 − d2n1) × d
/

(d · d)

d = n1 × n2.

The implementation now becomes:

// Given planes p1 and p2, compute line L = p+t*d of their intersection.
// Return 0 if no such line exists
int IntersectPlanes(Plane p1, Plane p2, Point &p, Vector &d)
{

// Compute direction of intersection line
d = Cross(p1.n, p2.n);

// If d is (near) zero, the planes are parallel (and separated)
// or coincident, so they’re not considered intersecting
float denom = Dot(d, d);
if (denom < EPSILON) return 0;

// Compute point on intersection line
p = Cross(p1.d*p2.n - p2.d*p1.n, d) / denom;
return 1;

}

It should be noted that when it is known that the plane normals have been nor-
malized (that is, ‖n1‖ = ‖n2‖ = 1), the division by the denominator is not required
in either formulation.
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5.4.5 Intersection of Three Planes

Given three planes π1, π2, and π3, there are five essentially different intersection
configurations possible, as illustrated in Figure 5.31.

1. All three planes are parallel (possibly coplanar) to one another.

2. Two planes are parallel and the last plane transversally cuts through the first two
planes, forming two parallel intersection lines.

3. All three planes intersect in a single line.

4. The planes pairwise intersect in a line, forming three parallel lines of inter-
section.

5. The three planes intersect in a point.

Let the planes be defined as π1:n1 · X = d1, π2:n2 · X = d2, and π3:n3 · X = d3. The
last case (5) can then be identified by n1 · (n2 ×n3) = 0. Other cases can be identified
in similar ways. When the planes intersect in a unique point X = (x1, x2, x3), this
point can be solved for by considering the plane equations as a 3 × 3 system of linear
equations:

n1 · X = d1

n2 · X = d2

n3 · X = d3.

This system can be solved either using Gaussian elimination or in terms of determi-
nants and Cramer’s rule. By letting m1 = [

nx
1 nx

2 nx
3

]T , m2 = [
ny

1 ny
2 ny

3

]T
,

Figure 5.31 The five essentially different intersection configurations of three planes.
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and m3 = [
nz

1 nz
2 nz

3

]T , Cramer’s rule gives the solution as

x1 = ∣∣ d m2 m3
∣∣ / ∣∣ m1 m2 m3

∣∣
x2 = ∣∣ m1 d m3

∣∣ / ∣∣ m1 m2 m3
∣∣

x3 = ∣∣ m1 m2 d
∣∣ / ∣∣ m1 m2 m3

∣∣ ,

where d = [
d1 d2 d3

]T .
By selecting the most appropriate expressions for evaluation — in order to share

as much computation as possible — the scalar triple products simplify to

x1 = d · u/denom

x2 = m3 · v/denom

x3 = −m2 · v/denom,

where u = m2 × m3, v = m1 × d, and denom = m1 · u.
The following code implements this solution for three planes.

// Compute the point p at which the three planes p1, p2 and p3 intersect (if at all)
int IntersectPlanes(Plane p1, Plane p2, Plane p3, Point &p)
{

Vector m1 = Vector(p1.n.x, p2.n.x, p3.n.x);
Vector m2 = Vector(p1.n.y, p2.n.y, p3.n.y);
Vector m3 = Vector(p1.n.z, p2.n.z, p3.n.z);

Vector u = Cross(m2, m3);
float denom = Dot(m1, u);
if (Abs(denom) < EPSILON) return 0; // Planes do not intersect in a point
Vector d(p1.d, p2.d, p3.d);
Vector v = Cross(m1, d);
float ood = 1.0f / denom;
p.x = Dot(d, u) * ood;
p.y = Dot(m3, v) * ood;
p.z = -Dot(m2, v) * ood;
return 1;

}

An alternative approach is to solve for X using the formula

X = d1(n2 × n3) + d2(n3 × n1) + d3(n1 × n2)
n1 · (n2 × n3)

,
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as suggested by [Goldman90]. This formula can be obtained by realizing that X can
be expressed as a linear combination of the directions of the lines of intersection of
the planes,

X = a(n2 × n3) + b(n3 × n1) + c(n1 × n2),

for some a, b, and c. Inserting this point in each of the three plane equations gives

n1 · (a(n2 × n3) + b(n3 × n1) + c(n1 × n2)) = d1

n2 · (a(n2 × n3) + b(n3 × n1) + c(n1 × n2)) = d2

n3 · (a(n2 × n3) + b(n3 × n1) + c(n1 × n2)) = d3,

which simplify to

n1 · a(n2 × n3) = d1

n2 · b(n3 × n1) = d2

n3 · c(n1 × n2) = d3,

from which a, b, and c are easily solved. Inserting the obtained values for a, b, and c
gives the original formula. Some simple manipulation allows the formula for X to be
further simplified to

X = d1(n2 × n3) + n1 × (d3n2 − d2n3)
n1 · (n2 × n3)

,

which in code becomes:

// Compute the point p at which the three planes p1, p2 and p3 intersect (if at all)
int IntersectPlanes(Plane p1, Plane p2, Plane p3, Point &p)
{

Vector u = Cross(p2.n, p3.n);
float denom = Dot(p1.n, u);
if (Abs(denom) < EPSILON) return 0; // Planes do not intersect in a point
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p = (p1.d * u + Cross(p1.n, p3.d * p2.n – p2.d * p3.n)) / denom;
return 1;

}

The good news here is that both approaches presented are really generic solvers for
3 × 3 systems of linear equations. They are not limited to computing the intersection
point of three nonparallel planes.

5.5 Dynamic Intersection Tests

So far, the described tests have involved what amounts to static objects: the inter-
section of two objects at a given point in time. A problem with static testing is that
as the object movement increases between one point in time and the next so does
the likelihood of an object simply jumping past another object. This unwanted phe-
nomenon is called tunneling. Figure 5.32a illustrates this case with a moving sphere
tunneling past a rectangular obstruction.

The ideal solution is to have the object move continuously along its path of motion,
describing the motion parametrically over time, and solving for the point in time
where the distance to some other object becomes zero. Figure 5.32b illustrates this
continuous swept test. However, although solving the time of collision is feasible for
simple motion and simple objects dealing with arbitrary motion and complex objects
is a much more challenging problem. In fact, it is too expensive to address in most
real-time applications.

A compromise is to sample the path of the object and perform several static object
tests during a single object movement. Figure 5.32c shows how the movement of
the sphere can be subdivided into smaller steps, performing a static object-object
test at each sample point.

Tunneling can be avoided, in part, by making sure the moving object overlaps itself
from one sample point to the next. However, as indicated by the black triangle in
part (c) of the drawing there are still places where small or narrow objects may be
tunneled past. To fully address the tunneling problem, the objects would also have to
be extended in size so that all samples would together fully cover the volume formed
by the continuously swept object.

The drawback with sampling is that, worst case, no collision occurs and all n
sample points along the movement path have to be tested, resulting in an O(n)
time complexity. Note that for the sampling method it is not really the time that
should be subdivided and sampled but the object motion. Subdividing the object
motion to maintain object overlap is not a trivial problem for other than the simplest
motions.

In many cases, objects can be assumed to be moving piecewise linearly; that is,
only translating between positions, with immediate rotational changes at the start
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Figure 5.32 Dynamic collision tests. (a) Testing only at the start point and endpoint of an
object’s movement suffers from tunneling. (b) A swept test finds the exact point of collision,
but may not be possible to compute for all objects and movements. (c) Sampled motion
may require a lot of tests and still exhibit tunneling in the region indicated by the black
triangle.

or end of a movement. Thus, for two objects A and B, the movement of object B
can be subtracted from object A. Now object B is stationary and any intersection
test needs to consider only a moving object (A) against a stationary object (B). That
is, the test is effectively considering the objects’movement relative to each other. If
an intersection point is computed, the movement of B must be added back into the
computed intersection point to obtain actual world coordinates rather than object-
relative coordinates. In the following sections, first two generic methods to dynamic
tests are explored, followed by a number of specific methods addressing common
intersection problems.

5.5.1 Interval Halving for Intersecting Moving Objects

Somewhere halfway between the sampling method and performing a continuous
swept test lies a method based on performing a recursive binary search over the
object movement to find the time of collision, if any. Consider again the problem
of a sphere S moving at high speed past a stationary object. Let S be at position A,
its movement described by the vector v. Start by forming a bounding sphere that
fully encloses the sphere at A and at A + v and test this sphere for collision against
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Figure 5.33 A few steps of determining the collision of a moving sphere against a stationary
object using an interval-halving method.

other objects. If there is no collision, S can clearly move unobstructed to its end
destination. However, if a collision is detected, halve the movement and recursively
test the first half in the same manner, and if no collision is detected during the first
half perform the same recursive test for the second half. If a collision has not been
ruled out before the movement becomes less than some preset minimum motion, a
collision can be assumed and the recursion is terminated.

Figure 5.33a illustrates the procedure of interval halving at the point where the
initial sphere encompassing the complete movement has been found colliding with
an object. At this point, the midpoint of the movement is computed, and a recursive
call is issued for each half of the movement of S. In the first recursive call, the sphere
B1 bounding the motion of S from its starting point to the movement midpoint is
found not to be colliding with any object, and the recursion terminates with no
collision. The procedure continues with the second recursive call, finding that the
sphere B2 bounding the second half does intersect with an object. A new midpoint
of the current half-interval is computed, and the two halves of the interval are again
recursed over (Figure 5.33b). The sphere B3 bounding the half corresponding to the
first subinterval is also found colliding with an object, and thus again the movement
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interval is recursed over. In this example, the recursion eventually terminates with
an intersection. Interval halving for the case of a moving sphere against a stationary
sphere can be implemented as follows.

// Intersect sphere s0 moving in direction d over time interval t0 <= t <= t1, against
// a stationary sphere s1. If found intersecting, return time t of collision
int TestMovingSphereSphere(Sphere s0, Vector d, float t0, float t1, Sphere s1, float &t)
{

// Compute sphere bounding motion of s0 during time interval from t0 to t1
Sphere b;
float mid = (t0 + t1) * 0.5f;
b.c = s0.c + d * mid;
b.r = (mid – t0) * Length(d) + s0.r;
// If bounding sphere not overlapping s1, then no collision in this interval
if (!TestSphereSphere(b, s1)) return 0;

// Cannot rule collision out: recurse for more accurate testing. To terminate the
// recursion, collision is assumed when time interval becomes sufficiently small
if (t1 - t0 < INTERVAL_EPSILON) {

t = t0;
return 1;

}

// Recursively test first half of interval; return collision if detected
if (TestMovingSphereSphere(s0, d, t0, mid, s1, t)) return 1;

// Recursively test second half of interval
return TestMovingSphereSphere(s0, d, mid, t1, s1, t);

}

In general, this algorithm will terminate in O(log n) time. However, there are cases
in which it will not. One worst-case scenario for this algorithm occurs when the sphere
is moving parallel to a surface, just slightly farther away from it than the preset distance
used to terminate the recursion. In this instance, both subintervals are recursed over at
each step of the algorithm, causing the sphere movement to be subdivided in many
small steps, with each step being tested for collision. A tighter bounding volume,
such as an OBB, would exhibit better behavior in this situation. OBBs, however, can
be quite expensive. In some scenes, architectural scenes in particular, an AABB may
serve as a good substitute, as it aligns well with floors and walls, which tend to be
aligned at 90 degrees to each other as well as being aligned to the world coordinate
system.

The interval-halving method trivially adapts to handling complex objects with
both objects under arbitrary motion. Let MaximumObjectMovementOverTime() be a
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function taking an object and a time interval as arguments. As a result, it computes
the maximum length of the paths taken by points on the surface of the object during its
movement over the time interval. Furthermore, let MinimumObjectDistanceAtTime()
be a function taking two objects and a time value as arguments. Its function result
is the smallest distance between the surfaces of the objects at the given time. Given
these two functions, the generic implementation of the interval-halving method now
becomes:

// Test collision between objects a and b moving over the time interval
// [startTime, endTime]. When colliding, time of collision is returned in hitTime
int IntervalCollision(Object a, Object b, float startTime, float endTime, float &hitTime)
{

// Compute the maximum distance objects a and b move over the time interval
float maxMoveA = MaximumObjectMovementOverTime(a, startTime, endTime);
float maxMoveB = MaximumObjectMovementOverTime(b, startTime, endTime);
float maxMoveDistSum = maxMoveA + maxMoveB;
// Exit if distance between a and b at start larger than sum of max movements
float minDistStart = MinimumObjectDistanceAtTime(a, b, startTime);
if (minDistStart > maxMoveDistSum) return 0;
// Exit if distance between a and b at end larger than sum of max movements
float minDistEnd = MinimumObjectDistanceAtTime(a, b, endTime);
if (minDistEnd > maxMoveDistSum) return 0;

// Cannot rule collision out: recurse for more accurate testing. To terminate the
// recursion, collision is assumed when time interval becomes sufficiently small
if (endTime – startTime < INTERVAL_EPSILON) {

hitTime = startTime;
return 1;

}
// Recursively test first half of interval; return collision if detected
float midTime = (startTime + endTime) * 0.5f;
if (IntervalCollision(a, b, startTime, midTime, hitTime)) return 1;
// Recursively test second half of interval
return IntervalCollision(a, b, midTime, endTime, hitTime);

}

For convex polygonal objects, after having located the closest time just before initial
contact a subsequent separating-axis test can provide a collision normal to be used
for collision response (given by the separating axis itself). The separating-axis test can
also be used to determine the collision of moving convex objects directly, as explained
in the next section.
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5.5.2 Separating-axis Test for Moving Convex Objects

For nonrotating convex polygonal or polyhedral objects moving with constant veloc-
ity, a modification of the separating-axis test (as described in Section 5.2.1) can be
used to determine the time of intersection of the objects, if any. First note that for
two moving objects, A and B, the velocity of A can be subtracted off from B, thus
effectively treating the problem as that of intersecting the stationary object A against
the moving object B.

Now, if the objects are initially intersecting, the first time of contact is at time t = 0.
Otherwise, the objects are disjoint. If disjoint, consider the intervals of projection of
A and B onto some arbitrary line L. Clearly, collision may occur only if the projection
interval of B moves toward the interval of A and eventually overlaps it.

Note that just immediately before a first time of contact between the A and B
projection intervals A and B must be separated along some axis. Then, too, just
immediately after a last time of contact they must again be separated along some
axis. Thus, the first and last time of contact can be determined by projection onto the
same separating axes as used for a stationary separating-axis test.

Consequently, to determine whether B intersects A it is sufficient to compute for
each potential separating axis the times at which the projected intervals start and end
intersection. The start and end times are computed using simple linear operations
and correspond to the initial and final contact, respectively, of the objects. Because
the objects can only overlap if they overlap simultaneously on all separating axes, the
nonemptiness of the intersection of the time intervals determined by the first and
last times of contact determines the collision result between the objects. Let tfirst track
the largest of all times corresponding to the first time of contact on a separating axis.
Let tlast track the smallest of all times corresponding to the last time of contact on
a separating axis. After all axes have been tested, the objects intersect if and only if
tfirst ≤ tlast . If sometime during the test tfirst > tlast , no intersection is possible and a
result of“no intersection”can be immediately returned.

The technique of using the separating-axis test with moving objects was indepen-
dently described by [Gomez99] for AABBs, and in more detail by [Levine00] for the
general case. A concrete example of the described method is given in Section 5.5.8
for the intersection of moving AABBs.

5.5.3 Intersecting Moving Sphere Against Plane

Let a plane π be specified by n · X = d, where n is a unit vector. Let a sphere S be
specified by a center C and a radius r, and let v be the direction vector for S such that
the sphere center movement is given by C(t) = C + tv over the interval of motion
0 ≤ t ≤ 1. The signed distance from the plane of a point R is (n · R) − d. Therefore,
the sphere initially overlaps the plane if

∣∣(n · C) − d
∣∣ ≤ r.

The sphere’s movement relative to the plane can be categorized by considering
the sign of n · v and what side of the plane the sphere starts on. If (n · v) > 0, the
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Figure 5.34 Intersecting the moving sphere specified by center C, radius r, and movement
vector v against the plane n · X = d is equivalent to intersecting the segment S(t) = C + t v
against the plane displaced by r along n (here positive r, in that C lies in front of the plane).

sphere is moving away from the plane, assuming it lies in front of the plane. When
the sphere lies behind the plane, it instead indicates the sphere moving toward the
plane. Clearly, for (n · v) < 0 the exact opposite holds. In that the sign of (n · C) − d
indicates what side of the plane the sphere is on, a more succinct statement is that
the sphere is moving away from the plane when (n · v)(n · C − d) > 0 and toward it
when (n · v)(n · C − d) < 0 (that is, when the signs of the two subexpressions agree
and disagree, respectively). When (n · v) = 0, the sphere is moving parallel to the
plane.

Assume the sphere is moving toward the plane. To find the time t of first contact
between them, a straightforward approach is to displace the plane toward the sphere
center by the sphere radius r and then consider the problem as that of determining
the intersection of the segment S(t) = C + tv, 0 ≤ t ≤ 1, with the displaced plane
(Figure 5.34). Solving for t, if t is found to be within the segment interval t is the time
at which the sphere collides with the plane.

Again, the sign of (n · C) − d must be examined, now to see how the plane should
be displaced. If the term is positive, the displaced plane is given by (n · Q) = d + r
and the first point on the sphere to touch the plane at time t of initial contact is
Q = C(t) − rn. If the term is negative, (n · Q) = d − r describes the displaced plane
and Q = C(t) + rn gives the first point of contact.

It is now possible to solve for t as follows:

(n · X) = d ± r ⇔ (plane equation for plane displaced either way)

n · (C + tv) = d ± r ⇔ (substituting S(t) = C + tv for X)

(n · C) + t(n · v) = d ± r ⇔ (expanding dot product)

t = (±r − ((n · C) − d))
/

(n · v) (solving for t)

When 0 ≤ t ≤ 1, the sphere touches the plane at time t, with point of contact Q.
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Note that the terms (n·C)−d and n·v, needed to determine if the sphere is moving
toward the plane, reoccur in the expression for t and should not be recalculated in an
implementation. This intersection test can now be implemented as follows.

// Intersect sphere s with movement vector v with plane p. If intersecting
// return time t of collision and point q at which sphere hits plane
int IntersectMovingSpherePlane(Sphere s, Vector v, Plane p, float &t, Point &q)
{

// Compute distance of sphere center to plane
float dist = Dot(p.n, s.c) - p.d;
if (Abs(dist) <= s.r) {

// The sphere is already overlapping the plane. Set time of
// intersection to zero and q to sphere center
t = 0.0f;
q = s.c;
return 1;

} else {
float denom = Dot(p.n, v);
if (denom * dist >= 0.0f) {

// No intersection as sphere moving parallel to or away from plane
return 0;

} else {
// Sphere is moving towards the plane

// Use +r in computations if sphere in front of plane, else -r
float r = dist > 0.0f ? s.r : -s.r;
t = (r - dist) / denom;
q = s.c + t * v – r * p.n;
return 1;

}
}

}

Here, the t value returned on a successful intersection may lie beyond the [0, 1]
interval. When this happens, t corresponds to the future time at which the sphere
would intersect the plane assuming the same motion. It is left to the caller to test t
for inclusion in the [0, 1] interval.

Just testing whether a moving sphere intersects a plane without computing where
the sphere strikes the plane is done with much less effort. The sphere intersects the
plane if it starts and ends on different sides of the plane or if it overlaps the plane at
its start or end positions. This test can be implemented as follows.
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// Test if sphere with radius r moving from a to b intersects with plane p
int TestMovingSpherePlane(Point a, Point b, float r, Plane p)
{

// Get the distance for both a and b from plane p
float adist = Dot(a, p.n) - p.d;
float bdist = Dot(b, p.n) - p.d;
// Intersects if on different sides of plane (distances have different signs)
if (adist * bdist < 0.0f) return 1;
// Intersects if start or end position within radius from plane
if (Abs(adist) <= r || Abs(bdist) <= r) return 1;
// No intersection
return 0;

}

This test also assumes the plane has been normalized; that is, ‖n‖ = 1.

5.5.4 Intersecting Moving AABB Against Plane

Let a plane π be specified by (n · X) = d, where n is a unit vector. Let an AABB B be
specified by a center C; local axis vectors u0 = (1, 0, 0), u1 = (0, 1, 0), and u2 = (0, 0, 1);
and extents e0, e1, and e2. Let v be the direction vector for B such that the box center
movement is given by C(t) = C + tv over the interval of motion 0 ≤ t ≤ 1.

Consider the plane normal n as a separating axis. The projection radius of B with
respect to an axis n is given by

r = e0 |u0 · n| + e1 |u1 · n| + e2 |u2 · n| .

Because u0, u1, and u2 are fixed, this simplifies to

r = e0 |nx| + e1
∣∣ny

∣∣ + e2 |nz| .

Note that the magnitude of the projected radius remains constant as B moves. The
test now proceeds equivalently to the moving-sphere-against-plane test. The signed
distance from the plane of a point R is (n · R) − d. Consequently, the AABB initially
overlaps the plane if

∣∣(n · C) − d
∣∣ ≤ r. If (n · v) > 0, the AABB is moving away from

the plane. When (n · v) = 0, the AABB is moving parallel to the plane.
Displacing the plane toward the AABB by r changes the plane to (n · X) = d + r.

When the AABB is moving toward the plane, the first point on the AABB to touch
the plane is Q = C(t) − rn, where C(t) is the position of the AABB at the time it first
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touches the plane. The condition for Q to be on the plane is (n · Q) = d. Solving for
t gives t = (r + d − (n · C))

/
(n · v). If 0 ≤ t ≤ 1, the AABB touches the plane at

time t, with point of contact Q. Unlike the moving-sphere-against-plane test, for an
AABB there will not necessarily be a unique point of contact, as the contact region
might be an edge or a face of the AABB. Due to the format used for the AABB in the
preceding presentation, the test for an OBB is identical, except for the computation of
r, which now involves the axes corresponding to the orientation of the OBB instead
of the world axes.

5.5.5 Intersecting Moving Sphere Against Sphere

Let two spheres S0 and S1 be given with radii r0 and r1, respectively. Their cor-
responding movements are given by the two movement vectors v0 and v1. The
parameterized movement of the sphere centers can therefore be described by the
expressions P0(t) = C0 + tv0 and P1(t) = C1 + tv1 over the time interval 0 ≤ t ≤ 1.
The vector d between the sphere centers at time t is given by

d(t) = (C0 + tv0) − (C1 + tv1) = (C0 − C1) + t(v0 − v1).

Assuming the spheres do not initially touch, they first come in contact when the length
of d equals the sum of their radii: (d(t) · d(t))1/2 = r0 + r1. To avoid the square root
expression, both sides of the equivalence can be squared, giving d(t)·d(t) = (r0+r1)2.
To solve for t, let s = C0 − C1, v = v0 − v1, and r = r0 + r1, then:

d(t) · d(t) = (r0 + r1)2 ⇔ (original expression)

(s + t v) · (s + t v) = r2 ⇔ (substituting d(t) = s + t v)

(s · s) + 2(v · s)t + (v · v)t2 = r2 ⇔ (expanding dot product)

(v · v)t2 + 2(v · s)t + (s · s − r2) = 0 (canonic form for quadratic equation)

This is a quadratic equation in t. Writing the quadratic in the form at2 + 2bt + c = 0,
with a = v · v, b = v · s, and c = s · s − r2 gives the solutions for t as

t = −b ± √
b2 − ac

a
.

The discriminant d = b2 − ac determines how many real-valued roots the quadratic
has. If d < 0, it has no real-valued roots, meaning the spheres will not intersect. If
d = 0, there is one real root and the spheres become tangential at time t. If d > 0,
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there are two real roots, with the spheres coming in first contact at the smaller time t
then interpenetrating for awhile to stop penetrating at the larger time t. The first time
of contact is for

t = −b − √
b2 − ac

a
.

When implementing this test, it is necessary to verify that the spheres do not overlap at
the start of the movement. Otherwise, it would fail to correctly deal with, say, a smaller
sphere remaining fully inside a larger sphere, because the condition of the spheres
coming into contact will never be satisfied in this case. One way of implementing
this test is:

int TestMovingSphereSphere(Sphere s0, Sphere s1, Vector v0, Vector v1, float &t)
{

Vector s = s1.c - s0.c; // Vector between sphere centers
Vector v = v1 - v0; // Relative motion of s1 with respect to stationary s0
float r = s1.r + s0.r; // Sum of sphere radii
float c = Dot(s, s) – r * r;
if (c < 0.0f) {

// Spheres initially overlapping so exit directly
t = 0.0f;
return 1;

}
float a = Dot(v, v);
if (a < EPSILON) return 0; // Spheres not moving relative each other
float b = Dot(v, s);
if (b >= 0.0f) return 0; // Spheres not moving towards each other
float d = b * b – a * c;
if (d < 0.0f) return 0; // No real-valued root, spheres do not intersect

t = (-b – Sqrt(d)) / a;
return 1;

}

An alternative description of this particular approach can be found in [Gomez99].
Another approach to the problem is to express it in terms of one solved earlier. First,

the problem (Figure 5.35a) is turned into that of a moving sphere versus a stationary
sphere, by subtracting v1 off the movement of both (Figure 5.35b). Because the spheres
first come in contact when d(t) = r0 + r1, growing the radius of one while shrinking
the radius of the other by the same amount does not affect the time of contact. It is
therefore possible to turn the moving sphere into a point and the second stationary
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Figure 5.35 Recasting the moving sphere-sphere test as a ray intersection test. (a) The original
problem of intersecting a moving sphere against a moving sphere. (b) Transforming problem
into a moving sphere versus a stationary sphere. (c) Reduced to a ray test against a stationary
sphere of larger radius.

sphere into one with a combined radius of r0 + r1 (Figure 5.35c). The problem now
becomes that of intersecting a ray with a static sphere, for which a routine was given
in Section 5.3.2. The implementation is now straightforward.

int TestMovingSphereSphere(Sphere s0, Sphere s1, Vector v0, Vector v1, float &t)
{

// Expand sphere s1 by the radius of s0
s1.r += s0.r;
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Figure 5.36 Illustrating Nettle’s method for intersecting a moving sphere against a triangle.

// Subtract movement of s1 from both s0 and s1, making s1 stationary
Vector v = v0 – v1;
// Can now test directed segment s = s0.c + tv, v = (v0-v1)/||v0-v1|| against
// the expanded sphere for intersection
Point q;
float vlen = Length(v);
if (IntersectRaySphere(s0.c, v / vlen, s1, t, q)) {

return t <= vlen;
}
return 0;

}

5.5.6 Intersecting Moving Sphere Against Triangle
(and Polygon)

Let a sphere S be specified by a center C and a radius r, and let v be the direction
vector for S such that the sphere center movement is given by C(t) = C + t v over the
interval of motion 0 ≤ t ≤ 1. Let T be a triangle and n be the unitized normal to this
triangle.

A simple test, both conceptually and computationally, for intersecting the sphere
against the triangle is suggested in [Nettle00]. Without loss of generality, assume the
sphere is in front of the plane of triangle T, moving so as to end up behind the plane.
In this situation, the first point on the sphere to come in contact with the plane is
D = C − r n. Now intersect the directed segment D + t v, 0 ≤ t ≤ 1, against the
plane; let P be the intersection point. If P lies inside the triangle, then t is the desired
time of intersection and P the point of contact (Figure 5.36a).

For the case in which P lies outside the triangle, let Q be the point on the triangle
closest to P. If the moving sphere hits the triangle at all, then Q is the point it will hit
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first (as the circular cross section of the sphere, as it moves through the plane, will be
centered at P).

To determine whether the sphere hits Q, instead of moving the sphere toward the
triangle a ray Q − t v can be cast “in reverse”from Q toward the sphere. If this ray
does not hit the sphere or if t does not lie in the range of zero to one, then the sphere
does not hit Q and there is no intersection. If the ray hits the sphere at some point R,
with 0 ≤ t ≤ 1, then the point R on the sphere will first come into contact with point
Q of the triangle, at time t (Figure 5.36b).

Unfortunately, this test is not robust. When the sphere is moving parallel to the
plane of the triangle, there is no intersection between the movement vector and the
plane and the algorithm breaks.

However, this is not always a problem as, for example, when all triangles inter-
sected against are part of a mesh such that all exposed triangle edges are always
shared with another triangle. A moving sphere will then always hit a neighboring
triangle before it has a chance to fail detecting intersection with a triangle it is moving
parallel to. Of course, collision response relating to sliding in the plane of the triangle
must also be adapted to handle this situation.

A more robust, but also more expensive, method is first to perform a sphere-
against-plane test (either as just described, or as per Section 5.5.3). If there is an
intersection, the point P of earliest contact is tested for containment in T, just as
in Nettle’s approach. If P lies inside T, the earliest intersection has been found
and the test can exit. Otherwise, a test of the moving sphere against each trian-
gle edge is performed. This is equivalent to testing the directed segment C + t v,
0 ≤ t ≤ 1, against the edges turned into cylinders of radius r (see Section 5.3.7).
If one or more intersections against the curved surface (only) of the cylinders
are detected, the closest one corresponds to the earliest intersection, which is
returned.

Assuming that no intersection has been detected up to this point, the ray is inter-
sected against the spheres of radius r centered on the vertices of the triangle. Again,
if there are one or more intersections the closest one is returned. If no sphere is inter-
sected, this corresponds to the original sphere not intersecting the triangle. Note that
for the ray-cylinder tests no intersection against the endcaps is necessary: if there is
an intersection between the sphere and the triangle, the ray will intersect the spheres
at the vertices before it can strike an endcap.The last bit of the test, as given in Section
5.3.7, can therefore be omitted.

Overall, this approach is perhaps best seen conceptually as a ray test against the
solid volume V resulting from sweeping T with S, forming the Minkowski sum T ⊕ S
of T and S (as described in Section 3.11), but with the three individual component
tests performed either as ray tests or as sphere tests (depending on what is more
appropriate). The next section describes how to apply the Minkowski sum approach
to the problem of intersecting a moving sphere against an AABB.

This second, more robust, method is suggested in [Schroeder01], with corrections
in [Akenine-Möller02]. Both of the approaches described in this section generalize
to intersections against arbitrary polygons in a straightforward way.
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5.5.7 Intersecting Moving Sphere Against AABB

Let a sphere S be specified by a center C and a radius r, and let d be the direction vector
for S, such that the sphere center movement is given by C(t) = C+t d over the interval
of motion 0 ≤ t ≤ 1. Let B be an AABB. Intersecting the moving sphere S against the
box B is equivalent to intersecting the segment L(t) = C + t d, 0 ≤ t ≤ 1, against the
volume V that results after sweeping B with S (that is, against the Minkowski sum
of B and S, V = B ⊕ S), as illustrated in Figure 5.37. The latter test can be efficiently
performed without forming V, as demonstrated next.

Let E be the AABB given by expanding the faces of B outward by a distance equiv-
alent to the sphere radius r. This is the tightest AABB bounding V, differing from V
only in the lack of spherically beveled edges. Now, intersect L against E. If L does not
intersect E, then clearly S does not intersect B. Otherwise, let P = L(t) denote the
point where L intersects E at time t.

If P lies in a faceVoronoi region of B, then nothing more is needed: S intersects B
at time t when the sphere center is at point P. However, if P lies in an edge or vertex
Voronoi region, further tests are required to determine whether L passes through the
beveled region ofV not present in E, thus missingV, or whether L intersectsV on one
of its beveled edges or vertices at some later time t′, t < t′ ≤ 1.

When P lies in an edge Voronoi region of B, L must additionally be intersected
against the capsule of radius r determined by the edge. If and only if L intersects the
capsule does S intersect B. The intersection of L and the capsule corresponds to the
actual intersection of S and B.

C
r

V = S�B

E

B

P

d

Figure 5.37 A 2D illustration of how the test of a moving sphere against an AABB is trans-
formed into a test of a line segment against the volume resulting after sweeping the AABB
with the sphere (forming the Minkowski sum of the sphere and the AABB).
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The last consideration is when P lies in a vertexVoronoi region. In this case, L must
additionally be intersected against all three capsules of radius r determined by the
edges coincident to the vertex. If L does not intersect one of the capsules, S does
not intersect B. Otherwise, the intersection of S with B occurs at the smallest time
t at which L intersects one of the edge capsules. As a potential speedup, L can be
tested against a sphere K of radius r centered at the vertex. If L intersects K, and
the intersection point lies in the vertex Voronoi region, then this intersection point
provides the answer and the capsules do not have to be tested against. However,
if the intersection point between L and K lies outside the vertex Voronoi region (or
if L does not intersect K at all), the sphere test was in vain and the three cylinders
must be intersected anyway.The following code fragment illustrates how to efficiently
determine which Voronoi region P is contained in and which edges must be tested
for the edge and vertex region cases.

int IntersectMovingSphereAABB(Sphere s, Vector d, AABB b, float &t)
{

// Compute the AABB resulting from expanding b by sphere radius r
AABB e = b;
e.min.x -= s.r; e.min.y -= s.r; e.min.z -= s.r;
e.max.x += s.r; e.max.y += s.r; e.max.z += s.r;

// Intersect ray against expanded AABB e. Exit with no intersection if ray
// misses e, else get intersection point p and time t as result
Point p;
if (!IntersectRayAABB(s.c, d, e, t, p) || t > 1.0f)

return 0;

// Compute which min and max faces of b the intersection point p lies
// outside of. Note, u and v cannot have the same bits set and
// they must have at least one bit set among them
int u = 0, v = 0;
if (p.x < b.min.x) u |= 1;
if (p.x > b.max.x) v |= 1;
if (p.y < b.min.y) u |= 2;
if (p.y > b.max.y) v |= 2;
if (p.z < b.min.z) u |= 4;
if (p.z > b.max.z) v |= 4;

// ‘Or’ all set bits together into a bit mask (note: here u + v == u | v)
int m = u + v;

// Define line segment [c, c+d] specified by the sphere movement
Segment seg(s.c, s.c + d);
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// If all 3 bits set (m == 7) then p is in a vertex region
if (m == 7) {

// Must now intersect segment [c, c+d] against the capsules of the three
// edges meeting at the vertex and return the best time, if one or more hit
float tmin = FLT_MAX;
if (IntersectSegmentCapsule(seg, Corner(b, v), Corner(b, v ∧ 1), s.r, &t))

tmin = Min(t, tmin);
if (IntersectSegmentCapsule(seg, Corner(b, v), Corner(b, v ∧ 2), s.r, &t))

tmin = Min(t, tmin);
if (IntersectSegmentCapsule(seg, Corner(b, v), Corner(b, v ∧ 4), s.r, &t))

tmin = Min(t, tmin);
if (tmin == FLT_MAX) return 0; // No intersection
t = tmin;
return 1; // Intersection at time t == tmin

}
// If only one bit set in m, then p is in a face region
if ((m & (m - 1)) == 0) {

// Do nothing. Time t from intersection with
// expanded box is correct intersection time
return 1;

}
// p is in an edge region. Intersect against the capsule at the edge
return IntersectSegmentCapsule(seg, Corner(b, u ∧ 7), Corner(b, v), s.r, &t);

}

// Support function that returns the AABB vertex with index n
Point Corner(AABB b, int n)
{

Point p;
p.x = ((n & 1) ? b.max.x : b.min.x);
p.y = ((n & 1) ? b.max.y : b.min.y);
p.z = ((n & 1) ? b.max.z : b.min.z);
return p;

}

This test also works for performing the same intersection against an OBB: by
expressing the sphere center C and the movement vector d in the local coordinate
system of the OBB the problem is effectively reduced to that of a moving sphere
against an AABB.

5.5.8 Intersecting Moving AABB Against AABB

Because an AABB is an instance of a convex polyhedron, the problem of determining
intersection between two moving AABBs, A and B with corresponding velocities vA
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A

dfirst = a.min[i] – b.max[i]

B
v

dlast = a.max[i] – b.min[i]

Figure 5.38 Illustrating the distances the projection of box B travels to reach first and last
contact with the projection of the stationary box A when B is moving toward A.

and vB, can be solved using the moving version of the separating-axis test as described
in Section 5.5.2.

The problem is first cast into that of a stationary box A and a moving box B by
subtracting the velocity of A from B, giving the relative velocity v = vB − vA. Figure
5.38 illustrates, given B moving toward A, the distances dfirst and dlast that B must
cover to reach first and last contact with A. The times to first and last contact, tfirst

and tlast , are then easily obtained by dividing these distances by the speed with which
B is moving toward A. These times are obtained for all three principal axes, and the
largest tfirst and smallest tlast correspond to the intersection of the times the boxes
overlap on the three axes, if at all. If the projections of the boxes are ever found to be
nonintersecting and moving apart on an axis, the test can immediately exit with“no
intersection.”A full implementation of this test follows.

// Intersect AABBs ‘a’ and ‘b’ moving with constant velocities va and vb.
// On intersection, return time of first and last contact in tfirst and tlast
int IntersectMovingAABBAABB(AABB a, AABB b, Vector va, Vector vb,

float &tfirst, float &tlast)
{

// Exit early if ‘a’ and ‘b’ initially overlapping
if (TestAABBAABB(a, b)) {

tfirst = tlast = 0.0f;
return 1;

}

// Use relative velocity; effectively treating ’a’ as stationary
Vector v = vb - va;
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// Initialize times of first and last contact
tfirst = 0.0f;
tlast = 1.0f;

// For each axis, determine times of first and last contact, if any
for (int i = 0; i < 3; i++) {

if (v[i] < 0.0f) {
if (b.max[i] < a.min[i]) return 0; // Nonintersecting and moving apart
if (a.max[i] < b.min[i]) tfirst = Max((a.max[i] - b.min[i]) / v[i], tfirst);
if (b.max[i] > a.min[i]) tlast = Min((a.min[i] - b.max[i]) / v[i], tlast);

}
if (v[i] > 0.0f) {

if (b.min[i] > a.max[i]) return 0; // Nonintersecting and moving apart
if (b.max[i] < a.min[i]) tfirst = Max((a.min[i] - b.max[i]) / v[i], tfirst);
if (a.max[i] > b.min[i]) tlast = Min((a.max[i] - b.min[i]) / v[i], tlast);

}

// No overlap possible if time of first contact occurs after time of last contact
if (tfirst > tlast) return 0;

}
return 1;

}

A solution similar to the one presented here is given in [Gomez99].

5.6 Summary

In this chapter, a large number of different tests and queries have been discussed
in quite some detail. These include closest-point calculations (which directly allow
the distance between the two query objects to be found); heterogeneous intersection
tests (such as between a sphere and an OBB); intersections involving lines, rays, and
line segments (against triangles, for example); and point containment tests (for both
polygons and polytopes), to name a few. In addition to static intersection tests, meth-
ods for performing dynamic tests have also been described, including the powerful
generalization of the separating-axis test.

Even though this chapter has covered a wide variety of tests, readers will inevitably
make note of specific tests that were excluded from coverage. As mentioned at the start
of the chapter, the intent behind the provided spectrum of tests and the mathematical
detail given is to allow the readers themselves to derive these other tests using the
ideas presented herein. Being able to derive tests from scratch is important because
there are not many sources that cover intersection tests to a great extent, and even
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those that do are unlikely to cover the particular tests the reader requires. One notable
exception to the lack of comprehensive sources for intersection tests is [Schneider02],
which is a treasure trove of geometrical tests of all types and an excellent supplement
to this chapter. [Eberly01] and [Bergen03] are also good references, albeit not as
comprehensive. Individual articles on specific tests can also be found in the five-
volume book series Graphic Gems [Glassner90], [Arvo91], [Kirk92], [Heckbert94],
and [Paeth95].
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Chapter 6

Bounding Volume
Hierarchies

Wrapping objects in bounding volumes and performing tests on the bounding
volumes before testing the object geometry itself can result in significant perfor-
mance improvements. However, although the tests themselves have been simplified,
the same number of pairwise tests are still being performed. The asymptotic time
complexity remains the same and the use of bounding volumes improves the situa-
tion by a constant factor. By arranging the bounding volumes into a tree hierarchy
called a bounding volume hierarchy (BVH), the time complexity can be reduced to
logarithmic in the number of tests performed.

The original set of bounding volumes forms the leaf nodes of the tree that is this
bounding volume hierarchy.These nodes are then grouped as small sets and enclosed
within larger bounding volumes.These, in turn, are also grouped and enclosed within
other larger bounding volumes in a recursive fashion, eventually resulting in a tree
structure with a single bounding volume at the top of the tree. Figure 6.1 shows a
small AABB hierarchy constructed from five objects.

With a hierarchy in place, during collision testing children do not have to be exam-
ined if their parent volume is not intersected. The same bounding volume hierarchies
are also used, for instance, in scene graphs and ray tracing and for view-frustum
culling.

Comparing bounding volume hierarchies with spatial partitioning schemes (see
Chapter 7), the main differences are that two or more volumes in a BVH can cover the
same space and objects are generally only inserted in a single volume. In contrast, in
a spatial partitioning scheme the partitions are disjoint and objects contained in the
spatial partitioning are typically allowed to be represented in two or more partitions.

It is important to note that the bounding volume of a parent node does not neces-
sarily need to enclose the bounding volumes of its child nodes. Although it is often
easier to construct hierarchies in which this parent-child property holds true, the
parent bounding volume needs to enclose only the object primitives contained in the
subtrees of its children.

235
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Figure 6.1 A bounding volume hierarchy of five simple objects. Here the bounding volumes
used are AABBs.

One approach to creating hierarchies is to have designers or artists manually create
them as part of their modeling hierarchies. However, creating trees manually is not
ideal. First, designers tend to think functionally rather than spatially. Consequently,
it is likely that, for instance, all nuts and bolts across a large mechanical design
are grouped under the same node. Such a grouping is not good from a collision
detection perspective. Second, the hierarchy is also likely to be either too shallow
or too deep in the wrong places. The designer’s modeling hierarchy has been —
and arguably should be — constructed for easy editing and not to enable efficient
intersection queries. Although designers could theoretically adjust their hierarchies
to be more spatially oriented and better suited to collision queries, this is unlikely to
be an effective use of their time. A better solution is to automate, where possible, the
generation of hierarchies from the provided models. Such automation is not always
a trivial process and there are many issues to consider, as the next section will show.

6.1 Hierarchy Design Issues

There are many ways to construct a bounding volume hierarchy. The next section
outlines a number of desired characteristics for good hierarchies. A generic cost func-
tion to aid the cost comparison of queries for various hierarchical schemes is found in
Section 6.1.2. Finally, Section 6.1.3 discusses the question of what tree degree might
provide the best hierarchy.

6.1.1 Desired BVH Characteristics

Similar to bounding volumes, several desired properties for bounding volume
hierarchies have been suggested [Kaplan85] [Kay86] [Hubbard96]:

● The nodes contained in any given subtree should be near each other. Without explic-
itly defining nearness, the lower down the tree the nodes are the nearer they
should be to each other.
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● Each node in the hierarchy should be of minimal volume.

● The sum of all bounding volumes should be minimal.

● Greater attention should be paid to nodes near the root of the hierarchy. Pruning a
node near the root of the tree removes more objects from further consideration
than removal of a deeper node would.

● The volume of overlap of sibling nodes should be minimal.

● The hierarchy should be balanced with respect to both its node structure and its
content. Balancing allows as much of the hierarchy as possible to be pruned
whenever a branch is not traversed into.

For real-time applications, games especially, an important addition to the previous
list is the requirement that the worst-case time for queries not be much worse than
the average-case query time. This requirement is particularly important for console
games, for which a fixed frame rate is usually required (typically 60 fps).

Additionally, it is desired that the hierarchy can be automatically generated without
user intervention. For real-time applications, most hierarchies are usually generated
in a preprocessing step and not at runtime. For games, excessive waiting for precom-
puted structures to build can have a detrimental impact on level construction and
design. Therefore, although precomputation makes the construction less time signif-
icant algorithms of quadratic complexity and above are still likely to be too slow even
for preprocessing use. If a hierarchy is constructed at runtime, building the hierarchy
should also pay for itself in that the time taken for construction should be less than
the time saved by using the hierarchy.

Finally, a very important factor often glossed over in treatments of collision detec-
tion is the total memory requirement for the data structures used to represent the
bounding volume hierarchy. For example, console games roughly allocate a tenth
of the available memory for collision data. Whereas the built-in memory for next-
generation console systems will increase for each generation, the ratio allocated for
collision detection data is likely to remain roughly constant because the memory
requirements for other systems (such as rendering, animation, and AI) also are likely
to grow proportionally. These memory constraints set hard limits on all considered
collision detection systems.

6.1.2 Cost Functions

Several people have come up with expressions to identify the various parts con-
tributing to the expected cost of bounding volume hierarchy queries. A cost formula
first presented in [Weghorst84] and adapted for bounding volume hierarchies by
[Gottschalk96] and subsequently refined in [Klosowski98] and [He99] is

T = NV CV + NPCP + NUCU + CO.
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Here, T is the total cost of intersecting the two hierarchies, NV is the number of
BV pairs tested for overlap, CV is the cost of testing a pair of BVs for overlap, NP is
the number of primitive pairs tested, CP is the cost of testing a primitive pair, NU

is the number of nodes that need to be updated, CU is the cost of updating each
such node, and, where necessary, CO is the cost of a one-time processing (such as a
coordinate transformation between objects).

Of these variables, for instance, NV and NP are minimized by making the bounding
volume fit the object as tightly as possible. By making the overlap tests as fast as
possible, CV and CP are minimized. Unfortunately, making the bounding volume
tighter typically increases the time to perform the overlap test. At the same time, a
tighter bounding volume is likely to result in fewer intersection tests. In general, the
values are so intrinsically linked that minimizing one value often causes another to
increase. Finding a compromise among existing requirements is a challenge in all
collision detection systems.

6.1.3 Tree Degree

An interesting question is that of what degree or branching factor to use in the tree
representing the bounding volume hierarchy. What is better, a binary, ternary, d-ary
(for some d), or a tree with any number of children at a node? A tree of a higher
degree will be of smaller height, minimizing root-to-leaf traversal time. At the same
time, more work has to be expended at each visited node to check its children for
overlap. The opposite holds for a low-degree tree: although the tree will be of greater
height, less work is spent at each node. In terms of size, a d-ary tree of n leaves has
(n − 1)/(d − 1) internal nodes for a total of (nd − 1)/(d − 1) nodes in the tree. Clearly
the larger the degree the fewer internal nodes are needed to form the tree.

The question of what degree to use is a difficult one and no definitive answer has
been forthcoming. Looking at actual usage, it appears binary trees are by far the most
common hierarchical representation. An important reason is that binary trees are
easier to build and, to some extent, to represent and traverse than other trees. For
instance, when building a tree top-down, to partition the set of objects into two sub-
sets only a single splitting plane has to be found. Partitioning m objects into just two
(nonempty) partitions can be done in 2m−1 − 1 ways, and the corresponding expres-
sions grow exponentially (and therefore prohibitively) with an increasing number of
partitions.

Analytical arguments have also been put forth in support of the choice of binary
trees [Klosowski98] [Konečný98]. The actual cost of a collision query depends on
what descent rules are used when traversing the hierarchies. For instance, given
a balanced d-ary tree of n leaves, the “descend A before B”and “descend A and B
simultaneously” rules (both described later on) have costs proportional to f (d) =
d logd(n) and f (d) = d2 logd(n), respectively. The former minimizes for d = 2. 718,
and the latter for d = 2, suggesting the use of a binary or possibly ternary tree as
optimal. Empirical results also appear to be in support of the choice d = 2, but
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these are not conclusive — especially because few experiments seem to have been
conducted with higher-degree trees.

Platform-architectural issues also play a significant role in what type of trees per-
form well. Ideally, trees should be laid out in memory so that nodes occur linearly
in memory during traversal. The issue of cache-efficient tree structures is revisited in
Chapter 13.

6.2 Building Strategies for Hierarchy Construction

As the number of possible trees grows exponentially in terms of the number of ele-
ments in the input set, an exhaustive search for the best tree is infeasible. This rules
out finding an optimal tree. Instead, heuristic rules are used to guide the construction,
examining a few alternatives at each decision-making step, picking the best alterna-
tive. Arriving at a suboptimal solution is not necessarily a problem, as there is usually
a very large number of trees that are not too far from optimal.

There are three primary categories of tree construction methods: top-down, bottom-
up, and insertion methods (Figure 6.2). Top-down (or divisive) methods proceed by
partitioning the input set into two (or more) subsets, bounding them in the chosen
bounding volume, then recursing over the bounded subsets. Thanks to the ease with
which they can be implemented, top-down methods are by far the most popular.
However, they do not generally result in the best possible trees.

A  B  C  D

Top-down

Bottom-up

(a)

(b)

(c)

A B

A B C D

C D

A B C DA B C DA B C D

Insertion

A B C DA B

C

A

A

B

Figure 6.2 A small tree of four objects built using (a) top-down, (b) bottom-up, and
(c) insertion construction.
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Bottom-up (or agglomerative) methods start with the input set as the leaves of the
tree and then group two or more of them to form a new (internal) node, proceeding
in the same manner until everything has been grouped under a single node (the root
of the tree). Although bottom-up methods are likely to produce better trees than the
other methods, they are also more difficult to implement.

Insertion methods build the hierarchy incrementally by inserting objects one
at a time into the tree. The insertion position is chosen so as to minimize some
cost measurement for the resulting tree. Insertion methods are considered on-line
methods, whereas both top-down and bottom-up methods are considered off-line
methods in that they require all primitives to be available before construction starts.
A benefit of on-line methods is that they allow updates to be performed at runtime.
Very little research has been done on insertion methods for constructing collision
detection hierarchies.

As noted earlier, even though most hierarchy construction takes place during a
preprocessing stage, it is still important to find fast construction methods. Any algo-
rithms of O(n2) complexity and above are likely to be too slow for building hierarchies
from a larger number of primitives.

To simplify the presentation, in the following sections the discussion has primarily
been limited to binary trees. The same methods typically also apply to n-ary or even
general trees.

6.2.1 Top-down Construction

A top-down method can be described in terms of a recursive procedure. It starts out by
bounding the input set of primitives (or objects) in a bounding volume. These primi-
tives are then partitioned into two subsets. The procedure is now called recursively to
form subhierarchies for the two subsets, which are then connected as children to the
parent volume. The recursion stops when the input set consists of a single primitive
(or, if elected, earlier than that), at which point the procedure just returns after cre-
ating the bounding volume for the primitive. The following code fragment illustrates
how top-down construction can be implemented.

// Construct a top-down tree. Rearranges object[] array during construction
void TopDownBVTree(Node **tree, Object object[ ], int numObjects)
{

assert(numObjects > 0);

const int MIN_OBJECTS_PER_LEAF = 1;
Node *pNode = new Node;
*tree = pNode;
// Compute a bounding volume for object[0], ..., object[numObjects - 1]
pNode->BV = ComputeBoundingVolume(&object[0], numObjects);
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if (numObjects <= MIN_OBJECTS_PER_LEAF) {
pNode->type = LEAF;
pNode->numObjects = numObjects;
pNode->object = &object[0]; // Pointer to first object in leaf

} else {
pNode->type = NODE;
// Based on some partitioning strategy, arrange objects into
// two partitions: object[0..k-1], and object[k..numObjects-1]
int k = PartitionObjects(&object[0], numObjects);
// Recursively construct left and right subtree from subarrays and
// point the left and right fields of the current node at the subtrees
TopDownBVTree(&(pNode->left), &object[0], k);
TopDownBVTree(&(pNode->right), &object[k], numObjects - k);

}
}

Apart from the selection of what bounding volume to use, only a single guiding
criterion controls the structure of the resulting tree: the choice of how the input set
is partitioned into two subsets. As a set of n elements can be partitioned into two
nonempty subsets in 2n−1 − 1 ways, it is clear that only a small subset of all partitions
can reasonably be considered.

To simplify the partitioning, the set is usually divided into subsets using a split-
ting hyperplane. As it is not possible to guarantee selecting a splitting plane that
does not cut across any primitives, any straddling primitives must be dealt with
when partitioning the set. One solution is to split the primitive into two, assign-
ing the parts to their respective subsets. Splitting of primitives allows the child
bounding volumes to be smaller, minimizing their overlap, possibly completely elim-
inating it. A drawback with splitting straddling primitives is that any split primitives
can again become subject to splitting, potentially giving rise to a huge increase of
primitives.

A perhaps more common solution is not to split the primitive but to let the position
of its centroid with respect to the splitting plane determine which subset it goes in.
Using the centroid to determine which subset to assign the primitive to attempts to
minimize the overlap between the sibling bounding volumes.This way, the bounding
volume will be extended in width by half the width of the primitive. If the primitive
had instead been arbitrarily assigned to either subset, in the worst case the bounding
volume for the subset could have been extended by the full width of the primitive.

6.2.1.1 Partitioning Strategies

A simple partitioning method is the median-cut algorithm. Here, the set is divided in
two equal-size parts with respect to their projection along the selected axis, resulting
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in a balanced tree. The median cut is just one possible strategy. Going back to the list
of desired properties given earlier, other possible partition strategies are:

● Minimize the sum of the volumes (or surface areas) of the child volumes. The proba-
bility of an intersection between a bounding volume and either of the two child
volumes can be expected to be proportional to their volume. Thus, minimiz-
ing the sum of the volumes effectively minimizes the likelihood of intersection.
For a ray query, the probability of a ray striking a bounding volume is instead
proportional to the bounding volume’s surface area.

● Minimize the maximum volume (surface area) of the child volumes. Whereas the
previous strategy can result in one volume much larger than the other, this
approach attempts to make the volumes more equal in size by making the larger
volume as small as possible. This results in a more balanced query, improving
worst-case behavior.

● Minimize the volume (surface area) of the intersection of the child volumes. This
strategy helps decrease the probability of both children being overlapped and
traversed into. Depending on the bounding volume used, the intersection can
be complex to construct and even to approximate.

● Maximize the separation of child volumes. Separating children, even when
not overlapping, can further decrease the likelihood of both children being
traversed into.

● Divide primitives equally between the child volumes. This strategy is the median-
cut algorithm mentioned at the start of the section. Its strength lies in giving
the most balanced hierarchy possible.

● Combinations of the previous strategies.

Partitioning stops and a node is considered a leaf when some particular stop
criterion is reached. Common stop criteria are:

● The node contains just a single primitive, or less than some k primitives.

● The volume of the bounding volume has fallen below a set cut-off limit.

● The depth of the node has reached a predefined cut-off depth.

Partitioning can also fail early, before a stop criterion triggers, for instance when:

● All primitives fall on one side of the split plane.

● One or both child volumes end up with as many (or nearly as many) primitives as the
parent volume.

● Both child volumes are (almost) as large as the parent volume.
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These failure conditions can also be treated as stopping criteria. Before stopping,
however, it is reasonable to try other partitioning criteria. For instance — for a box-
based tree — after failing to split along the longest side, first the next longest side and
then the shortest side can be tested. Only if all three fail would splitting stop. Stopping
early with k rather than just one primitive per leaf node has the benefit of using less
memory. Unfortunately, during leaf-leaf tests instead of a single primitive-primitive
test now O(k2) tests must be performed.

The choice of a partitioning plane is usually further broken down in two steps.
First an axis is selected, and then a position along this axis. These choices are
covered next.

6.2.1.2 Choice of Partitioning Axis

Out of an infinite number of possible axes, somehow a single axis must be selected
as the partitioning axis. Theoretically, it is possible to apply an iterative optimization
method (for example, hill climbing) to locate the best possible axis. Practically, such
an approach is usually too expensive even for a preprocessing step. Consequently, the
search must be limited to a small number of axes from which the best one is picked.
Common choices of axes for inclusion in this limited set are:

1. Local x, y, and z coordinate axes. These are usually included as they are easy to
perform operations with. They also form an orthogonal set, guaranteed to cover
widely different directions.

2. Axes from the intended aligned bounding volume. The local axes of item 1 correspond
to the face normals of an AABB. Some bounding volumes, such as k-DOPs, have
additional fixed axes that also form a natural choice for partitioning axes.

3. Axes of the parent bounding volume. If the hierarchy is built of OBBs, the defining axes
of the bounding OBB of the current set under partitioning are good candidate axes.
Even if the hierarchy is built from, say, spheres (which do not have any apparent
associated axes), a temporary OBB could still be computed for the parent’s data
set, from which splitting axes candidates would be extracted.

4. Axis through the two most distant points. Partitioning along the axis that goes through
the two most distant points in the input set corresponds to an attempt at minimiz-
ing the volume of the child volumes. A near-optimal approximation to the most
distant points is given by the simple O(n) heuristic implemented as the function
MostSeparatedPointsOnAABB() in Section 4.3.2.

5. Axis along which variance is greatest. Splitting along the dimension in which the
input data has the largest spread also serves to minimize the volume of the child
volumes. In an OBB hierarchy in which OBBs are covariance fitted, the axis of
largest variance simply corresponds to the axis defining the longest side of the
parent OBB.
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Even though a full optimization step is infeasible, once a partitioning axis has
been selected a small number of hill-climbing steps can be performed to improve on
the axis. One approach involves perturbing the direction of the axis, replacing the
selected axis if the perturbed axis performs better, and repeating this for as many
steps as can be afforded.

An interesting, but largely unexplored, option is to apply other statistical methods
than principal component analysis to the problem of finding partitioning axes. These
include the related methods of projection pursuit, independent component analysis, and
blind signal separation, which are all techniques for recovering unobserved individual
components from an observed mixed source. For instance, the method of projection
pursuit as a simplification can be described as a way of obtaining a direction for which
the entropy (rather than the variance) of the projected data is maximized. As entropy
is a measure of information or “interestingness,” and data clusters will have high
entropy, this direction forms a good candidate axis for partitioning the data in two or
more clusters. For an introduction to projection pursuit and independent component
analysis see [Stone98]. For blind signal separation see [Cardoso98].

6.2.1.3 Choice of Split Point

The infeasibility of optimizing over all possible axes applies to the choice of split point
as well. As there are infinitely many splitting points along the axis, again the selection
must be restricted to a small set of choices, such as:

● Median of the centroid coordinates (object median). Splitting at the object median
evenly distributes the primitives between the subsets, resulting in a balanced
tree. The median is trivially found in O(n log n) time by sorting the points, or in
O(n) time using a more sophisticated method (see [Cormen90] for details).

● Mean of the centroid coordinates (object mean). Well-balanced trees do not nec-
essarily give the best query times. Splitting along the local axis with largest
variance, [Klosowski98] report that using the object mean outperforms using
the object median. They report splitting at the mean consistently gives smaller
volume trees, with a lower number of operations performed and better query
times as a result. The object mean is found in O(n) time.

● Median of the bounding volume projection extents (spatial median). Splitting at the
spatial median (thus splitting the volume in two equal parts) is an attractive
option, as the split point is found in constant time from examining just the
bounding volume and not its contained data. This alternative is often used
when the axis is selected from the parent volume (for example, using the
longest-side rule).

● Splitting at k evenly spaced points along the bounding volume projection extents.
Instead of spending time on what amounts to “intelligently guessing”a good
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(a) (c) (b)

Figure 6.3 (a) Splitting at the object median. (b) Splitting at the object mean. (c) Splitting
at the spatial median.

split position, this brute-force alternative simply tests some small number of
evenly spaced points along the axis, picking the best one.

● Splitting between (random subset of) the centroid coordinates. Similar to the previous
method, splitting between the projected centroids attempts to minimize the
number of primitives straddling the splitting plane, at the expense of projecting
and sorting the centroids.

Figure 6.3 illustrates some of these splitting choices. Instead of directly selecting
a splitting point, the subsets can be built incrementally. For instance, [Zachmann98]
splits along the axis through the two most distant points, a and b. Starting by adding
the faces associated with a and b to the two different subsets, he assigns the remaining
primitives to the subset whose bounding volume increases less with the primitive
added. If both volumes increase by the same amount or do not increase at all (due
to the primitive being fully inside the volume), the primitive is added to the set with
fewer primitives.

Top-down construction is by far the most common approach to building bounding
volume hierarchies. The advantages include ease of implementation and fast tree
construction. The disadvantage is that as critical decisions are made early in the
algorithm at a point where all information is not available the trees are typically not
as good as possible.

6.2.2 Bottom-up Construction

In contrast to top-down methods, bottom-up methods are more complicated to
implement and have a slower construction time but usually produce the best trees
[Omohundro89]. To construct a tree hierarchy bottom up, the first step is to enclose
each primitive within a bounding volume. These volumes form the leaf nodes of the
tree. From the resulting set of volumes, two (or more) leaf nodes are selected based
on some merging criterion (also called a clustering rule). These nodes are then bound
within a bounding volume, which replaces the original nodes in the set. This pairing
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procedure repeats until the set consists of a single bounding volume representing the
root node of the constructed tree.

Node *BottomUpBVTree(Object object[], int numObjects)
{

assert(numObjects != 0);

int i, j;

// Allocate temporary memory for holding node pointers to
// the current set of active nodes (initially the leaves)
NodePtr *pNodes = new NodePtr[numObjects];

// Form the leaf nodes for the given input objects
for (i = 0; i < numObjects; i++) {

pNodes[i] = new Node;
pNodes[i]->type = LEAF;
pNodes[i]->object = &object[i];

}
// Merge pairs together until just the root object left
while (numObjects > 1) {

// Find indices of the two "nearest" nodes, based on some criterion
FindNodesToMerge(&pNodes[0], numObjects, &i, &j);
// Group nodes i and j together under a new internal node
Node *pPair = new Node;
pPair->type = NODE;
pPair->left = pNodes[i];
pPair->right = pNodes[j];
// Compute a bounding volume for the two nodes
pPair->BV = ComputeBoundingVolume(pNodes[i]->object, pNodes[j]->object);

// Remove the two nodes from the active set and add in the new node.
// Done by putting new node at index ’min’ and copying last entry to ’max’
int min = i, max = j;
if (i > j) min = j, max = i;
pNodes[min] = pPair;
pNodes[max] = pNodes[numObjects - 1];
numObjects--;

}
// Free temporary storage and return root of tree
Node *pRoot = pNodes[0];
delete pNodes;
return pRoot;

}
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Following the logic of earlier sections, one of the more meaningful merging criteria
is to select the pair so that the volume of their bounding volume is minimized. A
brute-force approach for finding which two nodes to merge is to examine all possible
pairs, compute their bounding volume, and pick the pair with the smallest bounding
volume. The brute-force approach requires O(n2) time. Repeated n − 1 times to form
a full tree, the total construction time becomes O(n3).

6.2.2.1 Improved Bottom-up Construction

A more sophisticated implementation can improve on the performance of the
brute-force approach substantially. Instead of constantly recomputing the preferred
minimum volume pairings for each node, the nodes can keep track of their preferred
pairing nodes and the new volume for the pair. Then, at any given time the node with
the smallest stored volume and its stored pairing node would be the best pair of nodes
to merge. These (node, pairing node, volume)-tuples can be effectively maintained in a
data structure such as a priority queue (heap or binary search tree) sorted on volume,
allowing fast access to the minimum volume entry.

Whenever a new pair is formed, most of the stored minimum volume pairings
remain the same. Only the stored pairings involving either one of the two newly
paired nodes are affected. More importantly, when they change, the stored volume
for the pair can only increase. This allows the pairing node to be recomputed lazily,
delaying the calculation to the time the pair is extracted from the priority queue.

In effect, the algorithm becomes an iteration wherein the currently best pair is
removed from the queue. If the node has already been paired, the pair is simply
discarded and the next best pair is extracted. If not, the best pairing node for the node
is calculated. If it matches the stored pairing node, this pair must be the minimum
volume pair and they can be merged. If it does not match, the pairing node must have
been paired in an earlier step, so the node and the new pairing node are reinserted
into the priority queue under a new volume priority value.

The missing piece is how to quickly calculate the pairing node that forms the
smallest volume when paired with a given query node. Interestingly, a dynamic
bounding volume tree (in particular, the top-down incremental insertion algorithm
presented later on) is a suitable data structure for holding the bottom-up fragments
of the tree as it is constructed! Given such a structure, the pairing node is located
by searching from the top of the tree, descending into all children the query volume
intersects. When the query volume is found in the hierarchy, the pairing node is
the other child of the parent volume (that is, the sibling node). The following code
fragment demonstates how the improved algorithm can be implemented.

Node *BottomUpBVTree(Object object[], int numObjects)
{

PriorityQueue<Pair> q;
InsertionBVTree t;
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// Bound all objects in BV, forming leaf nodes. Insert leaf nodes into a
// dynamically changable insertion-built BV tree
InitializeInsertionBVTree(t, object, numObjects);

// For all nodes, form pair of references to the node and the node it pairs
// best with (resulting in the smallest bounding volume). Add all pairs to
// the priority queue, sorted on increasing volume order
InitializePriorityQueue(q, object, numObjects);

while (SizeOf(q) > 1) {
// Fetch the smallest volume pair from the queue
Pair *p = Dequeue(q);

// Discard pair if the node has already been paired
if (HasAlreadyBeenPaired(p->node)) continue;

// Recompute the best pairing node for this node to see if
// the stored pair node is still valid
Node *bestpairnode = ComputeBestPairingNodeUsingTree(t, p->node);
if (p->pairnode == bestpairnode) {

// The store pair node is OK, pair the two nodes together;
// link the nodes together under a new node
Node *n = new Node;
n->left = p->node;
n->right = p->pairnode;

// Add new node to BV tree; delete old nodes as not possible to pair with
Delete(t, p->node);
Delete(t, p->pairnode);
Insert(t, n);

// Compute a pairing node for the new node; insert it into queue
Node *newbestpairnode = ComputeBestPairingNodeUsingTree(t, n);
p = Pair(n, newbestpairnode);

} else {
// Best pair node changed since the pair was inserted;
// update the pair, reinsert into queue and try again
p = Pair(p->node, bestpairnode);

}
Enqueue(q, p, VolumeOfBVForPairedNodes(p)); // Queue, pair, priority

}
return Dequeue(q)->node;

}

A similar approach, specifically for building sphere trees, is presented in [Omo-
hundro89].
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6.2.2.2 Other Bottom-up Construction Strategies

When grouping two objects under a common node, the pair of objects resulting in
the smallest bounding volume quite likely corresponds to the pair of objects nearest
each other. As such, the merging criterion is often simplified to be the pairing of the
query node with its nearest neighbor.

Locating the point (or object) out of a set of points closest to a given query point
is known as the nearest neighbor problem. This problem has been well studied, and
many different approaches have been suggested. For a small number of objects, a
low-overhead brute-force solution is preferred. For larger numbers, solutions based
on bucketing schemes or k-d trees are typically the most practical. A k-d tree solution
is quite straightforward to implement (see Section 7.3.7 for details). The tree can be
built top down in, on average, O(n log n) time, for example by splitting the current
set of objects in half at the object median.

A nearest neighbor query is limited to the relevant parts of the k-d tree by keeping
track of a bound for the nearest object found so far (see Section 7.3.7). Initially, this
value is set to the distance from the query object to the root node object. As closer
objects are found, the bound is decreased accordingly. Halfspaces farther away than
the bound distance are pruned away, as they cannot possibly contain a nearer object.
When neither halfspace can be discarded, the halfspace containing the query object is
usually descended into first, as this is more likely to lead to the bound being lowered
and the search sped up.

The k-nearest neighbor problem can be solved by the same basic method just by
adding a priority queue of k objects that keeps track of the k-nearest objects seen so
far, updating the bound distance from the last (farthest) element of the queue. On
average, both search and insertion into a k-d tree can be performed in O(log n) time.
k-d trees are discussed further in Chapters 7 and 13.

With the methods presented earlier, no guarantees were made as far as tree balance
was concerned, and it is in fact easy to find input configurations that cause degenerate
trees.Tree balance can be improved by forming not just one but several pairs of closest
points during each iteration. For instance, when all possible n/2 pairs are formed at
each iteration the resulting tree becomes balanced.This would also reduce the number
of iterations needed to form the tree, from O(n) to O(log n), improving construction
time. As forming all possible pairs would result in a worse tree over just forming one
pair, a good compromise is to form k pairs for some small value of k.

For forming larger clusters of objects, specific clustering algorithms can be used.
One such approach is to treat the objects as vertices of a complete graph and compute
a minimum spanning tree (MST) for the graph, with edge weights set to the distance
between the two connected objects or some similar clustering measure. The MST is
then broken into components by deleting edges that are“too long,”and the remaining
set of disjoint (but internally connected) components are the object clusters.

The MST can be computed using, for instance, Prim’s algorithm or Kruskal’s algo-
rithm. Both of these are greedy algorithms, meaning that they always select to perform
the locally best-looking alternative. Greedy algorithms often perform quite well on
most problems, but they are not generally optimal. However, the MST problem is
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optimally solved using either one of these two methods. Of the two, Prim’s algo-
rithm is probably both conceptually simpler and easier to implement. It starts with
any vertex from the initial set and grows a tree from it by finding the lowest cost edge
between an unconnected vertex and the tree. This edge and the vertex are then con-
nected to the tree and the process is repeated until all vertices have been connected.
For additional details on computing MSTs, including descriptions of both Prim’s and
Kruskal’s algorithms, see [Cormen90] and the delightful book of [Skiena98].

6.2.2.3 Bottom-up n-ary Clustering Trees

One interesting method utilizing an MST calculation as a key step is the bottom-up
clustering method presented in [Garcia99]. Given a set of n bounding spheres, this
method begins by constructing the adjacency graph between the spheres. The edges
of this graph contain grouping costs (described in material to follow) between pairs
of spheres. From the graph, an MST is calculated, from which in turn a hierarchy of
spheres is constructed.

As the number of edges in the complete adjacency graph is O(n2), which would
severely impact the running time of the MST algorithm, Garcia et al. limit the number
of connections each bounded object can have to some constant number k, reduc-
ing the complexity to O(n). By using an appropriate space-partitioning strategy, the
reduction could be limited to be approximately the k-nearest neighbors and still run
in O(n) time.

A clustering function is associated with the remaining edges. Given two spheres
Si and Sj — with radii ri and rj, respectively, and with a distance di j between their
centers — Garcia et al. first define the attraction between Si and Sj as ai j = rirj

/
d2

i j.
This attraction measure becomes larger the larger and closer the two spheres are,
mimicking an intuitive perception of how clusters would form.

To avoid large clusters being created early in the build process, the final clustering
function is defined as r3

i j/ai j, where ri j is the radius of the smallest bounding sphere
encompassing Si and Sj. This helps in penalizing the grouping of two spheres of high
attraction when their resulting bounding sphere would be very large.

Once the adjacency graph with associated edge costs has been formed, the MST
of the graph is computed. The edges of the MST are then sorted in ascending order
of cost. From the sorted edges they construct what they call a binary clustering tree
(BCT) by considering an edge at a time, combining the two nodes associated with
the edge into a new cluster. If a node is already part of a cluster, the existing cluster
is grouped into the new cluster instead of the node. As clusters are formed, they are
bounded by the smallest bounding sphere containing the bounding spheres of the
nodes. They are also assigned the cost of the connecting edge as a grouping cost.
The construction of the BCT from the MST takes O(n log n) time.

At this point it would be possible to stop and use the resulting binary tree. However,
as described, a final step of the algorithm converts the BCT into an n-ary tree by
merging connected clusters that have similar grouping costs under a single node.
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After the MST has been calculated and the edges sorted into a list in ascending order
of weight, the weights are grouped into a set of families.

The first two weights in this list form the first family F0. Defining ui and si as the
mean and standard deviation of the weights in family Fi, a subsequent weight w on
the list is considered belonging to the family Fi if w < ui + 2si. Whenever a weight
is added to a family, the associated mean and standard deviation of the family are
updated. When a weight is found not to belong to a family, it and the next weight
on the list form a new family. This process repeats until all weights on the list have
been assigned to a family. Finally, when all families have been determined the BCT
is transformed into an n-ary tree by merging all adjacent clusters that belong to the
same family.

6.2.3 Incremental (Insertion) Construction

The last type of construction approach is the incremental or insertion method. Here,
the tree is built by inserting one object at a time, starting from an empty tree. Objects
are inserted by finding the insertion location in the tree that causes the tree to grow
as little as possible according to a cost metric. Normally the cost associated with
inserting an object at a given position is taken to be the cost of its bounding volume
plus the increase in volume its insertion causes in all ancestor volumes above it in
the tree.

If the object being inserted is large compared to the existing nodes, it will tend
to end up near the top of the hierarchy. Smaller objects are more likely to lie within
existing bounding volumes and will instead end up near the bottom. When the new
object is far away from existing objects it will also end up near the top. Overall, the
resulting tree will therefore tend to reflect the actual clustering in the original set of
objects.

Because the structure of a tree is dependent on the objects inserted into it and
because insertion decisions are made based on the current structure, it follows that
the order in which objects are inserted is significant. Using the objects in the order
defined by the authoring tool can result in bad hierarchies that do not reflect the actual
object clustering. Sorting the data suffers from the same problem, only more so. To
avoid degenerate behavior, the best approach seems to be to randomly shuffle the
objects before insertion.

A simple insertion method implementation would be to perform a single root-leaf
traversal by consistently descending the child for which the insertion into would be
cheaper. Then the insertion node would be selected from the visited nodes along the
traced path such that the total tree volume would be minimized. As an O(log n) search
is performed for each object inserted, the total complexity becomes O(n log n). A more
advanced implementation would examine the entire tree, proceeding in a best-first
manner by maintaining a search front using a priority queue, descending into the
currently best node at all times. Both methods are described in [Omohundro89] in
terms of creating sphere trees.
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Insertion strategies can be as fast as or even faster than top-down methods and
could produce better results. They are considered on-line methods in the sense that
not all objects need be present when the process starts.That they are on-line methods
also allows them to be used for updating an already existing tree, making them
useful for dynamic systems. It is therefore somewhat surprising that very few collision
detection systems report using incremental construction methods.

6.2.3.1 The Goldsmith–Salmon Incremental Construction Method

An interesting algorithm for constructing bounding volume hierarchies for use in
ray tracing is described in [Goldsmith87], with improvements found in [Haines88].
As before, objects are inserted one at a time, at the position deemed most optimal.
A single path from root to leaf is traversed by descending into the child with the
smallest increase in bounding volume surface area, were the object to be inserted as
a child of it.

The reason surface area is used follows from a result of projective geometry, stating
that the average projected area of a convex 3D volume is one-fourth its surface area.
Furthermore, the conditional probability that a random ray hits a confined bound-
ing volume B if it hits a parent bounding volume A can therefore be shown to be
proportional to the ratio of their surface areas. The root volume can conveniently be
used as volume A throughout all computations, allowing the division to be avoided
by directly comparing the conditional probabilities instead.

As surface areas are only used in ratios, they only have to be given within a constant
factor, as the constant factor cancels out. For a bounding box of dimensions x, y, and
z, the area can be computed as x(y + z) + yz, and for a sphere of radius r the area can
be computed as r2.

Now when a ray hits the root volume at least an additional k intersection tests
must be performed, where k is the number of children of the root. This property also
holds for any node, not just the root. Accounting for the conditional probability that
a node is hit only if its parent is hit, the total average cost for hitting a node becomes k
times the node’s surface area divided by the surface area of the root node. Specifically,
the cost of the root node is the number of children it has, and the cost of a leaf node
is zero (as its cost was included in the cost of the parent). The total cost for a tree can
now be calculated in O(n) time as the sum of the cost of all nodes.

The tree cost can also be computed incrementally as the tree is built. This is imple-
mented by passing on an incremental “inheritance cost” to the child nodes as the
hierarchy is traversed during insertion. This cost corresponds to the increase in vol-
ume for ancestor volumes, due to the insertion of the object into the tree. To this is
then added the cost of inserting the object at the current position according to the
three different choices for insertion:

1. The object and a leaf node are paired under a new node. The incremental change to
the inheritance cost for this case is d = 2Area(new node). This case also applies
when pairing the object and the old root under a new root.
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2. The object is added as a new child to an existing node. The cost of the exist-
ing old node is c = k Area(old node). The new node will have a cost of
c′ = (k + 1)Area(new node). The incremental cost is therefore d = c′ − c =
k (Area(new node) − Area(old node)) + Area(new node).

3. The object is added lower in the tree by means of recursing into a child volume. In
this case, the number of children remains the same for the currently exam-
ined node. However, the node may change in size as a result of inserting the
object lower in the tree. The difference in cost becomes d = k (Area(new node) −
Area(old node)).

After examining the increase in cost for all available insertion alternatives, the least
expensive option is chosen at each step. It may happen that two or more subtrees
have the same increase in cost. Typically, this occurs toward the end of the con-
struction when objects lie fully within already existing bounding volumes. In this
case, Goldsmith and Salmon suggest breaking ties by inserting the object into the
bounding volume whose center it is closest to, or to use random selection.

Haines points out that a better selection rule is to apply insertion methods 1 and
2 to all available insertion alternatives and pick the one giving the best result. As a
convincing example he considers a node with two children, one large (50% of the
parent) and one quite small (1% of the parent). A new small object is added that
would cause no increase to the larger child but triple the size of the smaller child
to 3%. According to the original method, the new object would be inserted below
the larger child. However, when the root node is intersected the larger child is hit
50% of the time, and therefore the new object must also be intersected half the time.
In comparison, if the new object had been inserted below the smaller child the new
object would only be intersection tested 3% of the time. By applying both methods
1 and 2 and picking the node corresponding to the smaller value of the different
increases in cost, the better insertion position is selected.

6.3 Hierarchy Traversal

To determine the overlap status of two bounding volume hierarchies, some rule must
be established for how to descend the trees when their top-level volumes overlap. Is
the one hierarchy fully descended before the other one is? Are they both descended?
This descent rule is at the heart of the overlap code, and several alternatives are
explored ahead.

The two most fundamental tree-traversing methods are breadth-first search and
depth-first search (Figure 6.4a and b). Breadth-first search (BFS) explores nodes at
a given depth before proceeding deeper into the tree, whereas depth-first search
(DFS) proceeds into the tree, searching deeper rather than wider, backtracking up
the tree when it reaches the leaves. Pure breadth-first and depth-first traversals are
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(a) (b) (c)

Figure 6.4 (a) Breadth-first search, (b) depth-first search, and (c) one possible best-first search
ordering.

considered uninformed or blind search methods. Uninformed search methods do not
examine and make traversal decisions based on the data contained in the traversed
structure; they only look at the structure itself to determine what nodes to visit next.

In contrast to the uninformed methods is the group of informed search methods.
These attempt to utilize known information about the domain being searched through
heuristic rules. One such method is best-first search (Figure 6.4c). Best-first search is
a greedy algorithm that always moves to the node that scores best on some search
criterion (for example, distance to a set goal). It determines the best-scoring move
by maintaining a priority queue of nodes, expanding the currently best node (first on
the queue) and adding its children to the queue, repeating until the search fails (by
running out of nodes) or the goal is found.

DFS seems to be the most popular choice for collision detection systems. DFS is
often enhanced by a simple heuristic to guide the search along, improving on the
basic blind DFS approach without the overhead of, say, a full best-first search.

Compared to DFS, BFS suffers from the fact that stacking all nodes during traversal
requires a substantial amount of memory. For close-proximity queries, two binary
trees with n leaves each can require stack space for as many as n2 node-node pairs at
one time. BFS is primarily used in interruptible collision detection systems for which
it is important that if (or when) a query is interrupted a roughly equal amount of time
has been spent in all parts of the hierarchy.

Similarly, BFS must be well tuned to give performance improvements over a
heuristic-guided DFS-based traversal method. Any extra time spent on performing
clever node reordering and managing a priority queue is time the depth-first method
has already had in descending into child nodes.

6.3.1 Descent Rules

Returning to the issue of how the hierarchies are descended, given two hierarchies A
and B there are several possible traversal alternatives. For instance, one can be fully
traversed before the other, or they can be descended simultaneously. As an illustrative
example (due to [Chung98]), consider a bird (hierarchy A) weaving through the mile-
long pipes of an oil refinery (hierarchy B). Several possible descent rules present
themselves.
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● Descend A before B is descended. Fully descending into the leaves of A before
starting to descend into B can be quite bad. In terms of the example, if the bird
is somewhere in the middle of the oil refinery the leaves of the bird hierarchy will
all overlap the top volume of the refinery. This descent rule is the worst possible
choice, as hierarchy B will be recursed over as many times as there are leaves in
hierarchy A. The hierarchy for A is clearly counterproductive here, resulting in
more work than not having a hierarchy at all!

● Descend B before A is descended. Descending the larger refinery hierarchy before
descending the hierarchy of the bird is slightly better. However, the refinery
model could still contain many parts (such as nuts and bolts) quite a bit smaller
than the bird, resulting in a similar situation as before, only reversed. Many
leaves of B still end up being tested against the whole of A.

● Descend the larger volume. By dynamically determining which hierarchy is cur-
rently the larger one and descending into it, the problems with the two previous
methods are circumvented. Initially, the refinery hierarchy is descended into, but
when the small nuts and bolts parts are encountered the traversal switches over
to descend the bird hierarchy, then back again when the bird parts become
smaller than the nuts and bolts. This is one of the most effective descent rules in
that it provides the largest reduction of total volume for subsequent bounding
volume tests. As before, useful metrics for the size comparison include volume,
surface area, and the maximum dimension length.

● Descend A and B simultaneously. Instead of just descending one hierarchy, both
hierarchies can be descended into at the same time. Simultaneous descent has
the benefit of more quickly traversing to the leaves, making fewer internal node-
node (as well as node-leaf) overlap tests and involving no evaluation overhead
for the descent criterion. However, in the bird-refinery example this rule will
not prune the search space as effectively as the previous rule.

● Descend A and B alternatingly. The hierarchies can also be descended into in a
lock-step fashion, in which first A is descended into, then B, then A again, and so
on.This descent rule is very simple to implement, and just as with simultaneous
traversal no descent criterion need be evaluated.

● Descend based on overlap. Another option is to prioritize descent to those parts
in which the hierarchies overlap more before descending parts in which there is
less overlap. The idea is that the more two bounding volumes overlap the more
likely their objects are colliding.

● Combinations of the previous or other complex rules based on traversal history.

Which type of traversal is most effective depends entirely on the structure of the
data, as indicated by the refinery example. The following sections explore framework
implementations for the previous rules based on depth-first traversal. For very large
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data sets, hybrid approaches such as a grid of trees is likely to be more effective than
a single tree hierarchy. Hybrid approaches are discussed in Section 7.3.8.

6.3.2 Generic Informed Depth-first Traversal

Many descent rules can be handled by a simple procedure that recurses over the two
hierarchies. First, if their top bounding volumes do not overlap the procedure just
returns. If not, then if both supplied nodes are leaf nodes the low-level routine for
colliding the contained geometry is called. Otherwise, the descent rule is evaluated
and the code is recursively called for the child nodes of the hierarchy selected by the
rule to descend into. Directly translated into code, this becomes:1

// Generic recursive BVH traversal code.
// Assumes that leaves too have BVs
void BVHCollision(CollisionResult *r, BVTree a, BVTree b)
{

if (!BVOverlap(a, b)) return;
if (IsLeaf(a) && IsLeaf(b)) {

// At leaf nodes. Perform collision tests on leaf node contents
CollidePrimitives(r, a, b);

} else {
if (DescendA(a, b)) {

BVHCollision(a->left, b);
BVHCollision(a->right, b);

} else {
BVHCollision(a, b->left);
BVHCollision(a, b->right);

}
}

}

In the code, the function BVOverlap() determines the overlap between two bounding
volumes. IsLeaf() returns true if its argument is a leaf node and not an internal
node. CollidePrimitives() collides all contained primitives against one another,
accumulating any reported collisions to the supplied CollisionResult structure.

DescendA() implements the descent rule, and returns true if object hierarchy A
should be descended or false for object hierarchy B. It is important that this routine
correctly deal with cases in which the leaves of A and B have been reached, so that
an attempt to traverse into a leaf is not made. The descent rules of “descend A,”

1. The code format used here is inspired by [Gottschalk00].
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“descend B,” and “descend larger”can easily be implemented in this framework as
follows.

// ‘Descend A’ descent rule
bool DescendA(BVTree a, BVTree b)
{

return !IsLeaf(a);
}

// ‘Descend B’ descent rule
bool DescendA(BVTree a, BVTree b)
{

return IsLeaf(b);
}

// ‘Descend larger’ descent rule
bool DescendA(BVTree a, BVTree b)
{

return IsLeaf(b) || (!IsLeaf(a) && (SizeOfBV(a) >= SizeOfBV(b)));
}

Although the recursive version of the traversal code is quite easy to read and under-
stand, it is not the most effective form of the code. An iterative version with explicit
stacking of variables avoids the overhead of the recursive function calls. More
importantly, it allows the code to exit early if just a single contact point is sought.

The iterative version follows. Note that to traverse the tree in the same order
as the recursive version of the code, pushes to the stack must be given in reverse
order.

// Non-recursive version
void BVHCollision(CollisionResult *r, BVTree a, BVTree b)
{

Stack s = NULL;
Push(s, a, b);
while (!IsEmpty(s)) {

Pop(s, a, b);

if (!BVOverlap(a, b)) continue;
if (IsLeaf(a) && IsLeaf(b)) {

// At leaf nodes. Perform collision tests on leaf node contents
CollidePrimitives(r, a, b);
// Could have an exit rule here (eg. exit on first hit)
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} else {
if (DescendA(a, b)) {

Push(s, a->right, b);
Push(s, a->left, b);

} else {
Push(s, a, b->right);
Push(s, a, b->left);

}
}

}
}

Here, the functions Push(), Pop(), and IsEmpty() implement an abstract stack data
type. Studying the flow of the nonrecursive version, it soon becomes clear that unnec-
essary work is performed in pushing a new node pair onto the stack, only for it to be
immediately popped off during the next iteration of the main loop. The redundant
work can be avoided by slightly rearranging the code to allow the last stacked values
to be assigned directly to the variables instead.

// Stack-use optimized, non-recursive version
void BVHCollision(CollisionResult *r, BVTree a, BVTree b)
{

Stack s = NULL;
while (1) {

if (BVOverlap(a, b)) {
if (IsLeaf(a) && IsLeaf(b)) {

// At leaf nodes. Perform collision tests on leaf node contents
CollidePrimitives(r, a, b);
// Could have an exit rule here (eg. exit on first hit)

} else {
if (DescendA(a, b)) {

Push(s, a->right, b);
a = a->left;
continue;

} else {
Push(s, a, b->right);
b = b->left;
continue;

}
}

}
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if (IsEmpty(s)) break;
Pop(s, a, b);

}
}

All recursive traversal functions can be transformed into iterative versions in the
manner described here.

6.3.3 Simultaneous Depth-first Traversal

Simultaneous traversal cannot be directly handled by the previous framework.
Because both bounding volumes are descended into at the same time, instead of
two recursive calls there are now four for the node-node case. Code for simultaneous
traversal follows.

// Recursive, simultaneous traversal
void BVHCollision(CollisionResult *r, BVTree a, BVTree b)
{

if (!BVOverlap(a, b)) return;
if (IsLeaf(a)) {

if (IsLeaf(b)) {
// At leaf nodes. Perform collision tests on leaf node contents
CollidePrimitives(r, a, b);
// Could have an exit rule here (eg. exit on first hit)

} else {
BVHCollision(a, b->left);
BVHCollision(a, b->right);

}
} else {

if (IsLeaf(b)) {
BVHCollision(a->left, b);
BVHCollision(a->right, b);

} else {
BVHCollision(a->left, b->left);
BVHCollision(a->left, b->right);
BVHCollision(a->right, b->left);
BVHCollision(a->right, b->right);

}
}

}
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It is interesting to compare the number of operations involved in the various types
of traversals. As it would take two additional recursive calls for the previous meth-
ods to examine the same four node-node pairs the simultaneous traversal descends
into, simultaneous traversal can be expected to require about two-thirds the work of
the directed methods (which is strictly true only in the case in which all nodes are
visited).

Specifically, consider the worst-case scenario in which two complete binary trees
of n levels each are in a relative position such that all bounding volume leaves are
overlapping but there is no collision. For this case it can be shown that a simultaneous
traversal will perform (22(n−1) − 1)/3 internal node-node tests and 22(n−1) leaf-node,
node-leaf, and leaf-leaf tests, totaling (22n − 1)/3 tests.

In comparison, the leaf-directed “descend A” and “descend B” rules perform
2n−1 −1 internal node-node tests and (2n −1)2n−1 leaf-node, node-leaf, and leaf-leaf
tests for a total of 22n−1 − 1 tests. The limit as n gets large between these two totals
verifies the two-thirds ratio informally stated previously.

It is more difficult to provide any specific numbers for the informed traversal
method, as the traversal pattern is completely dependent on the descent rule used.
One thing that can be said for sure is that the total number of tests performed will be
the same as for the leaf-directed traversals, as the code has the same structure and all
possible traversal paths are formed. It is difficult to say whether using a simultaneous
traversal saves anything over using a directed method such as “descend larger,”
which performs a more effective search by guiding it to where it is best needed.

6.3.4 Optimized Leaf-direct Depth-first Traversal

A drawback with simultaneous and heuristically guided methods is that collision tests
involving the same leaves are likely to be spread out over time. If these tests involve
some sort of transformation of the leaf data or the leaf bounding volumes (as is likely),
these transformations have to be repeated each time the leaf is involved in a query.
If these transformations are expensive, a caching mechanism can be implemented to
hold the data after it has been initially transformed.

A compromise alternative to implementing a sophisticated caching scheme is the
“descend A”rule. By traversing down to the leaves of hierarchy A before hierarchy B
is descended into, it becomes very easy to transform the leaves of A just once. This
compromise does not serve as a full replacement for a caching mechanism, as only
the A hierarchy will effectively be cached this way. However, as it is so simple to
implement it can serve as an indication of how much of an improvement a caching
scheme would actually bring. A code fragment follows.

// This routine recurses over the first hierarchy, into its leaves.
// The leaves are transformed once, and then passed off along with
// second hierarchy to a support routine
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void BVHCollision(CollisionResult *r, BVTree a, BVTree b)
{

if (!BVOverlap(a, b)) return;
if (!IsLeaf(a)) {

BVHCollision(a->left, b);
BVHCollision(a->right, b);

} else {
a2 = TransformLeafContentsOnce(a);
BVHCollision2(r, a2, b);

}
}

// The support routine takes what is known to be a leaf and a full
// hierarchy, recursing over the hierarchy, performing the low-level
// leaf-leaf collision tests once the hierarchy leaves are reached
void BVHCollision2(CollisionResult *r, BVTree a, BVTree b)
{

if (!BVOverlap(a, b)) return;
if (!IsLeaf(b)) {

BVHCollision2(a, b->left);
BVHCollision2(a, b->right);

} else {
// At leaf nodes. Perform collision tests on leaf node contents
CollidePrimitives(r, a, b);

}
}

6.4 Sample Bounding Volume Hierarchies

The hierarchy construction methods described earlier in this chapter are all generic
in the sense that they apply to any type of bounding volume. To further illustrate how
they can be used, this section elaborates on a few specific methods suggested in the
literature and used in actual systems. These should not be interpreted as the final
word on any one technique, merely as one way of implementing something.

6.4.1 OBB Trees

The OBB-tree hierarchy construction method presented in [Gottschalk96] proceeds
in a top-down fashion. Initially a tight-fitting OBB is obtained for the original set of
primitives. The OBB is fitted by aligning the box axes with the eigenvectors computed
from the continuous formulation of covariance computed across the whole faces of
the primitives, as described in Section 4.4.3. Given this box, the set is partitioned by
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splitting along the longest axis of the OBB. Thanks to the covariance-fitted OBB, this
axis corresponds to the axis of greatest spread. The object mean (computed from the
projection of the primitive vertices onto the axis) is used as the splitting point.

Primitives straddling the splitting plane are assigned to the corresponding subset
of the halfspace their centroids are in. If the longest axis fails to create two nonempty
subsets, they instead try the other axes in decreasing order of length. If all axes fail,
the set is considered indivisible. However, in the publicly available implementation
(called RAPID) if the initial partitioning fails instead of trying alternative axes the set
is simply partitioned into two equal parts based on the object median.

A strength of OBB trees is that they perform extremely well in situations of parallel
close proximity between two surfaces; that is, when all points of the first surface are
close to some point on the other surface. It can also be shown that hierarchies of OBBs
converge quadratically to match the bounded geometry, whereas AABBs and spheres
converge only linearly. In other words, if O(m) OBBs are required to approximate
some geometry within a given tolerance O(m2) AABBs or spheres would be required
for the same task. Both NV and NP in the cost function tend to be smaller for OBB
trees compared to AABB and sphere trees. However, the cost for the overlap test
between two OBBs, CV , is still about a magnitude slower than the overlap tests for
AABBs and spheres.

6.4.2 AABB Trees and BoxTrees

In [Bergen97] the author describes constructing binary AABB trees using top-down
recursive subdivision. At each step the set of primitives is tightly bounded with an
AABB. The set is then partitioned into two parts by splitting the AABB orthogonally
along its longest side. Primitives are assigned to the two subsets based on which side
of the splitting plane the midpoint of the projection ends up on. This assignment
method minimizes the overlap between the AABBs of the subsets, as no primitive
can now extend beyond the splitting plane by more than half its length.

The recursive construction procedure is then repeated until the subset contains one
primitive. The splitting point is chosen as the spatial median, splitting the AABB in
half. van den Bergen reports better performance with this method than with splitting
at the object median. In the rare case in which all primitives end up in one of the
subsets the set is instead split based on the object median.

The informed traversal method is used along with the “descend larger” rule to
traverse the trees. Instead of realigning theAABB trees as their objects rotate, the OBB
test is used to compare the — after transformation — relatively oriented AABBs. As
the same relative orientation is shared between all transformedAABB pairs, the trans-
formation matrix needs to be computed just once per query, simplifying the OBB test.

van den Bergen also reports obtaining a speed increase from performing only the
first 6 of the 15 axis tests for the rotated AABB tests. This is a trade-off that results
in an overall cheaper test but also false hits that give rise to more (costly) primitive
tests. The same optimization applied to OBB trees resulted in no change.
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The BoxTree presented in [Zachmann95] is also a recursively constructed hierarchy
of AABBs defined in the object’s coordinate frame. Here, however, as a bounding box
is cut into two (not necessarily equal size) parts by a splitting plane the resultant sub-
boxes directly form the AABBs. Primitives fully inside either sub-box are assigned to
the corresponding set. Any primitives straddling the splitting plane are sent to both
boxes, resulting in a duplication of primitives. Overall, the construction is very similar
to that of a k-d tree.

As primitives straddling the splitting plane are duplicated, the choice of splitting
plane is made in an attempt to balance the tree and to minimize the number of
straddling primitives. Before attempting to find this splitting plane, Zachmann first
checks to see if there is a splitting plane that trims away a“large”(as large as possible)
part of empty space from the AABB, making it fit the contained geometry better.
Large is here defined by the ratio of the empty box to its parent being greater than
a preset constant. All three AABB axes are tested during this operation and the one
with the best result is used. In addition to stopping the recursion when a certain
depth has been reached or the set of primitives is less than some particular limit,
it is also stopped if one of the sub-boxes contains almost as many primitives as its
parent box.

As the BoxTrees are constructed in model space, during testing they have to be
transformed as the objects are transformed. However, as all AABBs share the same
orientation as the top node, most calculations can be reused during the hierarchy
traversal. To test the rotated AABBs (now OBBs), the separating-axis test can be used,
now greatly simplified by the fact that the 15 axes remain the same throughout the test.
Zachmann also describes an alternative clipping-based overlap test. For traversing
the trees, Zachmann uses the simultaneous traversal method.

In a later presentation, Zachmann describes an alternative implementation in
which instead of directly using the splitting plane to determine the boundary of the
sub-boxes he determines the two planes that bound the straddling primitives on
either side along the splitting axis. The“left”sub-box then becomes the left part of the
parent AABB, split at the position of the rightmost of the two planes, and vice versa
for the “right”sub-box. In other words, the child AABBs are identical to the parent
AABB except for one side. In this representation both children are represented using
just two (float) values, given the parent volume [Zachmann00].

Both van den Bergen’s and Zachmann’s methods work on arbitrary polyhedra or
polygon soups. As such, they will only reliably detect surface collisions. They do not
detect when one object is fully inside the other.

6.4.3 Sphere Tree Through Octree Subdivision

Thanks to its simplicity, a popular approach to building a sphere tree is to construct
it from an octree subdivision of the object volume [Tzafestas96]. First, the object
is enclosed in the smallest encompassing bounding cube. This cube is recursively
subdivided into eight equal-size parts, or octants. Any octant that contains part of
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the object is recursively divided until some preset tree depth is reached. During the
construction, each occupied octree node is circumscribed with a sphere, forming the
actual sphere tree. The octant center point is used as the sphere center. For a regular
cube with side s, the sphere radius r is given by r = s

√
3
/

2. If the initial bounding
volume is a general AABB instead of a cube, the radius for an octant with sides x, y,
and z becomes r = √

x2 + y2 + z2
/

2.
To eliminate redundant spheres that do not contribute to the actual collision detec-

tion it is possible to stop recursing into any octree nodes that are occluded on all
sides [O’Sullivan99]. This may cause collisions with interior parts to go undetected,
however.

The sphere tree resulting from this approach has a fairly loose fit. Hubbard sug-
gests using simulated annealing to tighten the spheres around the object, while still
maintaining conservative coverage of the object [Hubbard95]. This involves mak-
ing random changes to the spheres, accepting those producing a tighter sphere,
sometimes accepting those that are worse to fight getting stuck in local minima.
Unfortunately, as Hubbard points out, measuring the tightness of spheres around
objects is difficult. The simulated annealing step is also quite slow and can produce
very irregular distributions of spheres.The practical value of this technique is therefore
somewhat limited.

6.4.4 Sphere Tree from Sphere-covered Surfaces

Using the basic top-down construction method, [Quinlan94] computes sphere trees
from an input set of small spheres covering all surfaces of the original object. The
surface covering is performed in a scan conversion-like process whereby each polygon
in the input set is overlaid with a regular grid of spheres, with the sphere centers in
the plane of the polygons. Each of these spheres, forming the leaf nodes of the final
tree, is labeled with the polygon it was created to cover.

The hierarchy is built by dividing the full set of leaf spheres into two roughly
equal-size parts. Two subtrees are constructed by recursively calling the algorithm
with each of the subsets. These subtrees are then combined into a tree by adding
them as children to a new parent node. At each step, the set of spheres is divided into
two subsets by enclosing the sphere centers in an AABB. The AABB is split in half
along its longest side and spheres are assigned to the subsets based on which AABB
half their center is in.

Note that this approach assumes a surface representation based on (convex)
polygons. It will not detect collisions with the interior of an object.

6.4.5 Generate-and-Prune Sphere Covering

An interesting method that does not construct a hierarchy as such but simply com-
putes a collection of spheres, the union of which completely encloses a given object,
was suggested by Greenspan and Burtnyk [Greenspan96]. Their algorithm consists
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of two steps. First, a generation step is performed in which the object is fully covered
by a large number of spheres. Then, in a second pruning step any and all redundant
spheres are removed. Redundant here means that if the spheres were removed the
object would still be fully covered by the remaining spheres.

The generation part is controlled by two parameters. The first parameter, overshoot,
controls how far beyond the surface of the object a sphere is allowed to extend.
The second parameter, spacing, specifies the minimum allowable distance between
any two sphere centers. The algorithm proceeds by creating a tight uniform 3D grid
around the object. The grid cell side is set to the spacing parameter. All cells are
labeled interior, exterior, or surface, depending on whether they are fully inside the
object, fully outside the object, or neither. Each cell is also assigned a value, initially
zero. A sphere is then centered at every grid cell not marked exterior. Sphere radii
are set so that spheres do not extend outside object boundaries by more than the
overshoot parameter.

In the pruning step, spheres can be redundant either by being fully enclosed within
a single (larger) sphere or by being enclosed by the union of a set of two or more
spheres. In the first case, each sphere is simply compared to all other spheres to see if
it is redundant, in which case it is removed.This process requires O(n2) sphere-sphere
comparisons. To handle the second case, the remaining set of spheres is iterated over
and for each cell fully contained within the sphere its associated value is incremented
by one. After this is done, each grid cell labeled surface having a value of 1 must be
contained in a single sphere. For the object to be fully enclosed, all such spheres
must be included in the final set. These spheres are identified, removed, and added to
the final set. The cell is labeled processed, indicating that it should not be considered
henceforth.

When all such spheres have been added to the final set, and no more cells with a
value of 1 exist, all remaining surface cells must be covered by two or more spheres.
Conversely, each remaining sphere must be fully enclosed by two or more spheres.
Thus, any sphere can be deleted from the candidate set while still maintaining full
object coverage. As the sphere is deleted, the grid cells contained by it are decremented
by one. Whenever this results in a grid cell with value 1, the corresponding sphere is
added to the final set in the same way as before. Processing stops when no candidate
spheres are remaining or, if desired, simply when all surface cells have been marked
processed. Even though their algorithm does not proceed to build a hierarchy from
the final sphere set, any of the previously described hierarchy construction methods
could now be applied with the spheres as the input set to produce a sphere tree, if
needed.

6.4.6 k-DOP Trees

In [Klosowski98] k-DOP trees were used for detection collisions between a flying
object and a large static environment. Using top-down construction, they bound
the input set of triangles in a k-DOP and then partition the input set in two parts,
recursing over the parts. The recursion is stopped when the nodes contain a preset
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threshold t of triangles. For the static hierarchy they used t = 1, and for the flying
object t = 40. Query traversal was such that the environment was fully descended
into before the object was descended.

Four different partitioning strategies were compared for the construction of the
k-DOP trees. The choice of axis was limited to one of the x, y, or z coordinate axes
based on the criteria of minimizing the sum of volumes, minimizing the maximum
volume, using the axis with the largest variance, and splitting along the longest axis of
the parent volume. The mean and the median of the axis-projected triangle centroid
coordinates were both used to determine the splitting point.

Their results showed that splitting at the mean always produced a hierarchy with
a smaller total volume than splitting at the median. The “minimize sum” strategy
consistently produced the smallest total volume hierarchy,with“minimize maximum,”
“largest variance,” and “longest axis”producing results roughly 7%, 10%, and 33%
worse, respectively. They also examined using more than the three coordinate axes,
specifically all k/2 defining directions for the k-DOPs, reporting it not really providing
an improvement. Preprocessing time increased by about 30% on average, however.

To tumble the k-DOPs during updating, they used the more expensive hill-climbing
method for the root node, as it and nearby nodes are most frequently visited. The
approximate DOP-of-DOP method was used for all other nodes because of the
(much) lower overhead.

Also working with k-DOPs, [Konečný98] instead uses the axis of largest variance
among the set of k/2 fixed-direction axes for the k-DOPs (measured over the projected
centroids). He then partitions the primitives in two sets of equal size.

[Klosowski98] compared 6-, 14-, 18-, and 26-DOPs and found 18-DOPs perform-
ing the best. As a contrast, [Zachmann98] compared 6-, 8-, and 14-DOPs, finding
6-DOPs (that is, AABBs) performing better than the other two. In a later work, using
the nonstandard k-DOPs described in Chapter 4, Zachmann reports examining the
full range k = [6 . . . 32]. Although no k was optimal in all tests, k = 24 performed
best overall [Zachmann00]. As these tests were performed under varying conditions,
it is difficult to compare the results directly.

Using doubles (8 bytes) for vertex components and 4-byte integers for triangle
vector indices, Klosowski et al. report they require (16k + 108)n bytes to store all n
triangles of the environment, including the hierarchy itself. For k = 6, 14, 18, and
26 this becomes 204, 332, 396, and 524 bytes per input triangle, respectively. This
should be compared to the 412 bytes per input triangle claimed for the OBB-based
collision detection package RAPID (also using doubles). What is worse, for a data set
of 169,944 triangles they report a 26-DOP hierarchy being an obscene 69 MB in size!

6.5 Merging Bounding Volumes

When hierarchies are created top-down or incrementally, bounding volumes
are typically created from scratch using the dimensions of the contained data.
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During bottom-up construction an alternative to the rather costly operation of fitting
the bounding volume directly to the data is to merge the child volumes themselves
into a new bounding volume. This section presents such merging operations for
AABBs, spheres, OBBs, and k-DOPs.

6.5.1 Merging Two AABBs

Computing the enclosingAABB for two givenAABBs is trivial: the sides of the encom-
passing AABB are selected to coincide with the minimum and maximum sides of the
two given volumes. For instance, for the min-maxAABB representation, the enclosing
AABB is computed by the following code.

// Computes the AABB a of AABBs a0 and a1
void AABBEnclosingAABBs(AABB &a, AABB a0, AABB a1)
{

for (int i = 0; i < 2; i++) {
a.min[i] = Min(a0.min[i], a1.min[i]);
a.max[i] = Max(a0.max[i], a1.max[i]);

}
}

Other AABB representations result in equally trivial implementations.

6.5.2 Merging Two Spheres

To compute the minimum sphere bounding two other spheres, the calculation is
best split into two cases: where either sphere is fully enclosed by the other and
where they are either partially overlapping or disjoint. To distinguish between the
two cases, let the two spheres be S0 and S1, with centers C0 and C1 and radii r0 and
r1, respectively (Figure 6.5). Let d = ‖C1 − C0‖ be the distance between C0 and C1.
Then, if |r1 − r0| ≥ d, one sphere is fully inside the other. A simple geometric argument
shows why this is so. Start with both spheres centered in the same location. Now
d = 0, and the distance between the sphere surfaces is |r1 − r0|. However, clearly this
is also the maximum distance by which the sphere centers can be separated (and d
increased) before the inner sphere penetrates out through the surface of the outer
sphere, and the result follows.

In the first case, in which one sphere is inside the other, no new sphere has to
be calculated and the larger sphere can simply be returned. This avoids an expensive
square root operation. For the second case, in which the spheres are either partially
overlapping or are disjoint, the radius r of the new sphere is half the maximum
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Figure 6.5 Merging spheres S0 and S1.

distance between the sphere surfaces; thus:

r = (d + r0 + r1)
/

2.

The sphere center C is computed by adjusting C0 by r0 units away from C1 and then
back toward C1 by r units:

C = C0 − r0(C1 − C0)
/ ‖C1 − C0‖ + r(C1 − C0)

/ ‖C1 − C0‖
= C0 + (r − r0)(C1 − C0)

/ ‖C1 − C0‖ .

The code for this follows.

// Computes the bounding sphere s of spheres s0 and s1
void SphereEnclosingSpheres(Sphere &s, Sphere s0, Sphere s1)
{

// Compute the squared distance between the sphere centers
Vector d = s1.c - s0.c;
float dist2 = Dot(d, d);

if (Sqr(s1.r - s0.r) >= dist2) {
// The sphere with the larger radius encloses the other;
// just set s to be the larger of the two spheres
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if (s1.r >= s0.r)
s = s1;

else
s = s0;

} else {
// Spheres partially overlapping or disjoint
float dist = Sqrt(dist2);
s.r = (dist + s0.r + s1.r) * 0.5f;
s.c = s0.c;
if (dist > EPSILON)

s.c += ((s.r - s0.r) / dist) * d;
}

}

6.5.3 Merging Two OBBs

Computing an OBB from two OBBs is a bit more complicated. A straightforward
solution is to use the techniques presented in Chapter 4. For instance, the 16 vertices
of the two boxes can be passed directly to the ComputeOBB() function (which uses the
eigenvectors of the covariance matrix for the points as the box axes). This could be
further combined with the min-principal-component technique described in Section
4.4.4. The latter is used for the bottom-up construction in the BoxTree algorithm
described in [Barequet96].

A drawback with these techniques is the cost of the iterative algorithms used to
compute the eigenvectors, making them less suitable for real-time use. An alternative
noniterative solution is presented in [Eberly00]. He suggests combining the rotations
of the two OBBs by converting them into quaternions, interpolating halfway between
them and then converting back to a rotation matrix, now determining the axes of the
OBB. The extents are then established through projection onto these axes. Note that
in the pseudocode presented in [Eberly00] the OBB center is determined before the
OBB extents are calculated. In general, this will not fit the OBB as tightly as possible.
To make the OBB tight with respect to the two OBBs, the center point should be
calculated after the extents have been established.

6.5.4 Merging Two k-DOPs

Merging two k-DOPs is just as easy as merging two AABBs. For each k-DOP axis, the
bounding k-DOP is defined by the smaller of the min values and the larger of the max
values for the two DOPs to be bounded. Per definition, no planes can bound tighter
than these do. The implementation is strikingly similar to the AABB merging code.
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// Computes the KDOP d of KDOPs d0 and d1
void KDOPEnclosingKDOPs(KDOP &d, KDOP d0, KDOP d1, int k)
{

for (int i = 0; i < k / 2; i++) {
d.min[i] = Min(d0.min[i], d1.min[i]);
d.max[i] = Max(d0.max[i], d1.max[i]);

}
}

6.6 Efficient Tree Representation and Traversal

So far, hierarchy construction and traversal has been described in a fairly abstract
manner. However, for an industrial-strength implementation it is important to opti-
mize both the traversal code and the tree representation itself. As memory accesses
and branch prediction misses tend to cause large penalties in modern architectures,
two obvious optimizations are to minimize the size of the data structures involved
and to arrange the data in a more cache-friendly way so that relevant information is
encountered as soon as possible.

This section describes a few data representations and traversal optimizations that
help speed up collision queries. However, always remember that due to difficult-to-
predict cache behaviors some of these more advanced techniques might not always
provide the expected speedups. If this is the case, consider that keeping the traversal
code as short and straightforward as possible might in fact be a simple way of making
it faster. Efficient tree representation is revisited in Chapter 13, in the context of
memory optimization.

6.6.1 Array Representation

Assume a complete binary tree of n nodes is given as a collision hierarchy. This tree
can be stored into an array of n elements by mapping its nodes in a breadth-first
level-by-level manner.

// First level
array[0] = *(root);
// Second level
array[1] = *(root->left);
array[2] = *(root->right);
// Third level
array[3] = *(root->left->left);
...
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Figure 6.6 A binary tree (top) stored using a pointerless array representation (bottom).
Children of node at array position i can be found at positions 2i + 1 and 2i + 2. Note
wasted memory (shown in gray).

Given this setup, it is easy to verify that being at the node stored at array[i]
the corresponding left child to the node will be found at array[2*i+1] and its right
child at array[2*i+2]. Consequently, instead of representing the tree using nodes
containing left and right pointers to the node’s children it is possible to completely
remove all pointers and store the pointerless nodes in an array in the manner just
described (Figure 6.6). Knowing this child-indexing rule, the actual remapping can
effectively be written as a simple recursive routine.

// Given a tree t, outputs its nodes in breadth-first traversal order
// into the node array n. Call with i = 0.
void BreadthFirstOrderOutput(Tree *t, Tree n[], int i)
{

// Copy over contents from tree node to breadth-first tree
n[i].nodeData = t->nodeData;
// If tree has a left node, copy its subtree recursively
if (t->left)

BreadthFirstOrderOutput(t->left, n, 2 * i + 1);
// Ditto if it has a right subtree
if (t->right)

BreadthFirstOrderOutput(t->right, n, 2 * i + 2);
}

When the tree is perfectly balanced (as the assumed complete tree would be),
this saves memory space and pointer reads during tree traversal. Unfortunately, for
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a nonbalanced tree, space still has to be allocated as if the tree were complemented
with extra nodes to make it fully balanced. What is worse, even a single extra node
added to a fully balanced tree will add one full extra level to the tree, doubling its
storage space!

As such, this representation is most useful when the actual node data (its “pay-
load”) is small compared to the combined size of the child pointers, or when the
tree really is fully balanced (or just a few nodes off on the short side from being
fully balanced). For instance, when a hierarchy has been built using a median-based
splitting criterion that guarantees some level of near balance, this could be a useful
representation.

6.6.2 Preorder Traversal Order

Even when no guarantees can be made about the balance of the tree hierarchy, it is
still possible to output the data in a more effective representation. If the tree nodes are
output in preorder traversal order, the left child when present will always immediately
follow its parent.This way, although a link is still needed to point at the right child only
a single bit is needed to indicate whether there is a left child (immediately following
the current node). Figure 6.7 illustrates a binary tree and its nodes output in preorder
traversal order.

A routine taking an ordinary pointer-based tree and outputting it in preorder traver-
sal order into an array is fairly straightforward to implement. The only complication
is in updating the right-link pointers to point at a node location that is unknown at
the time the parent node is written to memory. These can either be handled through
a second pass through the tree or (better) through stacking and backpatching, as in
the following code.
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Figure 6.7 Same tree as in Figure 6.6 but with nodes output in preorder traversal order.
Nodes now need a pointer to the right child (shown as an arrow). They also need a bit to
indicate if the node has a left child (which when present always immediately follows the
parent node). Here, this bit is indicated by a gray triangle.
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// Given a tree t, outputs its nodes in preorder traversal order
// into the node array n. Call with i = 0.
int PreorderOutput(Tree *t, Tree n[], int i)
{

// Implement a simple stack of parent nodes.
// Note that the stack pointer ‘sp’ is automatically reset between calls
const int STACK_SIZE = 100;
static int parentStack[STACK_SIZE];
static int sp = 0;

// Copy over contents from tree node to PTO tree
n[i].nodeData = t->nodeData;
// Set the flag indicating whether there is a left child
n[i].hasLeft = t->left != NULL;
// If node has right child, push its index for backpatching
if (t->right) {

assert(sp < STACK_SIZE);
parentStack[sp++] = i;

}
// Now recurse over left part of tree
if (t->left)

i = PreorderOutput(t->left, n, i + 1);
if (t->right) {

// Backpatch right-link of parent to point to this node
int p = parentStack[--sp];
n[p].rightPtr = &n[i + 1];
// Recurse over right part of tree
i = PreorderOutput(t->right, n, i + 1);

}
// Return the updated array index on exit
return i;

}

In addition to reducing the needed number of child pointers by half, this represen-
tation also has the benefit of being quite cache friendly. The left child is very likely
already in cache, having been fetched at the same time as its parent, making traversal
more efficient.

6.6.3 Offsets Instead of Pointers

A typical tree implementation uses (32-bit) pointers to represent node child links.
However, for most trees a pointer representation is overkill. More often than not, by
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allocating the tree nodes from within an array a 16-bit index value from the start of
the array can be used instead. This will work for both static and dynamic trees. If the
tree is guaranteed to be static, even more range can be had by making the offsets
relative from the parent node.

At the cost of some extra traversal overhead, it is also possible to combine the
pointer and index representation. One extra reserved bit could indicate that the stored
value should instead be used as an index into a separate array of either pointers or
wider offset values.

6.6.4 Cache-friendlier Structures (Nonbinary Trees)

Execution time in modern architectures is often more limited by cache issues related to
fetching data from memory than the number of instructions executed. It can therefore
pay off to use nonconventional structures that although more complicated to traverse
take up less memory and have a more cache-friendly access pattern.

One such possible representation is merging sets of three binary tree nodes (parent
plus left and right child) into a “tri-node,”a fused node containing all three nodes.
The original set of three nodes has two internal links connecting the parent node with
the children and four external links connected to the rest of the tree. The new node
does not need any internal links, just the four external links.

For a four-level (15-node) complete binary tree, 14 internal links are needed. The
corresponding tri-node tree has two levels (four nodes) and just four internal links
(Figure 6.8). A six-level (63-node) binary tree has 62 internal links; the tri-node tree
only 20. In general, the corresponding tri-node tree requires a third of the links of
a complete binary tree, an even better reduction than with the preorder traversal
order representation. In addition, tri-nodes can be output in a breadth-first fashion,
potentially allowing the top n levels of the hierarchy to stay in cache.

The drawback is the additional processing required to traverse the tree. In addition,
when a tree is not complete nodes go empty in the tri-node, wasting memory. A flag
is also needed to indicate whether the node is used or empty. For this reason, tri-node
trees are better suited for dense trees. For sparse trees, the preorder traversal order
representation is preferable.
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Figure 6.8 (a) A four-level binary tree. (b) The corresponding two-level tri-node tree.
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It is of course possible to combine this representation with previous methods. For
instance, storing a tri-node tree in preorder traversal order with parent-relative offsets
instead of child pointers would reduce the memory used for links to a minimum.
A related technique is discussed in [Intel99], in which instead of a single sphere
bounding volume the union of three spheres is used as the bounding volume, as
three spheres fit nicely within a cache line.

6.6.5 Tree Node and Primitive Ordering

When, say, a simultaneous traversal is used four recursive calls are generated in
the node-node part of the traversal algorithm. As the algorithm was presented in
Section 6.3.3, the order in which these four calls were issued was completely deter-
mined by the relative ordering of the nodes within the two trees. If the current
query is for testing rather than finding collision, or if distance pruning is used to
cull away branches of the hierarchies, it is desired to find intersections as early as
possible.

One possibility would be to attempt to figure out at runtime the best order in which
to issue the recursive calls. This is not necessarily easy, as nothing is known about
the structure further down the hierarchies at this point. A more feasible alternative
(with no runtime overhead) is to rearrange the children of a parent node heuristically
during construction, so that the child more likely to lead to an early intersection
comes first. Following [Haines91a], a few possible ways to order the nodes (for not
necessarily binary trees) include:

● Arrange children so that leaves come before nodes. If the collision status is deter-
mined at the primitive level, as all primitives are contained in the leaves, by
having the leaves come before nonleaf nodes primitives are tested as early as
possible.

● Put the smallest subtrees first. By considering the nodes as roots of hierarchy
subtrees, the same argument applies. By having nodes with fewer descendants
first, leaves should be reached earlier.

● Sort children by their hits-to-tests ratio. Based on actual usage, rearrange the
hierarchy so that nodes actually involved in positive collision queries come first
and those never or rarely involved come last.

● Sort children from near to far along predominant query direction. If tests are coming
predominantly from a specific direction, such as from above for a hierarchy
representing ground, it makes sense to sort children so that those corresponding
to higher ground come first.

The same ordering principle applies to the primitives stored within a leaf, of
course. When the leaf contains more than one primitive, the primitives can be sorted
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according to similar rules. For instance, if different types of primitives are used, such
as both triangles and quads as well as Bezier or NURBS surfaces, it makes sense to
test the polygons first before performing the more expensive tests involving surface
primitives.

It is also possible to arrange primitives to obtain extra culling information for
free. Say an OBB tree is built from a set of polygons representing a static world
that is collided with largely from above. The leaf OBBs of this tree are unlikely to
have polygons extending all the way into their topmost corner. Let the polygons
be rearranged so that the polygon with the highest vertex comes first in the list of
polygons. Then rearrange this polygon’s vertices so that the topmost vertex comes
first in its set of vertices. Now the plane defined by the world up normal and the first
vertex stored in the leaf (which is in a known position) can be used to quickly cull
collisions with the OBB before other, more expensive, tests are performed.

Other possible arrangements include sorting vertices so that the two vertices form-
ing the longest edge come first, and placing the vertex first, which together with
the polygon centroid (which is easily computed from the stored vertices) forms the
bounding sphere of the polygon (the centroid being the sphere center and the vertex
defining the sphere radius).

6.6.6 On Recursion

Traversing of trees (binary or otherwise) is naturally expressed using recursion.
However, as was pointed out in Section 6.3.2, recursion is not the most effective
form in which to express the code. It suffers from a few other drawbacks. One prob-
lem is that exiting the recursion and immediately returning a value is not directly
supported in most languages. Using a flag variable to tell the code to exit is not just
an overly complicated and contrived solution but requires the recursion to“unwind”
all the way to the top.

The ideal solution is to rewrite any recursive code using explicit stacking, in the
manner described in Section 6.3.2. As the code is no longer recursive, it is possible
to exit the function at any time. Further benefits include the ability to interrupt and
resume the code at any point by simply saving away a few variable values. Having
an explicit stack pointer makes it easy to detect bugs in the traversal code that might
otherwise have caused an infinite recursion, and the code is overall easier to step
through during debugging. An explicit stack pointer also implicitly provides a stack
depth, making it easy to limit traversals to a specified maximum depth if so desired.

Not using recursion also avoids the overhead of recursive function calls. It is also
likely to use less stack space, as only one stack frame for the local variables is ever
created, reducing possible data cache trashing.

All of these considerations aside, during early development much can be said for
the benefits of using easy-to-read recursive code for quick prototyping and testing.
Fortunately, in both C and C++ there are alternatives to using nonrecursive code just
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to be able to make an early exit out of a recursive test query. In C (and to a lesser extent
in C++) another option is to use the library function setjmp() to exit a recursion. The
test query version of the recursive generic informed depth-first traversal code can
now be written as:

#include <setjmp.h>
jmp_buf gJmpBuf;

int BVHTestCollision(BVTree a, BVTree b)
{

int r = setjmp(gJmpBuf);
if (r == 0) {

BVHTestCollisionR(a, b);
return 0;

} else return r - 1;
}
// Generic recursive BVH traversal code
// assumes that leaves too have BVs
void BVHTestCollisionR(BVTree a, BVTree b)
{

if (!BVOverlap(a, b))
longjmp(gJmpBuf, 0 + 1); /* false */

if (IsLeaf(a) && IsLeaf(b)) {
if (PrimitivesOverlap(a, b))

longjmp(gJmpBuf, 1 + 1); /* true */
} else {

if (DescendA(a, b)) {
BVHTestCollisionR(a->left, b);
BVHTestCollisionR(a->right, b);

} else {
BVHTestCollisionR(a, b->left);
BVHTestCollisionR(a, b->right);

}
}

}

Note that as longjmp() cannot return a value of 0 it also cannot return a bool value of
false. To work around this slight complication, a small value (here 1) must be added
to the returned value, to be subtracted off in the main routine. In C++, instead of
using setjmp() a more appropriate choice might be to use exception handling to
accomplish the same thing.
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6.6.7 Grouping Queries

In games it is not uncommon to have a number of test queries originating from the
same general area. A common example is testing the wheels of a vehicle for collision
with the ground. Ideally, these queries can be prearranged into a hierarchy, allowing
any of the previously described traversal methods to be used. However, in some cases
it may be impractical to precompute a hierarchy. In the vehicle example, this is true
perhaps because the vehicle morphs between various drastically different shapes,
with bits potentially blown off.

Now if the wheels are tested for collision independently, because the vehicle is
small with respect to the world the query traversals through the topmost part of
the world hierarchy will most likely be the same. As such, it is beneficial to move
all queries together through the world hierarchy up until the point where they start
branching out into different parts of the tree.

One approach is to compute a hierarchy dynamically for the query objects, which
will automatically move the objects as one. For just a few objects, such as four wheels,
this is probably overkill. Instead, the objects can simply be grouped within a single
bounding volume. This volume is then “dropped down” the hierarchy it is tested
against until it reaches a node where it would have to be dropped down both chil-
dren. At this point in the tree the current node can effectively be used as an alternative
root node for the individual collision queries of the objects with the world hierar-
chy. Assuming the original individual queries were spheres tested against a world
hierarchy, this would appear as follows.

Sphere s[NUM_SPHERES];

...

for (int i = 0; i < NUM_SPHERES; i++)

if (SphereTreeCollision(s[i], worldHierarchy))

...

A simple addition to the SphereTreeCollision() routine allows an alternative start
node to be used for the test.

bool SphereTreeCollision(Sphere s, Tree *root)
{

// If an alternative start node has been set, use it;
// if not, use the provided start root node
if (gStartNode != NULL) root = gStartNode;

...original code goes here...
}
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Then, by providing functionality to set and reset the alternative start node

// Specifies an alternative starting node, or none (if null)
Tree *gStartNode = NULL;

// Set a new alternative start node
void BeginGroupedQueryTestVolume(Sphere *s, Tree *root)
{

// Descend into the hierarchy as long as the given sphere
// overlaps either child bounding sphere (but not both)
while (root != NULL) {

bool OverlapsLeft = root->left && SphereOverlapTest(s, root->left.bvSphere);
bool OverlapsRight = root->right && SphereOverlapTest(s, root->right.bvSphere);
if (OverlapsLeft && !OverlapsRight) root = root->left;
else if (!OverlapsLeft && OverlapsRight) root = root->right;
else break;

}
// Set this as the new alternative starting node
gStartNode = root;

}

// Reset the alternative start node
void EndGroupedQueryTestVolume(void)
{

gStartNode = NULL;
}

the original code can now very easily be transformed into a grouped query, with
substantial savings in traversal time.

Sphere s[NUM_SPHERES];
...
// Compute a bounding sphere for the query spheres
Sphere bs = BoundingSphere(&s[0], NUM_SPHERES);
BeginGroupedQueryTestVolume(bs, worldHierarchy);
// Do the original queries just as before
for (int i = 0; i < NUM_SPHERES; i++)

if (SphereTreeCollision(s[i], worldHierarchy))
...

// Reset everything back to not used a grouped query
EndGroupedQueryTestVolume();
...
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Note that the original query code remains the same. It has only been bracketed
by the grouped query code, making it easy to post-fit this type of optimization to
existing code.

The type of optimization done here can be seen as a form of caching, and it would
be possible to keep track of the alternative starting node from frame to frame, incre-
mentally updating it by moving up and down the tree as the group of objects moved.
The next section looks further at caching as a means of optimizing collision queries.

6.7 Improved Queries Through Caching

Caching serves as a very important means of optimizing collision queries. The basic
idea is very simple. By keeping track of various information about the last collision
query (or queries) an object was involved in, that information can often be used in
a subsequent query to speed it up by “jump-starting” the calculations, thanks to the
spatial and temporal coherence objects tend to exhibit.

The information cached can be classified in two types: positive (meaning it helps
in more quickly detecting that the two objects are colliding) and negative (meaning it
aids in determining the separation of the two objects). Specific pieces of information
that can help quickly answer decision problems are referred to as witnesses.

In addition to caching witnesses and start nodes in hierarchies, caching can also
be used for instance to keep track of both upper and lower distance bounds as an aid
to excluding or including objects from further query processing. The caching ideas
presented in the following sections are in no way intended as a full coverage but as
a means of conveying through a few examples how caching can be used.

To facilitate caching it is helpful to associate an identity number with each unique
query. This number can then serve as a key for a hash table in which the cached data
is kept.

Something to keep in mind is that game restarts, object teleportation, activation
or deactivation, and similar events can potentially wreak havoc on a caching system.
It is important that cache structures are reset or invalidated whenever required by
exception events such as the foregoing.

6.7.1 Surface Caching: Caching Intersecting Primitives

The most obvious caching scheme is to store one or more overlapping primitives from
each object when the objects are found colliding. These primitives serve as witnesses
of the collision.The next time the same two objects are tested for overlap these cached
primitives can be tested first to see if they are still in collision. If so, a test query can
immediately return without having to examine the full hierarchies, worst case. The
drawback is that this type of caching method only works for test queries. If for instance
all contacts are needed, no caching scheme of this type is able to provide a correct
answer.
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There are two possible cache organizations for holding the stored primitives: a
shared or a distributed cache. A shared cache is a global cache that contains any
number of pair entries. A distributed cache is a local cache wherein the primitives are
stored within the objects themselves.

A shared cache is typically implemented as a hash table wherein the colliding
primitives are registered under a key constructed from the two object IDs (such as
their pointer addresses). The benefit with a shared cache is that the system easily
handles an object being involved in any number of collisions. Drawbacks include the
cost of performing a hash table lookup to see if there is a pair, and having to remove
the pair when the objects are no longer in collision. The latter can be a quite difficult
problem, and is typically handled using a lazy updating scheme in which the pair is
deleted only when a subsequent query fails. Unfortunately, this solution keeps dead
pairs in the cache for longer than necessary, filling the cache and potentially causing
degenerate behavior.

The benefit of a distributed cache is that cached primitives are instantly available.
However, if only a single primitive is cached per object the contact with multiple
objects will cause the cache to be prematurely flushed, rendering it useless. For
instance, assume there are three objects in a row: A, B, and C. A is in contact with B,
which in turn is in contact with C. When A and B are first tested, a witness primitive
from A is stored in A, and a witness primitive from B in B. Then B is tested against C,
and a different witness primitive from B is stored in B, flushing the previously stored
primitive. When A and B are tested again, the two cached primitives do not collide
and a full collision pass has to be performed [Rundberg99].

This problem can be addressed by increasing the number of primitives that can be
cached within an object. However, by allowing n primitives to be cached, up to n2

tests will now have to be performed to determine if the objects are colliding. As such,
n is limited to about two to six primitives for practical reasons. A shared or global
collision cache could be implemented as in the following code fragment.

int ObjectsCollidingWithCache(Object a, Object b)
{

// Check to see if this pair of objects is already in cache
pair = FindObjectPairInCache(a, b);
if (pair != NULL) {

// Is so, see if the cached primitives overlap; if not,
// lazily delete the pair from the collision cache
if (PrimitivesOverlapping(pair->objAPrimitives, pair->ObjBPrimitives))

return COLLIDING;
else DeleteObjectPairFromCache(a, b);

}
// Do a full collision query, that caches the result
return ObjectCollidingCachePrims(Object a, Object b);

}
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int ObjectCollidingCachePrims(Object a, Object b)
{

if (BVOverlap(a, b)) {
if (IsLeaf(a) && IsLeaf(b)) {

if (CollidePrimitives(a, b)) {
// When two objects are found colliding, add the pair
// along with the witness primitives to the shared cache
AddObjectPairToCache(a, b);
return COLLIDING;

} else return NOT_COLLIDING;
} else {

...
}

}
...

}

[Rundberg99] goes further than just testing the cached primitives. When the
cached primitives do not overlap, he argues there is a chance that their neigh-
boring primitives might be in collision and proceeds to test primitives around the
cached primitives before eventually giving up and testing from the root. This of
course assumes a representation in which neighboring primitives are easily acces-
sible. Rundberg reports an average speedup of 1.1 to 2.0, with no slowdowns.

6.7.2 Front Tracking

A number of node-node comparisons are made when two object hierarchies are
tested against each other. These node pairs can be seen as forming the nodes of a
tree, the collision tree. For informed and alternating descent rules, the collision tree is
binary; for the simultaneous descent rule, it is a 4-ary tree.

When the two objects are not colliding, as tree traversal stops when a node-node
pair is not overlapping, all internal nodes of the collision tree correspond to colliding
node-node pairs, and the leaves are the node-node pairs where noncollision was first
determined.

Consequently, the collection of these leaf nodes, forming what is known as
the front of the tree, serves as witness to the disjointedness of the two objects
(Figure 6.9).

As objects typically move smoothly with respect to each other, this front can for
the most part be expected to stay the same or just change locally. Therefore, instead of
repeatedly building and traversing the collision tree from the root, this coherence can
be utilized by keeping track of and reusing the front between queries, incrementally
updating only the portions that change, if any.
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Figure 6.9 (a) The hierarchy for one object. (b) The hierarchy for another object. (c) The
collision tree formed by an alternating traversal. The shaded area indicates a front in which
the objects are (hypothetically) found noncolliding.

Following Li and Chen [Li98], assume the front contains n leaf nodes and that
the collision tree is binary (implying that, for instance,“descend larger”is used as the
descent rule). In a binary tree of n leaves, it is easy to show the number of internal
nodes is n − 1. When a front is maintained, if the front moves down these internal
nodes correspond to the work saved in using the front as a starting point as opposed
to testing from the root.

If no front nodes move, which only happens when their parent nodes remain in
collision, at least the n/2 parent nodes have to be checked for collision. The total
number of nodes tested starting from the front is n + n/2 = 3n/2. Again, this results
in a saving over the 2n nodes tested in traversing from the root.

When the front nodes move up, the number of nodes examined depends on how
many levels they move. If they move just one level, the total number of nodes
tested is therefore n + n/2 + n/4 = 7n/4. However, in this case traversing from
the root is significantly cheaper, as only an order of n nodes is tested, or exactly
n/2 + (n/2 − 1) = n − 1.

Given the probabilities pD, pS, and pU — for a node to move down, stay the same,
or move up — the expected number of nodes saved by maintaining a separation
list is

s = pDn + pS(2n − 3n/2) + pU (n − 7n/4)

= pDn + pSn/2 − pU3n/4.

Assume it is equally likely for a front node to move up, stay the same, or move down,
that is pD = pS = pU = 1/3. The saved number of nodes is then just s = n/4, which is
not quite as effective as one might first think.

Clearly, the majority of the cost in updating the front lies in checking whether a
node is staying put or moving up in the collision tree. In addition, to be able to test
parent nodes for overlap parent pointers would have to be maintained in the data
structure holding the front.

Here Li and Chen suggest a clever alternative approach. They simply examine the
size of the front (measured in number of nodes) from one query to the next. If the



284 Chapter 6 Bounding Volume Hierarchies

size increases, they predict the objects are getting closer and they keep the front for
the next query. If instead the size stays the same, they predict the objects are moving
away and the front is rebuilt from scratch in the next query. This way, parent nodes
of the nodes in the front are never examined, and thus the major cost is avoided. An
analysis similar to the previous gives the new cost function as

s = pDn + pSn − pU0,

which for pD = pS = pU = 1/3 is s = 2n/3, a drastic improvement. More importantly,
this function is nonnegative for any probability distribution and thus this method
should never perform worse than a traversal from the root.

To avoid a full rebuild in volatile situations in which the front would move up
only to immediately move down, they further propose deferring the rebuild by one
query. In effect, the front is rebuilt from scratch if it has not grown for two consecutive
queries. From their tests on a sphere tree, Li and Chen report an average speedup of
40% for the basic front-updating method. With deferred updating, they achieved an
average speedup of 84%, not far from the optimal speedup of 100%. When updating
was deferred for more than one query, performance degraded.

Overall, because the saving is proportional to the number of leaf nodes in the
front maintaining a front is more useful for larger hierarchies. For small hierarchies in
which only a few nodes can be skipped, the overhead is likely to exceed any savings.

6.8 Summary

Bounding volume hierarchies can be used to accelerate both broad- and narrow-
phase processing. As a broad-phase method, BVHs are constructed to hold the objects
in a scene and to cull groups of distant objects (when the groups’bounding volumes
do not intersect the query object’s bounding volume). As a narrow-phase method,
BVHs are constructed over the parts of an (often complex) object, allowing pairwise
tests to restrict primitive-primitive tests to those parts of the objects whose bounding
volumes overlap.

This chapter looked at desired characteristics for BVHs. It also explored three
classes of construction strategies for BVHs: top-down, bottom-up, and insertion-
based construction methods. For top-down methods it becomes important to perform
successive partitionings of objects into subgroups, and several partitioning strategies
were suggested. Three types of traversal methods were also explored: breadth-first,
depth-first, and best-first search orderings. When two BVHs are tested against each
other it is meaningful to consider in what order the subtrees are visited, and in this
regard several descent rules were stated.

The end of the chapter explored the efficiency of tree representations and traversals.
These topics are revisited in Chapter 13.



Chapter 7

Spatial Partitioning

Recall from Chapter 2 that pairwise processing is expensive, and that the idea of
broad-phase processing is to restrict pairwise tests to objects near enough that they
could possibly intersect. Spatial partitioning techniques provide broad-phase process-
ing by dividing space into regions and testing if objects overlap the same region of
space. Because objects can only intersect if they overlap the same region of space, the
number of pairwise tests is drastically reduced. This chapter explores three types of
spatial partitioning methods: grids, trees, and spatial sorting.

7.1 Uniform Grids

A very effective space subdivision scheme is to overlay space with a regular grid.
This grid divides space into a number of regions, or grid cells, of equal size. Each
object is then associated with the cells it overlaps. As only objects overlapping a
common cell could possibly be in contact, in-depth tests are only performed against
those objects found sharing cells with the object tested for collision. The farther
apart two objects are the less likely they overlap the same cells, and with an appro-
priately spaced grid only objects very likely to overlap would be subject to further
pairwise tests.

Thanks to the uniformity of the grid, accessing a cell corresponding to a particular
coordinate is both simple and fast: the world coordinate values are simply divided
by the cell size to obtain the cell coordinates. Given the coordinates to a specific cell,
neighboring cells are also trivial to locate.This conceptual as well as implementational
simplicity has made grids both a good and popular choice for space subdivision.
Grids are known by many other names, including regions, buckets, sectors, and
zones.

285
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(a) (b) (c) (d)

Figure 7.1 Issues related to cell size. (a) A grid that is too fine. (b) A grid that is too coarse
(with respect to object size). (c) A grid that is too coarse (with respect to object complexity).
(d) A grid that is both too fine and too coarse.

7.1.1 Cell Size Issues

In terms of performance, one of the most important aspects of grid-based methods
is choosing an appropriate cell size. There are four issues related to cell size that can
hamper performance (Figure 7.1).

1. The grid is too fine. If the cells are too small, a large number of cells must be updated
with associativity information for the object, which will take both extra time and
space. The problem can be likened to fitting elephant-size objects into matchbox-
size cells. Too fine of a grid can be especially bad for moving objects, due to the
number of object links that must be both located and updated.

2. The grid is too coarse (with respect to object size). If the objects are small and the grid
cells are large, there will be many objects in each cell. As all objects in a specific cell
are pairwise tested against each other, a situation of this nature can deteriorate to
a worst-case all-pairs test.

3. The grid is too coarse (with respect to object complexity). In this case, the grid cell
matches the objects well in size. However, the object is much too complex, affect-
ing the pairwise object comparison.The grid cells should be smaller and the objects
should be broken up into smaller pieces, better matching the smaller grid cell size.

4. The grid is both too fine and too coarse. It is possible for a grid to be both too fine and
too coarse at the same time. If the objects are of greatly varying sizes, the cells can
be too large for the smaller objects while too small for the largest objects.

Case 4 is addressed in more detail in Section 7.2, on hierarchical grids. Taking the
remaining cases into consideration, cell size is generally adjusted to be large enough
(but not much larger) to fit the largest object at any rotation. This way, the number
of cells an object overlaps is guaranteed to be no more than four cells (for a 2D grid;
eight for a 3D grid). Having objects overlap only a small number of cells is important.
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It limits the amount of work required to insert and update objects in the grid, and to
perform the actual overlap tests.

Under the normal assumption of frame-to-frame noninterpenetration of objects,
with cells and objects being almost the same size the maximum number of objects in
a cell is bounded by a small constant. Consequently, resolving collisions within a cell
using an all-pairs approach results in only a small number of pairwise object tests.

With cell size selected, grid dimensions are determined by dividing the diameter
of the simulation space by the diameter of the cells. If memory use for storing the
grid itself is a concern, the cell size can be increased at the cost of possible decreased
performance. However, more grid cells do not necessarily have to translate into use
of more memory (more on this in the following sections).

In ray tracing a popular method for determining the grid dimensions has been the
n1/3 rule: given n objects, divide space into a k × k × k grid, with k = n1/3. The ratio of
cells to objects is referred to as the grid density. Recent results indicate that a density
of 1 is not very good, and a much higher density is suggested [Havran99].

It is sometimes claimed that it is difficult to set a near-optimal cell size, and that
if cell size is not correctly set grids become expensive in terms of performance or
prohibitively memory intensive (see, for example, [Cohen95]). Practical experience
suggests that this is not true. In fact, for most applications although it is easy to pick
bad parameter values it is equally easy to pick good ones.

7.1.2 Grids as Arrays of Linked Lists

The natural way of storing objects in a grid is to allocate an array of corresponding
dimension, mapping grid cells to array elements one-to-one. To handle the case
of multiple objects ending up in a given cell, each array element would point to a
linked list of objects, or be NULL if empty. If objects are inserted at the head of
the list, insertion is trivially O(1). For a single-linked list, updating and deletion of
an arbitrary object is O(n). However, updating and deletion can also be made O(1)
by using a double-linked list and having the objects maintain direct pointers to the
linked-list entries of all cells the objects are in.

The easiest way of maintaining these linked lists is to embed the links within the
objects themselves. When the maximum number of cells overlapped by an object has
been limited by an appropriate choice of cell size, object-embedded links are a good
solution that both improves data cache coherency and simplifies the code by avoiding
the need for a specific system for allocation of link cells.

A drawback with using a dense array of this type is that for large grids just storing
the list headers in each grid cell becomes prohibitive in terms of memory require-
ments. Making the grid cells larger is not a good solution, in that this will lower
performance in areas in which objects are clustered — the most important case to
handle. The next few sections present some alternative grid representations with
lower memory requirements.
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7.1.3 Hashed Storage and Infinite Grids

Perhaps the most effective alternative to using a dense array to store the grid is to
map each cell into a hash table of a fixed set of n buckets (Figure 7.2). In this scheme,
the buckets contain the linked lists of objects. The grid itself is conceptual and does
not use any memory. An example of a simple multiplicative hash function, mapping
a tuple consisting of the cell position coordinates into a bucket index, follows.

// Cell position
struct Cell {

Cell(int32 px, int32 py, int32 pz) { x = px; y = py; z = pz; }
int32 x, y, z;

};

#define NUM_BUCKETS 1024

// Computes hash bucket index in range [0, NUM_BUCKETS-1]
int32 ComputeHashBucketIndex(Cell cellPos)
{

const int32 h1 = 0x8da6b343; // Large multiplicative constants;
const int32 h2 = 0xd8163841; // here arbitrarily chosen primes
const int32 h3 = 0xcb1ab31f;
int32 n = h1 * cellPos.x + h2 * cellPos.y + h3 * cellPos.z;
n = n % NUM_BUCKETS;
if (n < 0) n += NUM_BUCKETS;
return n;

}

Note that it is surprisingly easy to construct hash functions that although perhaps
not bad, are just not very good (and there are no guarantees the previous hash
function is particularly strong). For information on constructing more sophisticated
hash functions see [Binstock96], [Jenkins97], or [Knuth98].

Performing a hash mapping of this type has the added benefit of allowing the grid
to be unbounded in size. The mapping function wraps world coordinates into a finite
number of cells (thereby making boundary checks for accessing neighboring cells
unnecessary). Although the world may consist of an infinite amount of cells, only a
finite number of them are overlapped by objects at a given time. Thus, the storage
required for a hashed grid is related to the number of objects and is independent of
the grid size.

To avoid having to perform a hash table lookup to find out that a cell is in fact
empty and is not in the table, a dense bit array with 1 bit per cell in the grid can be
used as a quick pretest indicator of whether a cell is empty or not. (Of course, this
optimization is only possible by keeping the grid fixed in size.)
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index = hash(x,y) mod nindex = hash(x,y) mod n

index: 0 1 n–1

Figure 7.2 A (potentially infinite) 2D grid is mapped via a hash function into a small number
of hash buckets.

To handle collisions (the mapping of two keys to the same bucket) in the hash
table, two methods are traditionally used: open hashing and closed hashing. In open
hashing (also known as separate chaining), each bucket is allowed to contain a linked
list of records. When a new entry is added to the hash table, the bucket index is
computed and the entry is added at the start of the linked list of the corresponding
bucket. Each of the stored records contains a key along with associated data. In this
case, the key would be the original cell coordinates and the data would be the head
of a linked list of objects contained in that cell. As this representation ends up with
buckets containing lists of lists, the code for updating the data structure as objects
are added or deleted from a grid cell and its corresponding bucket becomes slightly
more complicated than desired.

In contrast, closed hashing (or open addressing) stores records directly within the
hash buckets themselves. When the computed bucket index of a new entry points
at an occupied bucket, new bucket indices are computed (in a consistent manner)
until an empty bucket is found and the record is inserted. The simplest such method,
known as linear probing, simply tries subsequent buckets until one is found, wrapping
around at the end of the hash table if necessary. Although linear probing has good
cache behavior, it performs poorly as the hash table fills. Using linear probing, hash
table utilization should not be much higher than 50% for good performance. Other,
better but more complicated, probing approaches exist. See [Knuth98] for a detailed
analysis of the behavior of linear probing and alternative probing methods.

A problem with closed hashing is that objects cannot be directly deleted from the
hash table, but must be lazily deleted to avoid having subsequent searches fail. A
lazy deletion involves marking the slot so that it is free for an insertion yet is not
considered empty, which would (incorrectly) terminate a search of the hash table for
some other object.
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A third solution is to use the open hashing method but exclude the first-level
linked list and have the buckets directly contain a list of objects. This results in very
simple code with low overhead, but the lack of a stored key introduces two problems
that must be addressed. First, when performing tests against the content of a specific
cell it is now possible its bucket will contain both objects of interest as well as those
from other cells, which happened to map to the same bucket. To avoid spending time
peforming expensive narrow-phase tests on distant objects, in-depth tests must be
preceded by a bounding volume test to cull irrelevant objects. Such culling is a good
overall strategy anyway, in that nonoverlapping objects can share buckets regardless
of hash table representation.

Second, a related problem occurs when several cells are tested by the same query.
If two or more of the cells have been aliased to the same nonempty hash bucket, its
content will be checked several times for the same query. Fortunately, this seemingly
serious problem is easily solved by a time-stamping method in which hash buckets
are labeled each time they are queried. The label consists of a unique identifier that
changes for each query made. During a query, if a hash bucket is found labeled with
the current identifier the bucket has already been examined and can be ignored.Time
stamping is further described in Section 7.7.2.

A different approach to extending a grid when an object moves out of the region
covered by the grid is described in [Reinhard00]. Separating the grid into both logical
and physical parts, the logical grid is allowed to grow as the object moves outside the
grid. However, the extra cells thus introduced are mapped onto the existing physical
grid through a toroidal wrapping of logical cell coordinates modulo the size of the
physical grid. The size of the logical grid now determines whether an object near
the physical grid boundary must consider collisions against objects in its toroidal
neighbor cells on the opposite side of the grid.

7.1.4 Storing Static Data

When grid data is static, such as when it represents world polygon data instead of
dynamic objects, the need for a linked list can be removed altogether [Haines99].
Rather than storing the data in linked lists, the idea is to store all cell data in a single
contiguous array. Figure 7.3 illustrates the same grid with the data stored using linked
lists (a) and into an array (b).

The grid data can be assigned to an array in a two-pass process. In the first pass,
the static data is iterated over, but instead of assigning the data to overlapped grid
cells only a counter per cell is incremented when data would normally have been
assigned to the cell. After all data is processed, counts have thereby been obtained
for all n grid cells, with ak indicating the number of objects in cell Ck. At this point an
array of m elements

m =
∑

0≤i<n

ai
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Figure 7.3 (a) A grid storing static data as lists. (b) The same grid with the static data stored
into an array.

is allocated. Each cell is also associated with an index number bk into this array,
where

b0 = 0

bk = bk−1 + ak−1.

The data is then in a second pass iterated over again. This time, the ak objects over-
lapping cell Ck are stored with help from the associated index number into the array
at indices bk through bk + ak − 1. Because all data for each cell is stored contigu-
ously in the array, and because no links are needed between the contiguous entries,
the resulting array-based grid uses less memory and is more cache efficient than a
representation based on linked lists.

7.1.5 Implicit Grids

An alternative to storing a grid explicitly is to store it implicitly, as the Cartesian
product of two or more arrays. That is, the grid is now represented by two arrays
(three in 3D), wherein one array corresponds to the grid rows and the other to the
grid columns. As before, each array element points to a linked list of objects. An object
is inserted into the grid by adding it to the lists of the grid cells it overlaps, for both the
row and column array (Figure 7.4). Overlap testing for an object is now performed
by checking to see if the object overlaps another object in both the row cells and the
column cells it straddles.

Compared to the dense array representation, this scheme can result in either fewer
or more list insertions. If the object is fully contained within a single grid cell of the
implicit grid, it is inserted into two lists (one row and one column list), whereas in
the previous scheme it would have been inserted in just one list. However, if the
object were to overlap, say, 4 × 4 grid cells, it would be inserted into eight lists for
the implicit grid (four row lists and four column lists) instead of 16, improving on the
worst case. When objects overlap few cells the overlap test for this approach becomes
more costly, not only because there are more objects in the lists that are being tested
but because (many) more lists have to be checked.
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Figure 7.4 A 4 × 5 grid implicitly defined as the intersection of 9 (4 + 5) linked lists. Five
objects have been inserted into the lists and their implied positions in the grid are indicated.
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Figure 7.5 A 4 × 5 grid implicitly defined as the intersection of 9 (4 + 5) bit arrays. Five
objects have been inserted into the grid. The bit position numbers of the bits set in a bit array
indicate that the corresponding object is present in that row or column of the grid.

A more novel storage approach is to allocate, for each row and column of the grid,
a bit array with 1 bit for each object in the world. Placing an object into the grid now
simply involves setting the bit in the bit array in both the row and column bit arrays
for the grid cell corresponding to the object (Figure 7.5).

An object exists in a grid cell if and only if the bit arrays of the row and column of
the cell both have the bit corresponding to that object set. Testing for the presence of
objects in a cell is therefore as simple as performing a bitwise AND operation on the
two bit arrays.

When the query object overlaps several grid cells, the distributive properties of
bitwise operators can be used to reduce the amount of computation needed. For
example, assume an object overlaps rows ri and ri+1 and columns cj and cj+1. The
objects potentially intersected are given by the union of all bits set in the bitwise
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intersection of each of the four grid cells (ri, cj), (ri, cj+1), (ri+1, cj), and (ri+1, cj+1). If
r[i] and c[j] correspond to the bit masks of row cell i and column cell j, respectively,
this method gives the resulting union b of bits as

b = (r[i] & c[j]) | (r[i] & c[j+1]) | (r[i+1] & c[j]) | (r[i+1] & c[j+1]);

However, the distributive properties of the bitwise operators allow this expression
to be more efficiently computed as

b = (r[i] | r[i+1]) & (c[j] | c[j+1]);

This rewrite generalizes to an arbitrary number of cells overlapped, so that the
bitwise OR of all overlapped row cells and of all column cells is first computed. Then
the bitwise AND between the resulting bit fields gives the final result. This method
is illustrated by the following code.

// Define the two global bit arrays
const int NUM_OBJECTS_DIV_32 = (NUM_OBJECTS + 31) / 32; // Round up
int32 rowBitArray[GRID_HEIGHT][NUM_OBJECTS_DIV_32];
int32 columnBitArray[GRID_WIDTH][NUM_OBJECTS_DIV_32];

void TestObjectAgainstGrid(Object *pObject)
{

// Allocate temporary bit arrays for all objects and clear them
int32 mergedRowArray[NUM_OBJECTS_DIV_32];
int32 mergedColumnArray[NUM_OBJECTS_DIV_32];
memset(mergedRowArray, 0, NUM_OBJECTS_DIV_32 * sizeof(int32));
memset(mergedColumnArray, 0, NUM_OBJECTS_DIV_32 * sizeof(int32));

// Compute the extent of grid cells the bounding sphere of A overlaps.
// Test assumes objects have been inserted in all rows/columns overlapped
float ooCellWidth = 1.0f / CELL_WIDTH;
int x1 = (int)floorf((pObject->x - pObject->radius) * ooCellWidth);
int x2 = (int)floorf((pObject->x + pObject->radius) * ooCellWidth);
int y1 = (int)floorf((pObject->y - pObject->radius) * ooCellWidth);
int y2 = (int)floorf((pObject->y + pObject->radius) * ooCellWidth);
assert(x1 >= 0 && y1 >= 0 && x2 < GRID_WIDTH && y2 < GRID_HEIGHT);

// Compute the merged (bitwise-or’ed) bit array of all overlapped grid rows.
// Ditto for all overlapped grid columns
for (int y = y1; y <= y2; y++)
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for (int i = 0; i < NUM_OBJECTS_DIV_32; i++)
mergedRowArray[i] |= rowBitArray[y][i];

for (int x = x1; x <= x2; x++)
for (int i = 0; i < NUM_OBJECTS_DIV_32; i++)

mergedColumnArray[i] |= columnBitArray[x][i];

// Now go through the intersection of the merged bit arrays and collision test
// those objects having their corresponding bit set
for (int i = 0; i < NUM_OBJECTS_DIV_32; i++) {

int32 objectsMask = mergedRowArray[i] & mergedColumnArray[i];
while (objectsMask) {

// Clears all but lowest bit set (eg. 01101010 -> 00000010)
int32 objectMask = objectsMask & (objectsMask - 1);
// Get index number of set bit, test against corresponding object
// (GetBitIndex(v) returns log_2(v), i.e. n such that 2∧n = v)
int32 objectIndex = GetBitIndex(objectMask) + i * 32;
TestCollisionAgainstObjectNumberN(objectIndex);
// Mask out tested object, and continue with any remaining objects
objectsMask ∧= objectMask;

}
}

}

A simplified version of implicit grids using bit arrays can be used as a coarse
broad-phase rejection method. Instead of having a bit array indicating exactly what
objects are in each row and column of the grid, a single bit can be used to indi-
cate the presence of an object in a row or column. If no bit is set for the rows and
columns an object overlaps, the object cannot be in overlap and no further testing is
necessary.

Table 7.1 illustrates memory use for three different grid representations: the implicit
grid using bit arrays, a dense array (with double-linked lists), and a sparse array (also
using double-linked lists). Up to roughly 1,000 objects and a grid size of 100 × 100,
the implicit bit grid uses less memory than the other two representations.The implicit
bit grid also uses memory in a cache-friendly way and is overall a very efficient spatial
partitioning method.

7.1.6 Uniform Grid Object-Object Test

As mentioned earlier, grid cell sizes are usually constrained to be larger than the
largest object. This way, an object is guaranteed to overlap at most the immediately
neighboring cells, thereby greatly simplifying the overlap testing code. Still, a few
key issues remain when it comes to assigning objects to cells and performing the
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Table 7.1 Memory use (in bytes) for three different grid representations: implicit grid (with bit arrays),
dense array (with double-linked list), and a sparse array (with double-linked list).

Grid size (m × n)

10 × 10 50 × 50 100 × 100 500 × 500

O
b

je
ct

s
in

gr
id

10 40 200 400 2,000

100 260 1,300 2,600 13,000 Implicit grid (bit arrays):
bytes = �objects/8�(m + n)

1,000 2,500 12,500 25,000 125,000

10,000 25,000 125,000 250,000 1,250,000

10 480 10,080 40,080 1,000,080

Dense array (double-linked list):
bytes = 4mn + objects · (4 + 4)

100 1,200 10,800 40,800 1,000,800

1,000 8,400 18,000 48,000 1,008,000

10,000 80,400 90,000 120,000 1,080,000

10 240 560 960 4,160

100 1,680 2,000 2,400 5,600 Sparse array (double-linked list):
bytes = 4(m + n) + objects · (4 · 2 + 4 · 2)

1,000 16,080 16,400 16,800 20,000

10,000 160,080 160,400 160,800 164,000

object-object tests. Should objects be placed in just one representative cell or all cells
they overlap? If just one cell, what object feature should be used to determine which
cell the object goes into? The next two sections look at these issues in the context of
how the test queries are issued: if they are issued one at a time (allowing objects to
move between successive tests) or if they are all issued simultaneously.

7.1.6.1 One Test at a Time

Consider the case in which objects are associated with a single cell only. When a given
object is associated with its cell, in addition to testing against the objects associated
with that cell additional neighboring cells must also be tested. Which cells have to
be tested depends on how objects can overlap into other cells and what feature has
been used to associate an object with its cell. The choice of feature generally stands
between the object bounding sphere center and the minimum (top leftmost) corner
of the axis-aligned bounding box.

If objects have been placed with respect to their centers, any object in the neighbor-
ing cells could overlap a cell boundary of this cell and be in collision with the current
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object. Thus, regardless of which other cells (if any) the current object overlaps all
neighboring cells and their contents must be tested for collision.

// Objects placed in single cell based on their bounding sphere center.
// Checking object’s cell and all 8 neighboring grid cells:
check object’s cell
check northwest neighbor cell
check north neighbor cell
check northeast neighbor cell
check west neighbor cell
check east neighbor cell
check southwest neighbor cell
check south neighbor cell
check southeast neighbor cell

This makes a total of nine cells tested (27 cells in 3D), which is not very promising.
If instead the minimum corner of the axis-aligned bounding box has been used, most
neighboring cells have to be tested only if the current object actually overlaps into
them. The pseudocode for the 2D version of this test reads:

// Objects placed in single cell based on AABB minimum corner vertex.
// Checking object’s "minimum corner" cell and up to all 8 neighboring grid cells:
check object’s "minimum corner" cell
check north neighbor cell
check northwest neighbor cell
check west neighbor cell
if (object overlaps east cell border) {

check northeast neighbor cell
check east neighbor cell

}
if (object overlaps south cell border) {

check southwest neighbor cell
check south neighbor cell
if (object overlaps east cell border)

check southeast neighbor cell
}

At worst, all nine cells will still have to be checked, but at best only four cells
have to be tested. This makes the minimum corner a much better feature for object
placement than the center point. On the other hand, if objects have been placed in
all cells they overlap the single object test would have to check only those exact cells
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the AABB overlaps, as all colliding objects are guaranteed to be in those cells. The
test would thus simply read:

// Objects placed in all cells overlapped by their AABB.
// Checking object’s "minimum corner" cell and up to 3 neighboring grid cells:
check object’s "minimum corner" cell
if (object overlaps east cell border)

check east neighbor cell
if (object overlaps south cell border) {

check south neighbor cell
if (object overlaps east cell border)

check southeast neighbor cell
}

Four tested cells is now the worst case, and a single cell the best case. Although
this makes for the fastest test, it complicates the code for updating when objects move
(having to update up to eight cells in a 3D grid) and is likely to use more memory than
single-cell storage. In addition, collision between two objects can now be reported
multiple times and thus pair collision status must be maintained (as discussed in
Section 7.7.1).

7.1.6.2 All Tests at a Time

If instead of testing a single object at a time all objects are tested at the same time,
the single-cell placement case can be optimized utilizing the fact that object pair
checking is commutative. In other words, checking object A against object B is the
same as checking object B against object A. For example, if objects in the current grid
cell check for collision with the neighbor cell to the east, when the time comes for the
east cell to check against its neighboring cells the cell to the west of it can safely be
ignored. A consequence is that all objects that can be collided with must also test for
collisions against other objects. In other words, this scheme does not allow checking
just a single moving object in a static grid of objects. It is important that all possible
overlap relationships between cells be covered by the performed tests. For instance,
a common mistake is to assume that the NE-versus-SW cell relationship does not
have to be tested. However, this is a flawed assumption because two objects assigned
to cells A and B are colliding in a third cell C (Figure 7.6).

Returning to the case in which objects are placed on the center point, all neighbors
now do not have to be checked. It is sufficient to check half the neighbors and let
the remaining half of directionally opposing tests be covered by the commutativity
relation. The test could therefore simply read:

// Objects placed in single cell based on their bounding sphere center.
// All objects are checked for collisions at the same time, so collisions
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A
B

Figure 7.6 Objects A and B are assigned to a cell based on the location of their top left-hand
corners. In this case, overlap may occur in a third cell. Thus, to detect intersection between
objects cells must be tested against their NE or SW neighbor cells.

// in the opposite direction will be handled when checking the objects
// existing in those cells.
check object’s cell
check east neighbor cell
check southwest neighbor cell
check south neighbor cell
check southeast neighbor cell

This approach requires that all objects are tested, and thus these five tests cannot
be combined with any border overlap test (as was done earlier), because that would
prevent some necessary tests from occurring. For example, say object A does not
overlap into the east neighbor cell and that the neighbor cell is not tested against.
However, there could still be an object B in the east cell that overlaps into the cell to
its west (overlapping with object A), but because the east cell does not test against
its west neighbor any overlap between A and B would go undetected. Furthermore,
as some (but not all) collisions will be detected twice per frame this approach would
require that overlap status be recorded (for instance in a collision-pair matrix).

The case in which objects are placed in a single cell based on the minimum corner
point can be similarly simplified. Here, however, border overlap tests can be used to
minimize the number of neighboring cells checked further. This test now reads:

// Objects placed in single cell based on AABB minimum corner vertex.
// All objects are checked for collisions at the same time, so collisions
// in the opposite direction will be handled when checking the objects
// existing in those cells.
check object’s "minimum corner" cell
check southwest neighbor cell
if (object overlaps east cell border)

check east neighbor cell
if (object overlaps south cell border) {

check south neighbor cell
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if (object overlaps east cell border)
check southeast neighbor cell

}

When testing neighboring cells, range checking of grid coordinates can be avoided
by placing a layer of sentinels (dummy cells) around the border of the grid.

7.1.7 Additional Grid Considerations

Some issues relevant to efficient implementations remain. First, the presentation
given here has implied that grids are kept from frame to frame and are incrementally
updated. Although this is a good approach in general, arguments can also be made for
a simpler approach in which the grid is simply cleared and all objects are readded from
scratch each frame. For example, if most or all objects move, the latter operation may
turn out cheaper than trying to update the grid data structure. Rebuilding the grid each
frame also typically requires simpler data structures, which tends to reduce memory
requirements (such as single-linked lists instead of double-linked lists). Readding all
objects each frame also means objects can be tested as they are added, avoiding the
potential problem of getting both A-collides-with-B and B-collides-with-A reported.

A second thing to keep in mind is that not all objects have to be added to the grid
at all times. When testing distinct collision groups against each other, the objects of
the first group can be directly added to the grid. Then, when testing the objects of the
second group against the grid they do not have to be added to the grid at all. They
only have to be used as query objects. An example of such a scenario is a group of
enemy objects and another group of player bullets.

Last, it is worthwhile considering grid cell volumes and cell orientations different
from those explored here. For instance, assume the grid is primarily used for per-
forming line segment queries against a given set of objects in the plane (as discussed
further in Section 7.4.2). Because lines at an angle may pass through more cells than
do horizontal or vertical lines, it would be possible to have two grids, both containing
the same set of objects but one grid at a 45-degree relative orientation to the other.
Based on the orientation of a given line segment, the appropriate grid can now be
used for the intersection query to improve efficiency.

Similarly, compare the regular uniform grid and the staggered hexagonal-like grid
cell arrangement shown in Figure 7.7. Assume the spherical objects A and B are at
most half the size of the grid cell side, are assigned to a single cell, and are tested
one at a time. In this scenario, if the objects are placed using their centers A must
check collisions against nine cells whereas B would have to check against just seven
cells. If instead A and B were boxes, assigned using the top left-hand corner, A would
have to test against five cells (center, east, south, southeast, and either northwest or
southwest) and B only four cells (center, east, southwest, and southeast).
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A

(a) (b)

B

Figure 7.7 (a) In a regular grid, grid cell A has eight neighbors. (b) In a hexagonal-type grid,
grid cell B has just six neighbors.

7.2 Hierarchical Grids

The most significant problem with uniform grids is their inability to deal with objects
of greatly varying sizes in a graceful way. When objects are much larger than the grid
cell size and end up overlapping many cells, updating the position of a moving object
becomes very expensive. If the cell size is adjusted to hold the larger objects, the grid
becomes less spatially discriminatory as more small objects now end up in the same
cell, with loss of performance as a result. Fortunately, this size problem can effectively
be addressed by the use of hierarchical grids (or hgrids), a grid structure particularly
well suited to holding dynamically moving objects.

The hierarchical grid, as described here, consists of a number of grids of vary-
ing cell sizes, all overlapping to cover the same space. Depending on use, these
grids can be either 2D or 3D. Given a hierarchy containing n levels of grids and let-
ting rk represent the size of the grid cells at level k in the hierarchy, the grids are
arranged in increasing cell size order, with r1 < r2 < . . . < rn. Level 1 is the low-
est level, and level n is the highest level. The number of levels does not have to
be fixed.

To facilitate fast insert and delete operations, objects are inserted into a single
cell on just one of the levels. As the objects can still extend into other cells on that
level, to minimize the number of neighboring cells that have to be tested for colli-
sions objects are inserted into the hgrid at the level where the cells are large enough
to contain the bounding volume of the object. Given an object P, this level L is
denoted L = Level(P). This way, the object is guaranteed to overlap at most four
cells (or eight, for a 3D grid). At this point, the object is inserted into the cell in
which its center (based on the object bounding sphere) or top left-hand position
(based on the object AABB) is in. An example of an hgrid of this type is shown in
Figure 7.8.

The grid cells can assume any relative size and should ideally be selected with
respect to existing object sizes. In practice, a simple procedure for setting up the
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Figure 7.8 A small 1D hierarchical grid. Six objects, A through F, have each been inserted in
the cell containing the object center point, on the appropriate grid level. The shaded cells are
those that must be tested when performing a collision check for object C.

hierarchy works well. Let the cells at level 1 just encompass the smallest objects. Then
successively double the cell size so that cells of level k + 1 are twice as wide as cells
of level k. Repeat the doubling process until the highest-level cells are large enough
to encompass the largest objects. In general, this setup serves well to minimize the
number of cells an object overlaps. It is still possible to do better in specific instances,
however. For instance, if there are only two object sizes clearly two grid levels
suffice.

Testing whether an arbitrary object A is in collision with objects stored in the hgrid
is done by traversing through all hgrid levels. At each level, A is tested against not only
those grid cells its bounding volume overlaps but those neighboring cells that could
have objects extending into the cells that are overlapped (as discussed in Section
7.1.6). Note that it is not sufficient to check just the immediately neighboring cells to
the cell the object is in. A large object, when checked against the grid, would cover a
lot of cells at the lowest level and not just the immediate neighborhood.

If not just a single object, but all n objects are tested at the same time, testing does
not have to proceed over all hgrid levels. Instead, each object can start testing from
its insertion level. This follows, as smaller objects will test against the grid levels of
larger objects.

Overall, the hgrid structure is not much different from a tree structure, such as an
octree, implemented using arrays. However, one key feature that sets it apart from
the tree structures is the lack of a tree “top.”That is, the hgrid corresponds to just
the last few levels of the tree. The top levels of a tree rarely contain any objects and
are simply traversed just to reach the lower levels at which the objects reside. Hgrids
avoid these empty levels and gain extra speed in doing so.

To speed up the collision testing further, it is worthwhile keeping track of the total
number of objects on each grid level. Levels that contain no objects can then be
excluded from testing.

Hgrids can be very memory expensive when each grid level is allocated as a dense
array. For this reason they are best implemented using hashed storage, as described
in Section 7.1.3.
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7.2.1 Basic Hgrid Implementation

This section outlines a simple and straightforward implementation of an hgrid. The
hash table approach used is open hashing without the use of keys. Consequently,both
bounding volume tests as well as time stamping (Section 7.7.2) must be used to avoid
processing irrelevant and already processed data. The hgrid is assumed to have the
following minimal structure:

struct HGrid {
uint32 occupiedLevelsMask; // Initially zero (Implies max 32 hgrid levels)
int objectsAtLevel[HGRID_MAX_LEVELS]; // Initially all zero
Object *objectBucket[NUM_BUCKETS]; // Initially all NULL
int timeStamp[NUM_BUCKETS]; // Initially all zero
int tick;

};

It is assumed that objects are inserted into the hgrid based on their bounding
spheres. For the sake of simplicity, the given code links objects within a bucket using
single-linked lists, with the list pointer embedded in the object. Use of a double-
linked list would allow removal in O(1) time, instead of O(n) time. Associating each
hgrid cell with an array (of object pointers) also allows removal in O(1) time.The latter
option requires some bookkeeping to handle the arrays overflowing, but is overall
a faster and more cache-friendly option. Let the object representation contain the
following variables.

struct Object {
Object *pNextObject; // Embedded link to next hgrid object
Point pos; // x, y (and z) position for sphere (or top left AABB corner)
float radius; // Radius for bounding sphere (or width of AABB)
int bucket; // Index of hash bucket object is in
int level; // Grid level for the object
... // Object data

};

Cells are here assumed to be square (cubical for a 3D hgrid). The ratio of the
diameter of the largest sphere that goes into a cell at a particular level with respect to
the cell side size is given by:

const float SPHERE_TO_CELL_RATIO = 1.0f/4.0f; // Largest sphere in cell is 1/4*cell size
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The smaller the ratio is, the fewer cells must be examined at a given level, on
average. However, it also means that the average number of objects per cell increases.
An appropriate ratio is application specific. When traversing from level to level, the
grid cell side increases by the following factor:

const float CELL_TO_CELL_RATIO = 2.0f; // Cells at next level are 2*side of current cell

Adding an object into the hgrid now can be done as follows.

void AddObjectToHGrid(HGrid *grid, Object *obj)
{

// Find lowest level where object fully fits inside cell, taking RATIO into account
int level;
float size = MIN_CELL_SIZE, diameter = 2.0f * obj->radius;
for (level = 0; size * SPHERE_TO_CELL_RATIO < diameter; level++)

size *= CELL_TO_CELL_RATIO;

// Assert if object is larger than largest grid cell
assert(level < HGRID_MAX_LEVELS);

// Add object to grid square, and remember cell and level numbers,
// treating level as a third dimension coordinate
Cell cellPos((int)(obj->pos.x / size), (int)(obj->pos.y / size), level);
int bucket = ComputeHashBucketIndex(cellPos);
obj->bucket= bucket;
obj->level = level;
obj->pNextObject = grid->objectBucket[bucket];
grid->objectBucket[bucket] = obj;

// Mark this level as having one more object. Also indicate level is in use
grid->objectsAtLevel[level]++;
grid->occupiedLevelsMask |= (1 << level);

}

Removing an object from the hgrid is done in a corresponding manner.

void RemoveObjectFromHGrid(HGrid *grid, Object *obj)
{

// One less object on this grid level. Mark level as unused if no objects left
if (--grid->objectsAtLevel[obj->level] == 0)

grid->occupiedLevelsMask &= ∼(1 << obj->level);
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// Now scan through list and unlink object ’obj’
int bucket= obj->bucket;
Object *p = grid->objectBucket[bucket];
// Special-case updating list header when object is first in list
if (p == obj) {

grid->objectBucket[bucket] = obj->pNextObject;
return;

}
// Traverse rest of list, unlinking ’obj’ when found
while (p) {

// Keep q as trailing pointer to previous element
Object *q = p;
p = p->pNextObject;
if (p == obj) {

q->pNextObject = p->pNextObject; // unlink by bypassing
return;

}
}
assert(0); // No such object in hgrid

}

Checking an object for collision against objects in the hgrid can be done as follows.
It is assumed that nothing is known about the number of objects tested at a time,
and thus all grid levels are traversed (except when it can be concluded that there are
no more objects to be found in the grid).

// Test collisions between object and all objects in hgrid
void CheckObjAgainstGrid(HGrid *grid, Object *obj,

void (*pCallbackFunc)(Object *pA, Object *pB))
{

float size = MIN_CELL_SIZE;
int startLevel = 0;
uint32 occupiedLevelsMask = grid->occupiedLevelsMask;
Point pos = obj->pos;

// If all objects are tested at the same time, the appropriate starting
// grid level can be computed as:
// float diameter = 2.0f * obj->radius;
// for ( ; size * SPHERE_TO_CELL_RATIO < diameter; startLevel++) {
// size *= CELL_TO_CELL_RATIO;
// occupiedLevelsMask >>= 1;
// }
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// For each new query, increase time stamp counter
grid->tick++;

for (int level = startLevel; level < HGRID_MAX_LEVELS;
size *= CELL_TO_CELL_RATIO, occupiedLevelsMask >>= 1, level++) {

// If no objects in rest of grid, stop now
if (occupiedLevelsMask == 0) break;
// If no objects at this level, go on to the next level
if ((occupiedLevelsMask & 1) == 0) continue;

// Compute ranges [x1..x2, y1..y2] of cells overlapped on this level. To
// make sure objects in neighboring cells are tested, by increasing range by
// the maximum object overlap: size * SPHERE_TO_CELL_RATIO
float delta = obj->radius + size * SPHERE_TO_CELL_RATIO + EPSILON;
float ooSize = 1.0f / size;
int x1 = (int)floorf((pos.x - delta) * ooSize);
int y1 = (int)floorf((pos.y - delta) * ooSize);
int x2 = (int) ceilf((pos.x + delta) * ooSize);
int y2 = (int) ceilf((pos.y + delta) * ooSize);

// Check all the grid cells overlapped on current level
for (int x = x1; x <= x2; x++) {

for (int y = y1; y <= y2; y++) {
// Treat level as a third dimension coordinate
Cell cellPos(x, y, level);
int bucket = ComputeHashBucketIndex(cellPos);

// Has this hash bucket already been checked for this object?
if (grid->timeStamp[bucket] == grid->tick) continue;
grid->timeStamp[bucket] = grid->tick;

// Loop through all objects in the bucket to find nearby objects
Object *p = grid->objectBucket[bucket];
while (p) {

if (p != obj) {
float dist2 = Sqr(pos.x - p->pos.x) + Sqr(pos.y - p->pos.y);
if (dist2 <= Sqr(obj->radius + p->radius + EPSILON))

pCallbackFunc(obj, p); // Close, call callback function
}
p = p->pNextObject;

}
}

}
} // end for level

}
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When, as here, a callback is used to call a function to handle two colliding objects
it is important that the callback function not change the hgrid data structure itself.
Because CheckObjAgainstGrid() is in the middle of operating on the data structure,
such changes would cause reentrancy problems, leading to missed collisions at best
and crashes at worst.

7.2.2 Alternative Hierarchical Grid Representations

Even though the hgrid is a great improvement over the basic nonhierarchical grid, a
problem remains. When objects are tested one at a time, a large object could cover a
lot of cells on the lowest levels, making for an expensive test in that it is intersected
against the contents of all of these cells. Two hgrid schemes that address this problem
are given in [Mirtich96b, Mirtich97], by whom the hgrid is referred to as a hierarchical
spatial hash table.

The first scheme is to insert the objects in order of decreasing size, such that all
objects going into grid level k are inserted before those that go into level k − 1. With
this restriction, the newly inserted object has to be tested only against cells on the
level at which it is being inserted and against cells on higher levels. Lower levels
do not have to be tested because they are by order of insertion empty. To handle
the dynamic addition and deletion of objects, a separate data structure would be
necessary to maintain the sorted insertion and testing order of existing objects. An
example of this scheme is shown in Figure 7.9.

For the second scheme, objects are no longer inserted in a single cell on just one
level. Instead, the object is inserted in all cells it overlaps, starting at the lowest
grid level at which the cells are large enough to contain the object, repeating for all
overlapped grid cells of higher-level grids.

In the second scheme, given a pair (A, B) of objects in the grid, determining if
they overlap can now be done by testing if they share a common cell at level L =
max(Level(A), Level(B)). In other words, the test is if they overlap on the larger of the
two initial insertion levels for the objects. No other levels have to be tested.
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Figure 7.9 In Mirtich’s (first) scheme, objects are inserted in all cells overlapped at the
insertion level. As in Figure 7.8, the shaded cells indicate which cells must be tested when
performing a collision check for object C.
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In that this test relies on knowing which pairs to test, pair information has to be
tracked separately. Whenever an object A is stored in a grid cell containing another
object B, a counter corresponding to the pair (A, B) is incremented, and the pair
is added to the tracking data structure. When either object moves out of one of
their common cells, the counter is decremented. When the counter reaches zero, the
pair is removed from the tracking data structure because they are no longer close.
Only pairs in the tracking data structure undergo narrow-phase collision detection
checking. The cost of moving an object is now much larger, but thanks to spa-
tial coherence the larger grid cells have to be updated only infrequently. Overall,
this scheme trades the cost of updating cells for the benefit of having to test fewer
grid cells.

7.2.3 Other Hierarchical Grids

As presented, a drawback with the hierarchical grid is that it is not very appropriate
for handling world geometry, which often consists of large amounts of unevenly
distributed small static data. Representing the lowest-level grid as a dense grid will
be extremely expensive is terms of storage. Similarly, a sparse representation using
hashing is likely to cause slowdown when a large number of cells is intersected due to
cache misses and the extra calculations involved. For this particular type of problem,
other types of hierarchical grids are more suited. Many of these have their origins in
ray tracing.

Of these, the most straightforward alternative is the recursive grid [Jevans89]. Here,
a uniform grid is constructed over the initial set of primitives. For each grid cell
containing more than some k primitives, a new, finer, uniform grid is recursively
constructed for that cell. The process is stopped when a cell contains less than some
m objects or when the depth is greater than n (usually 2 or 3). Compared to the
original hgrid, the lowest-level grids no longer span the world and they will require
less memory for a dense grid representation.

Two other grid alternatives are hierarchy of uniform grids [Cazals95] and adaptive
grids [Klimaszewski97]. Both of these use object clustering methods to identify groups
of primitives that should be contained within their own subgrids inside a larger
uniform grid. More information and a thorough comparison of these two and other
methods can be found in [Havran99].

7.3 Trees

Trees were discussed in the previous chapter in the context of bounding volume
hierarchies. Trees also form good representations for spatial partitioning. This section
explores two tree approaches to spatial partitioning: the octree and the k-d tree.
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Figure 7.10 Numbering of the eight child nodes of the root of an octree.

7.3.1 Octrees (and Quadtrees)

The archetypal tree-based spatial partitioning method is the octree. It is an axis-aligned
hierarchical partitioning of a volume of 3D world space. As the name suggests, each
parent node in the octree has eight children. Additionally, each node also has a finite
volume associated with it. The root node volume is generally taken to be the smallest
axis-aligned cube fully enclosing the world. This volume is then subdivided into eight
smaller equal-size subcubes (also called cells, octants, or cubelets) by simultaneously
dividing the cube in half along each of the x, y, and z axes (Figure 7.10).These subcubes
form the child nodes of the root node. The child nodes are, in turn, recursively
subdivided in the same fashion. Typical criteria for stopping the recursive creation
of the octree include the tree reaching a maximum depth or the cubes getting smaller
than some preset minimum size. By virtue of construction, the associated volume of
space for each node of the tree fully contains all descendant nodes.

Even though the geometric boundaries of a node can, for instance, be passed
down and refined as the octree is traversed, the node structure is often enhanced to
contain both node position and extent. This simplifies tree operations at the cost of
extra memory. In addition, if the requirement for splitting into eight child volumes of
equal size is relaxed to allow off-center splitting independently on all three axes, this
volume information must be stored in the nodes.

// Octree node data structure
struct Node {

Point center; // Center point of octree node (not strictly needed)
float halfWidth; // Half the width of the node volume (not strictly needed)
Node *pChild[8]; // Pointers to the eight children nodes
Object *pObjList; // Linked list of objects contained at this node

};
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The analogous structure to the octree in two dimensions is known as a quadtree.
The world is now enclosed in an axis-aligned bounding square, and is subdivided
into four smaller squares at each recursive step.

Just as binary trees can be represented in a flat array without using pointers,
so can both quadtrees and octrees. If the tree nodes are stored in the zero-based
array node[N], then being at some parent node node[i], the children would for
a quadtree be node[4*i+1] through node[4*i+4] and for an octree node[8*i+1]
through node[8*i+8]. This representation requires the tree being stored as a
complete tree.

Where a complete binary tree of n levels has 2n − 1 nodes, a complete d-ary tree
of n levels has (dn − 1) / (d − 1) nodes. Using this type of representation, a complete
seven-level octree would require just short of 300,000 nodes, limiting most trees to
five or possibly six levels in practice.

As the tree must be preallocated to a specific depth and cannot easily grow further,
the array representation is more suitable for static scenes and static octrees. The
pointer-based representation is more useful for dynamic scenes in which the octree
is constantly updated.

7.3.2 Octree Object Assignment

Octrees may be built to contain either static or dynamic data. In the former case, the
data may be the primitives forming the world environment. In the latter case, the
data is the moving entities in the world.

In the static scenario, it is straightforward to form the octree using top-down con-
struction. Initially, all primitives in the world are associated with the root volume. As
the root volume is split, the set of primitives is reassigned to the child cells it overlaps,
duplicating the primitives when they overlap more than one cell. The procedure is
repeated recursively, with the stopping criteria of not subdividing cells containing
fewer than some fixed number of primitives or when primitives are assigned to all of
the children (obviating further subdivision).

Determining to which child volumes to assign a primitive can be done by first
dividing the primitives by the octree x-axis partitioning plane, splitting any straddling
primitives into two parts, one for each side. Both sets are then similarly split for the
y-axis partitioning plane, and the resulting four sets are split once more by the z-axis
plane.The eight final sets are then assigned to the corresponding child node. Whether
a primitive must be split by a given partitioning plane is determined by testing to see
if it has vertices on both sides of the plane. Splitting of polygon primitives is discussed
in detail in Section 8.3.4.

An alternative assignment approach is not to split the primitives. Instead, for each
child volume and each primitive a fullAABB-primitive overlap test is performed to see
if the primitive should be assigned to that volume. Although perhaps a conceptually
simpler method, this test is more expensive.
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Figure 7.11 A quadtree node with the first level of subdivision shown in black dotted lines,
and the following level of subdivision in gray dashed lines. Dark gray objects overlap the first-
level dividing planes and become stuck at the current level. Medium gray objects propagate
one level down before becoming stuck. Here, only the white objects descend two levels.

To avoid duplication of geometry between multiple octree nodes, the original set of
primitives is stored in an array beforehand and a duplicate set of primitives is passed
to the construction function. Each of the duplicate primitives is given a reference to
the original primitive. When primitives are split, both parts retain the reference to the
original primitive. As tree leaf nodes are generated, rather than storing the split-up
duplicate geometry the references to the original set of primitives are stored. As the
tree is static, this work is best done in a preprocessing step.

Duplicating the primitives across overlapped octants works great for a static envi-
ronment. However, this approach is inefficient when the octree holds dynamic objects
because the tree must be updated as objects move. For the dynamic scenario, a better
approach is to restrict placement of objects to the lowest octree cell that contains
the object in its interior. By associating the object with a single cell only, a minimum
amount of pointer information must be updated when the object moves. A drawback
of restricting objects to lie within a single octree cell is that objects may be higher in
the tree than their size justifies. Specifically, any object straddling a partitioning plane
will become“stuck”at that level, regardless of the relative size between the object and
the node volume (Figure 7.11). This problem is addressed later. From here on, it is
assumed the octree is of the dynamic variety.

The octree can begin as an empty tree grown on demand as objects are inserted.
It can also be preallocated to alleviate the cost of dynamically growing it. Given
the previous octree node definition, preallocating a pointer-based octree down to a
specified depth can be done as:

// Preallocates an octree down to a specific depth
Node *BuildOctree(Point center, float halfWidth, int stopDepth)
{

if (stopDepth < 0) return NULL;
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else {
// Construct and fill in ’root’ of this subtree
Node *pNode = new Node;
pNode->center = center;
pNode->halfWidth = halfWidth;
pNode->pObjList = NULL;

// Recursively construct the eight children of the subtree
Point offset;
float step = halfWidth * 0.5f;
for (int i = 0; i < 8; i++) {

offset.x = ((i & 1) ? step : -step);
offset.y = ((i & 2) ? step : -step);
offset.z = ((i & 4) ? step : -step);
pNode->pChild[i] = BuildOctree(center + offset, step, stopDepth - 1);

}
return pNode;

}
}

Because objects have been restricted to reside in a single cell, the simplest linked-
list solution for handling multiple objects in a cell is to embed the linked-list next
pointer in the object. For the sample code given here, the object is assumed to be
structured as follows.

struct Object {
Point center; // Center point for object
float radius; // Radius of object bounding sphere
...
Object *pNextObject; // Pointer to next object when linked into list

};

The code for inserting an object now becomes:

void InsertObject(Node *pTree, Object *pObject)
{

int index = 0, straddle = 0;
// Compute the octant number [0..7] the object sphere center is in
// If straddling any of the dividing x, y, or z planes, exit directly
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for (int i = 0; i < 3; i++) {
float delta = pObject->center[i] - pTree->center[i];
if (Abs(delta) < pTree->halfWidth + pObject->radius) {

straddle = 1;
break;

}
if (delta > 0.0f) index |= (1 << i); // ZYX

}
if (!straddle && pTree->pChild[index]) {

// Fully contained in existing child node; insert in that subtree
InsertObject(pTree->pChild[index], pObject);

} else {
// Straddling, or no child node to descend into, so
// link object into linked list at this node
pObject->pNextObject = pTree->pObjList;
pTree->pObjList = pObject;

}
}

InsertObject() can be changed so that whenever a child node pointer is NULL
a new node is allocated and linked into the tree, with the object inserted into this
new node.

if (!straddle) {
if (pTree->pChild[index] == NULL) {

pTree->pChild[index] = new Node;
...initialize node contents here...

}
InsertObject(pTree->pChild[index], pObject);

} else {
...same as before...

}

If nodes should be deleted in a corresponding manner whenever they no longer
contain any objects, a pointer (or similar mechanism) is required in the node structure
to be able to access the parent node for updating. The creation of new nodes can be
delayed until a node contains n objects. When this happens, the node is split into
eight child nodes, and the objects are reassigned among the children. When creating
child nodes dynamically, all that is needed to build an octree incrementally is to create
the initial root node; all other nodes are created as needed. Testing a dynamic octree
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for collisions can be done as a recursive top-down procedure in which the objects of
each nonempty node are checked against all objects in the subtree below the node.

// Tests all objects that could possibly overlap due to cell ancestry and coexistence
// in the same cell. Assumes objects exist in a single cell only, and fully inside it
void TestAllCollisions(Node *pTree)
{

// Keep track of all ancestor object lists in a stack
const int MAX_DEPTH = 40;
static Node *ancestorStack[MAX_DEPTH];
static int depth = 0; // ’Depth == 0’ is invariant over calls

// Check collision between all objects on this level and all
// ancestor objects. The current level is included as its own
// ancestor so all necessary pairwise tests are done
ancestorStack[depth++] = pTree;
for (int n = 0; n < depth; n++) {

Object *pA, *pB;
for (pA = ancestorStack[n]->pObjList; pA; pA = pA->pNextObject) {

for (pB = pTree->pObjList; pB; pB = pB->pNextObject) {
// Avoid testing both A->B and B->A
if (pA == pB) break;
// Now perform the collision test between pA and pB in some manner
TestCollision(pA, pB);

}
}

}

// Recursively visit all existing children
for (int i = 0; i < 8; i++)

if (pTree->pChild[i])
TestAllCollisions(pTree->pChild[i]);

// Remove current node from ancestor stack before returning
depth--;

}

7.3.3 Locational Codes and Finding the Octant for a Point

Consider a query point somewhere inside the space occupied by an octree. The leaf
node octant in which the point lies can be found without having to perform direct
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Figure 7.12 The cells of a 4 × 4 grid given in Morton order.

comparisons with the coordinates of the octree nodes. Let the point’s coordinates be
given as three floats x, y, and z. Remap each of these into binary fractions over the range
[0 . . . 1]. For instance, if the octree’s x range spans [10 . . . 50], then an x coordinate of
25 would map into the fraction (25 − 10)/(50 − 10) = 0. 375 = 0. 01100000. Note
that this does not require either all dimensions to be the same or that they be powers
of 2. By virtue of construction, it should be clear that the most significant bit of the
binary fraction for the x coordinate specifies whether the point lies to the left of the
octree yz plane through the octree center point (when the bit is 0) or to the right of
it (when the bit is 1). Taking the three most significant bits of the binary fractions for
x, y, and z together as a unit, they form the index number (0–7) of the root’s child
node, in which the point lies. Similarly, the three next-most significant bits specify
the subnode within that node in which the point lies, and so on until a leaf node has
been reached.

The resulting binary string of interleaved bits of the three binary fractions can be
seen as a key, a locational code, directly describing a node position within the tree.
Nodes output in sorted order based on this locational code are said to be in Morton
order (Figure 7.12).

Given the locational code for the parent node, a new locational code for one of
its child nodes is easily constructed by left-shifting the parent key by 3 and adding
(or ORing) in the parent’s child index number (0–7) for the child node childKey =
(parentKey << 3) + childIndex. Locational codes can be used in a very memory-
efficient octree representation, explored next.

7.3.4 Linear Octrees (Hash-based)

Although the pointer-based representation is likely to save memory over the flat
array-based representation for average trees, the former still requires up to eight
child pointers to be stored in the octree nodes. These likely constitute a major part of
the memory required to hold the tree.

A clever nonpointer-based representation alternative is the linear octree. A linear
octree consists of just the octree nodes containing data, in which each node has
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been enhanced to contain its own locational code. The locational codes for both the
parent node and all children nodes can be computed from the stored locational code.
As such, the octree nodes no longer need explicit pointers to the children, thereby
becoming smaller.

// Octree node data structure (hashed)
struct Node {

Point center; // Center point of octree node (not strictly needed)
int key; // The location (Morton) code for this node
int8 hasChildK; // Bitmask indicating which eight children exist (optional)
Object *pObjList; // Linked list of objects contained at this node

};

The size of a node can be explicitly stored or it can be derived from the“depth”of
the locational code. In the latter case, a sentinel bit is required in the locational code
to be able to distinguish between, say, 011 and 000000011, turning these into 1011
and 1000000011, respectively. The code for this follows.

int NodeDepth(unsigned int key)
{

// Keep shifting off three bits at a time, increasing depth counter
for (int d = 0; key; d++) {

// If only sentinel bit remains, exit with node depth
if (key == 1) return d;
key >>= 3;

}
assert(0); // Bad key

}

To be able to access the octree nodes quickly given just a locational code, the
nodes are stored in a hash table using the node’s locational code as the hash key. This
hashed storage representation provides O(1) access to any node, whereas locating an
arbitrary node in a pointer-based tree takes O(log n) operations.

To avoid a failed hash table lookup, the node is often enhanced (as previously) with
a bitmask indicating which of the eight children exist. The following code for visiting
all existing nodes in a linear octree illustrates both how child nodes are computed
and how the bitmask is used.

void VisitLinearOctree(Node *pTree)
{

// For all eight possible children
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for (int i = 0; i < 8; i++) {
// See if the ith child exist
if (pTree->hasChildK & (1 << i)) {

// Compute new Morton key for the child
int key = (pTree->key << 3) + i;
// Using key, look child up in hash table and recursively visit subtree
Node *pChild = HashTableLookup(gHashTable, key);
VisitLinearOctree(pChild);

}
}

}

A hashed octree similar to this is described in [Warren93].

7.3.5 Computing the Morton Key

Given three integer values representing the x, y, and z coordinates of an octree leaf,
the corresponding Morton key can be computed by the following function.

// Takes three 10-bit numbers and bit-interleaves them into one number
uint32 Morton3(uint32 x, uint32 y, uint32 z)
{

// z--z--z--z--z--z--z--z--z--z-- : Part1By2(z) << 2
// -y--y--y--y--y--y--y--y--y--y- : Part1By2(y) << 1
// --x--x--x--x--x--x--x--x--x--x : Part1By2(x)
// zyxzyxzyxzyxzyxzyxzyxzyxzyxzyx : Final result
return (Part1By2(z) << 2) + (Part1By2(y) << 1) + Part1By2(x);

}

The support function Part1By2() splits up the bits of each coordinate value,
inserting two zero bits between each original data bit. Interleaving the intermedi-
ate results is then done by shifting and adding the bits. The function Part1By2() can
be implemented as:

// Separates low 10 bits of input by two bits
uint32 Part1By2(uint32 n)
{

// n = ----------------------9876543210 : Bits initially
// n = ------98----------------76543210 : After (1)
// n = ------98--------7654--------3210 : After (2)
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// n = ------98----76----54----32----10 : After (3)
// n = ----9--8--7--6--5--4--3--2--1--0 : After (4)
n = (n ∧ (n << 16)) & 0xff0000ff; // (1)
n = (n ∧ (n << 8)) & 0x0300f00f; // (2)
n = (n ∧ (n << 4)) & 0x030c30c3; // (3)
n = (n ∧ (n << 2)) & 0x09249249; // (4)
return n;

}

The equivalent code for interleaving 2D coordinates (for a quadtree) follows.

// Takes two 16-bit numbers and bit-interleaves them into one number
uint32 Morton2(uint32 x, uint32 y)
{

return (Part1By1(y) << 1) + Part1By1(x);
}

// Separates low 16 bits of input by one bit
uint32 Part1By1(uint32 n)
{

// n = ----------------fedcba9876543210 : Bits initially
// n = --------fedcba98--------76543210 : After (1)
// n = ----fedc----ba98----7654----3210 : After (2)
// n = --fe--dc--ba--98--76--54--32--10 : After (3)
// n = -f-e-d-c-b-a-9-8-7-6-5-4-3-2-1-0 : After (4)
n = (n ∧ (n << 8)) & 0x00ff00ff; // (1)
n = (n ∧ (n << 4)) & 0x0f0f0f0f; // (2)
n = (n ∧ (n << 2)) & 0x33333333; // (3)
n = (n ∧ (n << 1)) & 0x55555555; // (4)
return n;

}

If sufficient bits are available in the CPU registers, the calls to the support function
can be done in parallel. For example, using a modified Part1By1() function that
operates on 32-bit numbers giving a 64-bit result, the Morton2() function presented
previously can be written as:

uint32 Morton2(uint32 x, uint32 y)
{

// Merge the two 16-bit inputs into one 32-bit value
uint32 xy = (y << 16) + x;
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// Separate bits of 32-bit value by one, giving 64-bit value
uint64 t = Part1By1_64BitOutput(xy);
// Interleave the top bits (y) with the bottom bits (x)
return (uint32)((t >> 31) + (t & 0x0ffffffff));

}

In general, for the 2D case just presented, handling n-bit inputs would require
4n-bit numbers being available in the intermediate calculations.

7.3.6 Loose Octrees

Consider again the problem of objects becoming stuck high up in a dynamic octree due
to straddling of the partitioning planes. An effective way of dealing with this problem
is to expand the node volumes by some amount to make them partially overlapping
(Figure 7.13). The resulting relaxed octrees have been dubbed loose octrees [Ulrich00].
The loose nodes are commonly extended by half the side width in all six directions
(but may be extended by any amount).This effectively makes their volume eight times
larger.

Assuming spherical objects, the objects are propagated into the child node in which
the sphere center is contained. Only when the sphere extends outside the loose cell
would it remain at the current level.

With these larger nodes, objects now descend deeper into the tree, giving the parti-
tioning more discriminatory power. Unfortunately positioned but otherwise pairwise
distant objects that previously became stuck high up in the tree are less likely to
have to be tested against other objects. Another benefit of the loose nodes is that the

(a) (b)

Figure 7.13 (a) The cross section of a regular octree, shown as a quadtree. (b) Expanding the
nodes of the octree, here by half the node width in all directions, turns the tree into a loose
octree. (The loose nodes are offset and shown in different shades of gray to better show their
boundaries. The original octree nodes are shown as dashed lines.)
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depth at which an object will be inserted can be computed from the size of the object,
allowing for O(1) insertions.

This power does not come for free, however. The larger nodes overlap more neigh-
boring nodes, and more nodes have to be examined to determine whether any two
objects must be tested against each other. Still, in most cases the reduction in pairwise
tests makes loose octrees attractive for collision detection purposes.

Loose octrees are similar in structure to hierarchical grids. The key difference is
that octrees are rooted. This means that time is spent traversing the (largely) empty
top of the tree to get at the lower-level nodes where the objects are, due to objects
generally being much smaller than the world. In comparison, the hgrid is a shallower,
rootless structure providing faster access to the nodes where the objects are stored.

In addition, hgrid levels can be dynamically deactivated so that no empty levels
are processed and processing stops when no objects exist on the remaining levels.
A linearized or array-based octree allows similar optimizations. The corresponding
optimization for a pointer-based octree is to maintain a subtree object-occupancy
count for each node. The cost of updating these occupancy counts is proportional to
the height of the tree, whereas the hgrid level occupancy counters are updated in O(1)
time.Thanks to the automatic infinite tiling performed by the hash mapping, a hashed
hgrid does not need to know the world size. The octree cannot easily accommodate
an unbounded world without growing in height. Overall, hgrids seem to perform
somewhat better than loose octrees for collision detection applications.

7.3.7 k-d Trees

A generalization of octrees and quadtrees can be found in the k-dimensional tree,
or k-d tree [Bentley75], [Friedman77]. Here, k represents the number of dimensions
subdivided, which does not have to match the dimensionality of the space used.

Instead of simultaneously dividing space in two (quadtree) or three (octree) dimen-
sions, the k-d tree divides space along one dimension at a time.Traditionally, k-d trees
are split along x, then y, then z, then x again, and so on, in a cyclic fashion. However,
often the splitting axis is freely selected among the k dimensions. Because the split
is allowed to be arbitrarily positioned along the axis, this results in both axis and
splitting value being stored in the k-d tree nodes. An efficient way of storing the two
bits needed to represent the splitting axis is presented in Section 13.4.1. One level
of an octree can be seen as a three-level k-d tree split along x, then y, then z (all
splits selected to divide the space in half). Figure 7.14 shows a 2D spatial k-d tree
decomposition and the corresponding k-d tree layout.

Splitting along one axis at a time often accommodates simpler code for operating
on the tree, in that only the intersection with a single plane must be considered.
Furthermore, because this plane is axis aligned, tests against the plane are numerically
robust.

For collision detection, k-d trees can be used wherever quadtrees or octrees are
used. Other typical uses for k-d trees include point location (given a point, locate the
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Figure 7.14 A 2D k-d tree. (a) The spatial decomposition. (b) The k-d tree layout.

region it is in), nearest neighbor (find the point in a set of points the query point is
closest to), and range search (locate all points within a given region) queries.

The following code illustrates how to visit all nodes of a k-d tree a given sphere
overlaps. One interesting problem is correctly rejecting subtree volumes the sphere is
outside of, even when the sphere straddles one or more of the supporting hyperplanes
of the halfspaces forming the volume. The solution adopted here is to maintain the
point inside the volume closest to the sphere center during traversal. Initially this
variable, volNearPt, is set to the sphere center. As the traversal recurses the far side
of the splitting plane (the side the sphere is not on), the point is clamped to the
splitting plane to determine the closest point on the volume boundary. The distance
between volNearPt and the query sphere center can now be used to cull subtrees.

struct KDNode {
KDNode *child[2]; // 0 = near, 1 = far
int splitType; // Which axis split is along (0, 1, 2, ...)
float splitValue; // Position of split along axis
...

};

// Visit k-d tree nodes overlapped by sphere. Call with volNearPt = s->c
void VisitOverlappedNodes(KDNode *pNode, Sphere *s, Point &volNearPt)
{

if (pNode == NULL) return;

// Visiting current node, perform work here
...
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// Figure out which child to recurse into first (0 = near, 1 = far)
int first = s->c[pNode->splitType] > pNode->splitValue;

// Always recurse into the subtree the sphere center is in
VisitOverlappedNodes(pNode->child[first], s, volNearPt);

// Update (by clamping) nearest point on volume when traversing far side.
// Keep old value on the local stack so it can be restored later
float oldValue = volNearPt[pNode->splitType];
volNearPt[pNode->splitType] = pNode->splitValue;

// If sphere overlaps the volume of the far node, recurse that subtree too
if (SqDistPointPoint(volNearPt, s->c) < s->r * s->r)

VisitOverlappedNodes(pNode->child[first ∧ 1], s, volNearPt);

// Restore component of nearest pt on volume when returning
volNearPt[pNode->splitType] = oldValue;

}

This code framework is easily extended to, for instance, locate the nearest neighbor
object to the query sphere by starting with a sphere of unbounded size, shrinking the
sphere as objects are encountered within the sphere. Note that the shape of the
regions in a k-d tree will affect the number of nodes being visited. For example, if
many narrow regions are next to each other, a wide query is likely to overlap all
regions. To limit the number of nodes being visited, it is best to avoid regions narrow
in one or more dimensions. Such nonnarrow regions are commonly referred to as fat
regions.

The efficiency of k-d trees (in the context of ray tracing) is discussed in
[MacDonald90]. An in-depth treatment of octrees, quadtrees, k-d trees, and similar
spatial data structures is found in [Samet90a] and [Samet90b].

7.3.8 Hybrid Schemes

The previously described methods can also form the basis of various hybrid strategies.
For instance, after having initially assigned objects or geometry primitives to a uniform
grid, the data in each nonempty grid cell could be further organized in a tree structure.
The grid now serves as a fast way of locating the appropriate trees (in a forest of trees)
to perform further tests against (Figure 7.15a).

Grids can also be used as “acceleration structures” into a single tree hierarchy.
Consider a uniform grid of tree node pointers in which each pointer has been directed
to the tree node whose volume bounds the corresponding grid cell as tightly as
possible (Figure 7.15b). Instead of traversing from the root to the node an object is in,
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(a) (b)

Figure 7.15 (a) A grid of trees, each grid cell containing a separate tree. (b) A grid indexing
into a single tree hierarchy, each grid cell pointing into the tree at which point traversal
should start.

it suffices to locate the grid cell the object is inside and follow the pointer to the
correct tree node. Using a grid in this manner can help bypass a large portion of the
tree during queries.

To handle the case of going to the correct node when an object is on a grid cell
boundary overlapping two or more cells, the grid cells can be made loose, similar to
the nodes in a loose octree. The grid cell that encompasses the object is now used
to find the entry point into the tree structure.

7.4 Ray and Directed Line Segment Traversals

Particularly common in many applications, games in particular, are line pick tests.
These are queries involving rays or directed line segments. Typical uses include line-
of-sight tests and tests for whether or not a fired bullet hits an enemy. They can also
be used as the primary collision query. One such example could be performing line
picks down from the wheels of a vehicle to attach the vehicle to the terrain below.

To accelerate these queries, hierarchical structures are used to minimize the number
of objects that have to be intersected by the ray or segment. The key idea is to first
spatially partition the world into a number of cells. The ray is then traced through
those cells it pierces and intersected against any objects they might contain. The next
two sections illustrate how ray queries are performed on k-d trees and uniform grids.

7.4.1 k-d Tree Intersection Test

The basic idea behind intersecting a ray or directed line segment with a k-d tree is
straightforward. The segment S(t) = A+ t d is intersected against the node’s splitting
plane, and the t value of intersection is computed. If t is within the interval of the
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segment, 0 ≤ t < tmax, the segment straddles the plane and both children of the
tree are recursively descended. If not, only the side containing the segment origin is
recursively visited.

By first descending the side of the segment origin, overlapped k-d tree nodes are
guaranteed to be traversed in order near to far.Thus, assuming the closest intersection
point is sought, when a hit is detected among the node contents the test procedure
can exit early, not having to test any other nodes.

// Visit all k-d tree nodes intersected by segment S = a + t * d, 0 <= t < tmax
void VisitNodes(KDNode *pNode, Point a, Vector d, float tmax)
{

if (pNode == NULL) return;

// Visiting current node, perform actual work here
...

// Figure out which child to recurse into first (0 = near, 1 = far)
int dim = pNode->splitType;
int first = a[dim] > pNode->splitValue;

if (d[dim] == 0.0f) {
// Segment parallel to splitting plane, visit near side only
VisitNodes(pNode->child[first], a, d, tmax);

} else {
// Find t value for intersection between segment and split plane
float t = (pNode->splitValue - a[dim]) / d[dim];

// Test if line segment straddles splitting plane
if (0.0f <= t && t < tmax) {

// Yes, traverse near side first, then far side
VisitNodes(pNode->child[first], a, d, t);
VisitNodes(pNode->child[first ∧ 1], a + t * d, d, tmax - t);

} else {
// No, so just traverse near side
VisitNodes(pNode->child[first], a, d, tmax);

}
}

}

This procedure can be rewritten to avoid explicit recursion, in the manner described
in Chapter 6. Only small changes are required to accommodate traversals for octrees
and BSP trees. It is also possible to directly link the faces of a leaf to the leaf
nodes they border, allowing direct traversal from one leaf to the next. As a face
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Figure 7.16 Cell connectivity for a 2D line. (a) An 8-connected line. (b) A 4-connected line.
In 3D, the corresponding lines would be 26-connected and 6-connected, respectively.

may border more than just one leaf node, a quadtree or k-d tree stored at the
face is used to divide the face area and link each area with the correct neighboring
leaf node.

7.4.2 Uniform Grid Intersection Test

Shooting a ray through a uniform grid is very similar to the rasterization steps per-
formed by, say, the Bresenham line-drawing algorithm [Rogers98]. However, there
is an important difference. In rasterization, the line may intersect cells that are not
filled in (Figure 7.16a). For collision detection, this would be fatal; all pierced cells
must be visited or some objects may not be tested. The traversal method used must
enforce 6-connectivity of the cells visited along the line. Cells in 3D are said to be
6-connected if they share faces only with other cells (in 2D, the same cells would
be called 4-connected). If cells are also allowed to share edges, they are considered
18-connected.A cell is 26-connected if it can share a face, edge, or vertex with another
cell (called 8-connected in 2D).

Bresenham-like methods are categorized by stepping along the major axis, taking
a step along the minor axis (axes) when an error term has built up. It is possible to
extend these methods to step through the missed cells when the step along the minor
axis is performed. For a thorough derivation of how to do so see [Joy86].

In this section a slightly different method is presented, due to [Amanatides87] and
[Cleary88].This method is symmetric and does not use the concept of a major stepping
axis. Cells are assumed to be square. In the following, the term segment means a
directed line segment and the term ray will sometimes be used synonymously. To
simplify the presentation, the grid is assumed to be 2D.

The key idea is that as a ray leaves a cell it pierces a cell boundary. Whether to
step along the x axis or the y axis depends on whether a vertical or a horizontal
boundary is pierced. This decision is made easy by maintaining two variables, tx and
ty, containing the distance from the ray origin along the ray to the next vertical and
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Figure 7.17 Illustrating the values of tx, ty, �tx, and �ty. (a) �tx is the distance between
two vertical boundaries. (b) �ty is the distance between two horizontal boundaries. (c) For
cell (i, j ), the distance tx to the next horizontal boundary is less than the distance ty to the
next horizontal boundary, and thus the next cell to visit is (i + 1, j ).

horizontal boundary. If tx is less than ty, a vertical boundary will be pierced before the
next horizontal one is encountered, and the algorithm proceeds to step left or right
along the x axis (depending on the direction of the ray) to the next cell.

As the step is made, tx is updated to represent the distance to the next vertical
boundary. For uniform-size cells, the distance moved along the ray is constant from
one vertical boundary to the next, and thus the change made to tx can be precom-
puted. This value is called �tx (Figure 7.17a). The stepping value from one horizontal
boundary to the next is similarly constant and kept as �ty (Figure 7.17b).

In Figure 7.17c, the current cell is denoted (i, j). Because tx (the distance from the
ray origin to the next vertical boundary) is less than ty, the next cell visited is (i + 1, j).

Assuming the cell side to be M units wide, �tx is given by

�tx = M

√
dx2 + dy2

dx
.

For the line segment (x1, y1) − (x2, y2), dx = |x2 − x1| and dy = ∣∣y2 − y1
∣∣. The initial

values of tx and ty are computed slightly differently depending on which direction
the segment is pointing in. With the ray origin at (x1, y1), for the given x coordinate
(x1) the nearest vertical boundary to the left has a value of minx = M �x1/M�. The
nearest vertical boundary to the right has a value of maxx = minx + M. If the ray is
directed to the right, the value of tx can therefore be computed as

tx = (maxx − x1)

√
dx2 + dy2

dx
.
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Figure 7.18 Computing the initial value of tx (done analogously for ty) (a) for a ray directed
to the left and (b) for a ray directed to the right.

If instead the ray is directed to the left, the corresponding expression is

tx = (x1 − minx)

√
dx2 + dy2

dx
.

These derivations are illustrated in Figure 7.18. The initial value of ty is computed in
an analogous fashion.

To keep track of which cell is currently visited, first the cell (i, j) that the ray or
directed line segment originates in is found. A direction (di, dj) is then computed for
the ray. For a ray directed up and to the right, the direction would be (1, 1). For a ray
going to the left, it would be (−1, 0), and so on. Each time the ray passes through a cell
boundary, a step of di or dj is made along the x axis or y axis respectively, depending on
whether the boundary was vertical or horizontal. For a line segment, the coordinates
of the ending cell are computed in advance to minimize the traversal cost.

The following code implements the full grid traversal. Note that because the term√
dx2 + dy2 is constant and occurs in all four of the tx, ty, �tx, and �ty terms it can

be dropped, greatly simplifying the initialization calculations.

void VisitCellsOverlapped(float x1, float y1, float x2, float y2)
{

// Side dimensions of the square cell
const float CELL_SIDE = 30.0f;

// Determine start grid cell coordinates (i, j)
int i = (int)(x1 / CELL_SIDE);
int j = (int)(y1 / CELL_SIDE);
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// Determine end grid cell coordinates (iend, jend)
int iend = (int)(x2 / CELL_SIDE);
int jend = (int)(y2 / CELL_SIDE);

// Determine in which primary direction to step
int di = ((x1 < x2) ? 1 : ((x1 > x2) ? -1 : 0));
int dj = ((y1 < y2) ? 1 : ((y1 > y2) ? -1 : 0));

// Determine tx and ty, the values of t at which the directed segment
// (x1,y1)-(x2,y2) crosses the first horizontal and vertical cell
// boundaries, respectively. Min(tx, ty) indicates how far one can
// travel along the segment and still remain in the current cell
float minx = CELL_SIDE * floorf(x1/CELL_SIDE), maxx = minx + CELL_SIDE;
float tx = ((x1 < x2) ? (x1 - minx) : (maxx - x1)) / Abs(x2 - x1);
float miny = CELL_SIDE * floorf(y1/CELL_SIDE), maxy = miny + CELL_SIDE;
float ty = ((y1 < y2) ? (y1 - miny) : (maxy - y1)) / Abs(y2 - y1);

// Determine deltax/deltay, how far (in units of t) one must step
// along the directed line segment for the horizontal/vertical
// movement (respectively) to equal the width/height of a cell
float deltatx = CELL_SIDE / Abs(x2 - x1);
float deltaty = CELL_SIDE / Abs(y2 - y1);

// Main loop. Visits cells until last cell reached
for (;;) {

VisitCell(i, j);
if (tx <= ty) { // tx smallest, step in x

if (i == iend) break;
tx += deltatx;
i += di;

} else { // ty smallest, step in y
if (j == jend) break;
ty += deltaty;
j += dj;

}
}

}

Instead of using the i and j coordinates to index into some array grid[i][j], it
is possible to maintain a pointer to the current cell and step the pointer directly by
adding appropriate values to the pointer instead of adding di and dj to a set of index
variables.
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The described algorithm can of course be implemented for the traversal of a 3D
grid. In this case the structure of the main loop becomes:

for (;;) {
VisitCell(i, j, k);
if (tx <= ty && tx <= tz) { // tx smallest, step in x

if (i == iend) break;
tx += deltatx;
i += di;

} else if (ty <= tx && ty <= tz) { // ty smallest, step in y
if (j == jend) break;
ty += deltaty;
j += dj;

} else { // tz smallest, step in z
if (k == kend) break;
tz += deltatz;
k += dk;

}
}

It should be noted that as tx and ty are float variables it is possible that rounding
errors may cause the cells visited during traversal to be different from those visited by
an algorithm using exact arithmetic. If this is a concern, objects should be considered
as extended by some small epsilon before being assigned to the grid. It is also possi-
ble to turn this algorithm into an all-integer algorithm by using integer-only inputs
and multiplying through tx, ty, �tx, and �ty by the denominators involved in the
initialization code. An all-integer 4-connected line-drawing algorithm is described
in [Barerra03].

If the objects stored in the grid can be concave, it is important to make sure that the
intersection point of a detected intersection lies within the current cell. Otherwise,
when a concave object straddles multiple cells the object could have been hit several
cells away, and there might be a hit with a different object in any of the cells between.
Section 7.7 presents methods for avoiding having to perform multiple intersection
tests against the same objects in such situations as just described.

There are several possible optimizations that can be performed on ray queries on
uniform grids. For example, note that a ray at an angle passes through more cells
than an axis-aligned ray. Therefore, one possible optimization is to have several grids
oriented differently and pick the most aligned one to trace a ray through. Another
optimization is to apply a move-to-front reordering heuristic to objects in a cell. As
intersected objects are likely to be intersected again on the next query, having an early
upper bound on the distance to the nearest intersected object allows more distant
objects within the same cell to be quickly culled using a quick distance test. Additional
optimizations can be found in the ray-tracing literature [Glassner89], [Shirley00].
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7.5 Sort and Sweep Methods

A drawback of inserting objects into the fixed spatial subdivisions that grids and
octrees represent is having to deal with the added complications of objects straddling
multiple partitions. An alternative approach is to instead maintain the objects in some
sort of sorted spatial ordering. One way of spatially sorting the objects is the sort and
sweep method [Baraff92] (referred to as sweep and prune in [Cohen95]).

First consider the case of detecting overlap among 1D bounding boxes. Each such
box corresponds to an interval [b, e] on the coordinate axis. Given n such intervals,
all b and e values can be inserted into a sorted list (Figure 7.19). By sweeping the list,
active intervals can be tracked by adding them to a list whenever their b values are
encountered and removing them when their e values are encountered. Whenever a
new interval is added to the list, it has also been found to overlap the already active
intervals on the list.

By considering their projection intervals onto the x, y, and z axes, AABBs in 3D
can be identified as three independent such intervals. Thus, for each coordinate axis a
sorted linked list is maintained of the start and end values of the corresponding AABB
projection intervals of all objects. The collisions for a single object can on average be
found in near constant time by querying neighboring objects for overlap. Only those
objects within the projection interval of the tested object have to be examined. Linked
lists also allow for dynamic updating whenever an object moves.

After the lists have been sorted, as objects generally do not move very far between
frames the lists will remain almost sorted from one frame to the next. To exploit
temporal coherence effectively, the lists are kept from frame to frame and they are
maintained sorted using a simple insertion sort, which has linear behavior for nearly
ordered lists.

To allow for fast updates during the sorting pass, the lists need to be double linked.
Start and end list sentinels help both to simplify (by removing special case tests such
as testing for empty lists or reaching either end of the list) and speed up the code
[Knuth98].

b0 b1 e0 b2 e1 e2 b3 b4 e3 e4

Figure 7.19 Projected AABB intervals on the x axis.
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Figure 7.20 Objects clustered on the y axis (caused, for example, by falling objects settling
on the ground). Even small object movements can now cause large positional changes in the
list for the clustered axis.

In general, updating lists for n objects is expected time O(n). However, coherence
can break down due to clustering of objects. Specifically, sorting can deteriorate to
O(n2) on the clustered axis because of small world movements causing large positional
movements in the list. Unfortunately, such clustering is common. For instance, having
all objects on a surface, such as a floor, will cause tight clustering on the vertical axis
(Figure 7.20).

One solution to the global situation in which objects tend to cluster on, say, the
y axis is to track only the x and z lists. In most situations, sorting on just two axes is
likely to be sufficient, which also has the benefit of reducing the memory overhead of
this scheme. In some cases, it might even be worthwhile to pick axes other than the
normal x, y, and z ones to sort on. For instance, the x = y axis could be considered
in situations in which objects tend to cluster on x or y. Although this may lessen the
clustering problem for specific applications, the problem still remains. Section 7.5.2
suggests an alternative implementation avoiding the worst-case O(n2) behavior.

7.5.1 Sorted Linked-list Implementation

To maintain the axis-sorted lists of projection interval extents, two types of struc-
tures are required: one that is the linked-list element corresponding to the minimum
or maximum interval values and another one to link the two entries. A naive
implementation would look as follows.

struct AABB {
Elem *pMin[3]; // Pointers to the three minimum interval values (one for each axis)
Elem *pMax[3]; // Pointers to the three maximum interval values (one for each axis)
Object *pObj; // Pointer to the actual object contained in the AABB

};

struct Elem {
AABB *pAABB; // Back pointer to AABB object (to find matching max/min element)
Elem *pLeft; // Pointer to the previous linked list element
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Elem *pRight; // Pointer to the next linked list element
float value; // The actual min or max coordinate value
int minmax:1; // A min value or a max value?

};

Here, the lists themselves would be represented by the three list headers:

Elem *gListHead[3];

By merging minimum and maximum values into one element each, space is con-
served (as only a single back pointer to the AABB object is needed). In addition, the
combined structure needs just one flag value, as its contained coordinate values are
either min or max values. This results in the following structures.

struct AABB {
Elem *pMin; // Pointer to element containing the three minimum interval values
Elem *pMax; // Pointer to element containing the three minimum interval values
Object *pObj; // Pointer to the actual object contained in the AABB

};

struct Elem {
AABB *pAABB; // Back pointer to AABB object (to find matching max/min element)
Elem *pLeft[3]; // Pointers to the previous linked list element (one for each axis)
Elem *pRight[3]; // Pointers to the next linked list element (one for each axis)
float value[3]; // All min or all max coordinate values (one for each axis)
int minmax:1; // All min values or all max values?

};

Because the Elem structs do not move (only their contained pointers are being
relinked), this representation can be refined further by placing the structs contiguously
in memory. Given a pointer to either Elem struct, the corresponding min or max
element can always be found either before or after (respectively) the current one.

As theAABB struct was only needed to link the Elem structs, the pair of Elem structs
can effectively serve as the new AABB structure. Whereas previously AABB structs and
Elem structs were allocated separately, now the AABB struct contains all required data
and only a single structure need be allocated.

struct AABB {
Elem min; // Element containing the three minimum interval values
Elem max; // Element containing the three maximum interval values



332 Chapter 7 Spatial Partitioning

Object *pObj; // Pointer to the actual object contained in the AABB
};

struct Elem {
Elem *pLeft[3]; // Pointers to the previous linked list element (one for each axis)
Elem *pRight[3]; // Pointers to the next linked list element (one for each axis)
float value[3]; // All min or all max coordinate values (one for each axis)
int minmax:1; // All min values or all max values?

};

Given a pointer to an Elem struct, the corresponding AABB is located in this way:

AABB *GetAABB(Elem *pElem)
{

return (AABB *)(pElem->minmax ? (pElem - 1) : pElem);
}

Compared to the previous representation, this saves four pointers (16 bytes at
4 bytes per pointer) per AABB. By embedding the structure inside the objects them-
selves, the pointer to the object would no longer be needed and an additional 4 bytes
would be saved. With a little trickery, the minmax bit fields could be moved from the
Elem structs into the AABB struct to save some additional memory. They could, in fact,
be embedded within one of the other structure fields and thus take up no extra space.

This is still quite an expensive structure at about 76 to 84 bytes per object, depending
on implementation. Further savings can be had by turning the 32-bit pointers into
16-bit indices, assuming that at no time will there be more than 65,536 objects (which
is a safe assumption for many applications).

In the following code it is assumed the three lists have been initialized to have
both start and end sentinels. Sentinels can be set up as follows.

enum {
MIN_ELEM = 0, // Indicates AABB minx, miny, or minz element
MAX_ELEM = 1 // Indicates AABB maxx, maxy, or maxz element

};

// Initialize the lists, with start and end sentinels
AABB *pSentinel = new AABB;
for (int i = 0; i < 3; i++) {

pSentinel->min.pLeft[i] = NULL; // not strictly needed
pSentinel->min.pRight[i] = &pSentinel->max;



7.5 Sort and Sweep Methods 333

pSentinel->max.pLeft[i] = &pSentinel->min;
pSentinel->max.pRight[i] = NULL; // not strictly needed
pSentinel->min.value[i] = -FLT_MAX;
pSentinel->max.value[i] = FLT_MAX;
gListHead[i] = &pSentinel->min;

}
// Note backwardness of initializing these two
pSentinel->min.minmax = MAX_ELEM;
pSentinel->max.minmax = MIN_ELEM;

Inserting a new AABB into the sorted lists is done by scanning the lists for the
appropriate insertion point. To simplify the presentation here, the overlap pair sta-
tus is calculated in a separate pass after the new AABB has been inserted. To make
the code more efficient, the overlap pair status could be updated at the same time
objects are inserted by interleaving the routines. (Note that it is not possible to deter-
mine all overlapping pairs just by examining the Elem structs between the min and
max element. The latter test would miss overlap with a larger AABB, completely
encompassing the new AABB.)

To keep track of which collisions are active, the following code assumes the
existence of two functions AddCollisionPair() and DeleteCollisionPair() that
register and unregister, respectively, a pair of objects as being colliding.

void InsertAABBIntoList(AABB *pAABB)
{

// For all three axes
for (int i = 0; i < 3; i++) {

// Search from start of list
Elem *pElem = gListHead[i];

// Insert min cell at position where pElem points to first larger element.
// Assumes large sentinel value guards from falling off end of list
while (pElem->value[i] < pAABB->min.value[i])

pElem = pElem->pRight[i];
pAABB->min.pLeft[i] = pElem->pLeft[i];
pAABB->min.pRight[i] = pElem;
pElem->pLeft[i]->pRight[i] = &pAABB->min;
pElem->pLeft[i] = &pAABB->min;

// Insert max cell in the same way. Can continue searching from last
// position as list is sorted. Also assumes sentinel value present
while (pElem->value[i] < pAABB->max.value[i])

pElem = pElem->pRight[i];
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pAABB->max.pLeft[i] = pElem->pLeft[i];
pAABB->max.pRight[i] = pElem;
pElem->pLeft[i]->pRight[i] = &pAABB->max;
pElem->pLeft[i] = &pAABB->max;

}

// Now scan through list and add overlap pairs for all objects that
// this AABB intersects. This pair tracking could be incorporated into
// the loops above, but is not done here to simplify the code
for (Elem *pElem = gListHead[0]; ; ) {

if (pElem->minmax == MIN_ELEM) {
if (pElem->value[0] > pAABB->max.value[0])

break;
if (AABBOverlap(pAABB, GetAABB(pElem)))

AddCollisionPair(pAABB, GetAABB(pElem));
} else if (pElem->value[0] < pAABB->min.value[0])

break;
}

}

After the position of an AABB has changed, the lists must be updated:

// This updating code assumes all other elements of list are sorted
void UpdateAABBPosition(AABB *pAABB)
{

// For all three axes
for (int i = 0; i < 3; i++) {

Elem *pMin = &pAABB->min, *pMax = &pAABB->max, *t;

// Try to move min element to the left. Move the roaming pointer t left
// for as long as it points to elem with value larger than pMin’s. While
// doing so, keep track of the update status of any AABBs passed over
for (t = pMin->pLeft[i]; pMin->value[i] < t->value[i]; t = t->pLeft[i])

if (t->minmax == MAX_ELEM)
if (AABBOverlap(pAABB, GetAABB(t)))

if (!HasCollisionPair(pAABB, GetAABB(t)))
AddCollisionPair(pAABB, GetAABB(t));

// If t moves from its original position, move pMin into new place
if (t != pMin->pLeft[i])

MoveElement(i, pMin, t);
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// Similarly to above, try to move max element to the right
for (t = pMax->pRight[i]; pMax->value[i] > t->value[i]; t = t->pRight[i])

if (t->minmax == MIN_ELEM)
if (AABBOverlap(pAABB, GetAABB(t)))

if (!HasCollisionPair(pAABB, GetAABB(t)))
AddCollisionPair(pAABB, GetAABB(t));

if (t != pMax->pRight[i])
MoveElement(i, pMax, t->pLeft[i]);

// Similarly to above, try to move min element to the right
for (t = pMin->pRight[i]; pMin->value[i] > t->value[i]; t = t->pRight[i])

if (t->minmax == MAX_ELEM)
if (HasCollisionPair(pAABB, GetAABB(t)))

DeleteCollisionPair(pAABB, GetAABB(t));
if (t != pMin->pRight[i])

MoveElement(i, pMin, t->pLeft[i]);

// Similarly to above, try to move max element to the left
for (t = pMax->pLeft[i]; pMax->value[i] < t->value[i]; t = t->pLeft[i])

if (t->minmax == MIN_ELEM)
if (HasCollisionPair(pAABB, GetAABB(t)))

DeleteCollisionPair(pAABB, GetAABB(t));
if (t != pMax->pLeft[i])

MoveElement(i, pMax, t);

}
}

The support function to move the AABB elements within the list is given by:

void MoveElement(int i, Elem *pElem, Elem *pDest)
{

// Unlink element...
pElem->pLeft[i]->pRight[i] = pElem->pRight[i];
pElem->pRight[i]->pLeft[i] = pElem->pLeft[i];
// ...and relink it _after_ the destination element
pElem->pLeft[i] = pDest;
pElem->pRight[i] = pDest->pRight[i];
pDest->pRight[i]->pLeft[i] = pElem;
pDest->pRight[i] = pElem;

}
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The preceding code should be a sufficient framework for implementing the addi-
tional code required to complete the linked-list implementation of sort and sweep.

7.5.2 Array-based Sorting

The strength of the linked-list approach is twofold. First, it can handle a large number
of objects, memory permitting. Second, when none or just a few objects move, little
or no work is required to maintain the data structures from frame to frame. Unfor-
tunately, the rather hefty memory overhead for each object AABB is a drawback. The
worst-case O(n2) clustering behavior is equally serious.

An alternative is to implement axial extent sorting using arrays. Arrays are more
inflexible when it comes to dynamically allowing more objects, but they use less
memory. Using arrays, even if a single object moves the whole array might need
updating, and thus a full sorting pass is required regardless. At the same time, the
clustering problem is virtually removed and worst-case performance is determined
by the sorting algorithm used [for example, O(n log n) for Quicksort or O(kn) for
radix sort]. Unlike lists, this remains constant even if all objects move, or if they move
over large distances. Using arrays simplifies the code and provides cache-friendly
accessing of memory. The following implementation operates on a single array of
pointers, pointing to the object AABBs.

struct AABB {
Point min;
Point max;
...

};
AABB *gAABBArray[MAX_OBJECTS];

For each pass of the sort-and-sweep algorithm one of the coordinate axes is
selected as the axis to sort along. (The selection is described later.) The selected
axis is specified through a global variable.

int gSortAxis = 0; // Specifies axis (0/1/2) to sort on (here arbitrarily initialized)

Given a sorting axis, the pointers are sorted in ascending order based on the
minimum value of the referenced AABB. To simplify the presentation, the following
code uses stdlib’s qsort(). The required comparison function needed for qsort() to
sort the AABBs is:

// Comparison function for qsort. Given two arguments A and B must return a
// value of less than zero if A < B, zero if A = B, and greater than zero if A > B
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int cmpAABBs(const void *a, const void *b)
{

// Sort on minimum value along either x, y, or z (specified in gSortAxis)
float minA = (*(AABB **)a)->min[gSortAxis];
float minB = (*(AABB **)b)->min[gSortAxis];
if (minA < minB) return -1;
if (minA > minB) return 1;
return 0;

}

After the array has been sorted, it is scanned for overlapping boxes. To avoid
keeping track of currently active intervals as the array is swept, this particular imple-
mentation scans the array forward for overlapping objects to the end of the currently
tested box interval.

void SortAndSweepAABBArray(void)
{

// Sort the array on currently selected sorting axis (gSortAxis)
qsort(gAABBArray, MAX_OBJECTS, sizeof(AABB *), cmpAABBs);

// Sweep the array for collisions
float s[3] = { 0.0f, 0.0f, 0.0f }, s2[3] = { 0.0f, 0.0f, 0.0f }, v[3];
for (int i = 0; i < MAX_OBJECTS; i++) {

// Determine AABB center point
Point p = 0.5f * (gAABBArray[i]->min + gAABBArray[i]->max);
// Update sum and sum2 for computing variance of AABB centers
for (int c = 0; c < 3; c++) {

s[c] += p[c];
s2[c] += p[c] * p[c];

}
// Test collisions against all possible overlapping AABBs following current one
for (int j = i + 1; j < MAX_OBJECTS; j++) {

// Stop when tested AABBs are beyond the end of current AABB
if (gAABBArray[j]->min[gSortAxis] > gAABBArray[i]->max[gSortAxis])

break;
if (AABBOverlap(gAABBArray[i], gAABBArray[j]))

TestCollision(gAABBArray[i], gAABBArray[j]);
}

}

// Compute variance (less a, for comparison unnecessary, constant factor)
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for (int c = 0; c < 3; c++)
v[c] = s2[c] - s[c] * s[c] / MAX_OBJECTS;

// Update axis sorted to be the one with greatest AABB variance
gSortAxis = 0;
if (v[1] > v[0]) gSortAxis = 1;
if (v[2] > v[gSortAxis]) gSortAxis = 2;

}

During the sweep pass, the variances of the AABB centers along each of the three
axes are computed. After the pass is completed, the axis corresponding to the largest
variance is selected for use the next time the routine is called. This method does
not entirely avoid pathological cases. When objects are clustering in more than one
dimension, worst-case O(n2) behavior could still arise.

Insertions are O(1) by adding new AABBs after the position last used in the array.
The sorting pass absorbs the cost of bringing the AABBs to their proper place. When
an AABB is removed, its corresponding pointer also has to be removed from the
array. Given an AABB, a binary search over the array locates the pointer in O(log n)
time. The last pointer in the array replaces the pointer to be deleted. If removals are
frequent, a back pointer inside the AABB structure to the array pointer could be filled
in during the sweep pass, making deletions O(1) as well.

7.6 Cells and Portals

Having an explicit spatial partitioning scheme just for collision detection is not always
necessary. Sometimes it is sufficient to tie into a hierarchical organization already
present for the efficient rendering of world geometry, such as a scene graph. An exam-
ple of an organizational structure that lends itself well to being used with collision
detection is the cells-and-portals method [Teller92], [Luebke95].

This method was developed for rendering architectural walkthrough systems.
These are categorized by heavily occluded environments with high depth complex-
ity. However, the amount of visible geometry in a typical architectural scene is low
in comparison to the total geometry contained in the view frustum. The cells-and-
portals method exploits the occluded nature of these scenes to reduce the amount of
geometry that has to be rendered. The method proceeds by dividing the world into
regions (cells) and the boundaries that connect them (portals). Rooms in the scene
would correspond to cells, and doorways and windows to portals. The portals define
connections between cells and both directly and indirectly determine which cells can
be viewed from a given cell (Figure 7.21).

Rendering a scene partitioned into cells and portals starts with drawing the geom-
etry for the cell containing the camera. After this cell has been rendered, the rendering
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Figure 7.21 A simple portalized world with five cells (numbered) and five portals (dashed).
The shaded region indicates what can be seen from a given viewpoint. Thus, here only cells
2, 3, and 5 must be rendered.

function is called recursively for adjoining cells whose portals are visible to the
camera. During recursion, new portals encountered are clipped against the current
portal, narrowing the view into the scene. Recursion stops when either the clipped
portal becomes empty, indicating the new portal is not visible to the camera, or
when no unvisited neighboring cells are available.

The portals are implemented as non-self-intersecting polygons. The cells them-
selves are traditionally defined by convex polyhedra. Being convex, the polygons in
the cell can be rendered in any order without risk of overlap, thus obviating the
need to sort polygons. (However, with the Z-buffer capabilities of modern hardware
convex cells are no longer a requirement.) The following pseudocode illustrates an
implementation of this rendering procedure.

RenderCell(ClipRegion r, Cell *c)
{

// If the cell has not already been visited this frame...
if (c->lastFrameVisited != currentFrameNumber) {

// ...timestamp it to make sure it is not visited several
// times due to multiple traversal paths through the cells
c->lastFrameVisited = currentFrameNumber;
// Recursively visit all connected cells with visible portals
for (Portal *pl = c->pPortalList; pl != NULL; pl = pl->pNextPortal) {

// Clip the portal region against the current clipping region
ClipRegion visiblePart = ProjectAndIntersectRegion(r, pl->boundary);
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Figure 7.22 There are no objects in the cells overlapped by A, and thus object A does not
need to test against any objects. Objects B and C must be tested against each other, as C
crosses the portal between cells 3 and 5 and thus lies partly in the same cell as B.

// If portal is not completely clipped its contents must be partially
// visible, so recursively render other side through the reduced portal
if (!EmptyRegion(visiblePart))

RenderCell(visiblePart, pl->pAdjoiningCell);
}
// Now render all polygons (done last, for back-to-front rendering)
for (Polygon *p = c.pPolygonList; p != NULL; p = p->pNextPolygon)

RenderPolygon(p);
}

}

The same cells-and-portals structure can be used to optimize collision detection
queries. Initially, objects are associated with the cells containing their center point. As
objects move, a ray test determines whether the object has moved out of the current
cell. If it has, connected portals are tested against to find which neighboring cell the
object moved into.

For object-object queries, given an object A only the objects in A’s assigned cell
and those in adjoining cells whose portal A overlaps must now be checked against.
Similarly, for object-world collisions only the polygons in the current cell and those
of any overlapped cells must be checked against (Figure 7.22).

The BSP trees of Chapter 8 serve to divide the world into convex regions and the
resulting spatial partitioning can be used for collision detection in a manner similar
to the cells-and-portals method. In fact, BSP trees are often used in the automated
generation of cells and portals.
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7.7 Avoiding Retesting

A potential concern with partitioning schemes in which a single object may overlap
multiple partitions is that the same two objects can be subject to testing against each
other multiple times. This is clearly a problem when the pairwise test is expensive. If
not handled correctly, it could also lead to collision-resolution code being run for the
objects more than once. A similar problem occurs in ray-tracing applications, wherein
shooting a ray through a uniform grid can result in the ray being tested multiple times
against the same object located in several grid cells. In both cases, it would be wasteful
to perform the same tests multiple times because the same objects are encountered
again. Depending on the situation, a few alternative solutions are available.

7.7.1 Bit Flags

A straightforward solution to the retesting problem is to use a bit flag for indicating
whether an intersection test has already been performed. In the case of shooting rays
through a grid, there would be one bit per object. For object-object intersection tests,
there would be a bit for every pair of objects. If the bit is set, the object (or pair of
objects) in question has already been tested and any further testing can be skipped.
If the bit is not set, the full test must be performed, after which the bit would be set
to indicate the completion of the test.

In the object-object case, the bit flags are easily stored in an array indexed by the
two object indices. In that the array entries (a, b) and (b, a) would represent the same
pair, to avoid wasting memory only the upper triangular half above the diagonal
would actually have to be stored. With a maximum of n objects, the array would then
only have to hold n(n − 1)/2 bits instead of n2 bits. Given two object indices a and b,
with a < b, the index of the corresponding bit is now computed as

bitindex = a(2n − a − 3)
/

2 + b − 1

instead of

bitindex = an + b.

The following code illustrates a possible implementation of a bit flag array for object-
object intersection testing.

// Allocate enough words to hold a bit flag for each object pair
const int32 MAX_OBJECTS = 1000;
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const int32 MAX_OBJECT_PAIRS = MAX_OBJECTS * (MAX_OBJECTS – 1) / 2;
int32 bitflags[(MAX_OBJECT_PAIRS + 31) / 32];
...
void TestObjectPair(int32 index0, int32 index1)
{

assert(index0 != index1);
// Find which object index is smaller and which is larger
int32 min = index0, max = index1;
if (index1 < index0) {

min = index1;
max = index0;

}
// Compute index of bit representing the object pair in the array
int32 bitindex = min * (2 * MAX_OBJECTS - min - 3) / 2 + max - 1;
// Look up the corresponding bit in the appropriate word
int32 mask = 1L << (bitindex & 31);
if ((bitflags[bitindex >> 5] & mask) == 0) {

// Bit not set, so pair has not already been processed;
// process object pair for intersection now
...
// Finally mark object pair as processed
bitflags[bitindex >> 5] |= mask;

}
}

Although this works well for object-object testing, it is less than ideal in the ray-
shooting case. In the object-object scenario, the array of bit flags would have to be
reset once per frame, which is not too bad. For ray shooting, however, the array
would have to be reset for each ray tested! In a typical game there might be tens
or hundreds of ray-like tests performed each frame. Even for a modest number of
objects, this operation now quickly becomes very expensive.

7.7.2 Time Stamping

An alternative way of keeping track of already-tested objects that works better for
the ray-shooting scenario is to keep a running counter that increments for each ray
query and assign the counter number, commonly referred to as a time stamp, to each
object after it has been tested. Then, just before an object is to be tested the time
stamp is checked to see if the object has already been tested in the current frame and
can therefore be ignored.

Figure 7.23 illustrates how time stamping works. First, consider the interaction with
object A only. In cell 1, the ray is tested against A. Because there is no intersection
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Figure 7.23 Using time stamping avoids having to intersect the ray against object A twice,
in both cells 1 and 2, as the ray is traced through the uniform grid. By storing the computed
intersection with object B into a mailbox, the intersection can be reused in cell 3 without
having to be recomputed.

between A and the ray, A is simply tagged with the time stamp of the ray and the
ray processing continues to the next cell. In cell 2, the ray is again tested against A,
but because it has already been time stamped with the current time object A can be
safely ignored.

However, consider what happens with object B. It is also tested against in cell 1.
There is an intersection between B and the ray, but the intersection point is in cell 3.
Because the intersection point is not in the current cell, it is possible that there could
be another intersection in the cells between (and in fact there is, with object C in
cell 3). Thus, the ray processing must continue to subsequent cells. Before continuing
to the next cell, the intersection with B must be compared to the best intersection
stored so far to see if it constitutes a closer intersection. Because B happens to be
the first object intersected, this is clearly the case and a pointer to B along with the
parametric time at which the ray strikes B are saved as the currently best intersection.
Before B is finally time stamped, it also makes sense to update the number of cells
being traversed by the ray query. Because it is now known that there is an intersection
in cell 3, there is no need to continue processing into cell 4. In cell 2, objects A and
B have to be tested again, but both have been time stamped and are thus ignored,
with processing continued to cell 3. In cell 3, B is again tested and ignored because
of its time stamp. The ray is also tested against object C, which it intersects. As the
intersection with C is found to be closer than the stored intersection with object
B, the best intersection is updated to correspond to this new intersection. At this
point, because there are no more objects to test in cell 3 and the ray processing
was earlier set to stop in this cell the query can now return with the intersection
with C as the result after having performed the intersection test with each object
once only.

One slight problem remains. Regardless of the size used for the time stamp
counter, eventually it will overflow. If enough bits have been assigned for the
counter — which could well approach 64 bits for certain applications — the problem
can safely be ignored as not happening during the uptime of the application. Assume
for now that to conserve memory only an 8-bit counter was used. Every 256 ticks, the
time stamp counter will now overflow and at that time all stored time stamps will
have to be reset. If they are not, an object that has not been time stamped in 256 ticks



344 Chapter 7 Spatial Partitioning

and is suddenly tested would incorrectly report that it has already been tested in the
current time slice!

The time stamping technique described here has been described in the context
of ray tracing as mailboxes [Amanatides87]. Another approach to eliminating mul-
tiple intersections and redundant calculations is the residency masks described in
[Cychosz92].

In most applications, resetting the time stamp values will go unnoticed. However,
for applications with a huge number of objects this operation could become expensive.
For those applications, the solution is then to not reset all time stamp values at once.
This solution is explored in the next section.

7.7.3 Amortized Time Stamp Clearing

The one-time overhead of resetting time stamp counters can be lessened using an
amortized clearing scheme. Instead of clearing the counters all at once when the
global counter overflows, the set of all time stamp counters can be divided into
smaller blocks with a single block being reset each frame.

The best illustration of this amortized method is through a small example (see
Table 7.2). Consider having some n objects, say 10, that are divided into three blocks
(of three, three, and four objects each). Let the time stamp counters also count up
to three. At start, all objects are initialized to have a time stamp of 0. On the first
frame, the global time stamp counter is incremented to 1. After all objects have been
updated, it is possible for each block to contain objects with time stamps of either 0
or 1. Before ending the first frame, block 0 is cleared to the current value of the global
time stamp counter.

The same procedure is now repeated on each successive frame, with the next
block of objects cleared, again to the current value of the global counter of that frame.
Referring to Table 7.2, note that at the end of frame 4 there can no longer exist an
object with a time stamp of value 1, which is the value the global counter will assume
on frame 5. Similarly, at the end of frame 5 there is no object with a time stamp value
of 2, and so on for all subsequent frames.

To further illustrate how the amortized clearing method works, the following code
is an example of what an implementation of the method could look like. First, some
required constant values are defined.

// Use 8 bits for the time stamp counter [0..255]
#define MAX_COUNTER_VALUE 255

// Divide up all time-stamped objects into as many blocks
#define NUM_BLOCKS MAX_COUNTER_VALUE
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Table 7.2 Indicating possible time stamp values for objects in the three blocks at various points. At the
point at which objects are about to be updated there is never an object with a time stamp
equal to the current global time stamp. Thus, even though only a few objects are cleared
each frame there is never a time stamp conflict.

Frame Counter Block 0 Block 1 Block 2 Comment

0 0 0 0 0 All object time stamps are cleared to 0 on
startup

1 1 0/1 0/1 0/1 Incrementing global counter, updating
objects

1 0/1 0/1 Clearing (time stamps of objects in) block
0 to 1

2 2 1/2 0/1/2 0/1/2 Incrementing global counter, updating
objects

1/2 2 0/1/2 Clearing block 1 to 2

3 3 1/2/3 2/3 0/1/2/3 Incrementing global counter, updating
objects

1/2/3 2/3 3 Clearing block 2 to 3

4 0 0/1/2/3 0/2/3 0/3 Incrementing global counter, updating
objects

0 0/2/3 0/3 Clearing block 0 to 0; now no object with
time stamp of 1

5 1 0/1 0/1/2/3 0/1/3 Incrementing global counter, updating
objects

0/1 1 0/1/3 Clearing block 1 to 1; now no object with
time stamp of 2

6 2 0/1/2 1/2 0/1/2/3 Incrementing global counter, updating
objects

0/1/2 1/2 2 Clearing block 2 to 2; now no object with
time stamp of 3

Once at initialization, all object time stamp counters are cleared to zero.

blockToClear = 0;
tickCounter = 0;
for (i = 0; i < MAX_OBJECTS; i++)

object[i].timeStamp = tickCounter;
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During each frame the time stamp counters are used as normal.

// Increment the global time stamp counter
tickCounter++;
// Do any and all object testing required for the frame
for (i = 0; i < MAX_OBJECTS; i++) {

if (object[i].timeStamp == tickCounter) {
// Already processed this object this frame, do nothing
continue;

} else {
// Process object for intersection here
...
// Mark object as processed
object[i].timeStamp = tickCounter;

}
}

At the end of each frame — or between rays in case of shooting rays — a subset of
all stored time stamps is cleared by marking them with the current time stamp value
(which has served its purpose for this frame).

// Reset the time stamp for all objects in the current block to be cleared
from = blockToClear * MAX_OBJECTS / MAX_COUNTER_VALUE;
to = (blockToClear + 1) * MAX_OBJECTS / MAX_COUNTER_VALUE;
for (i = from; i < to; i++)

object[i].timeStamp = tickCounter;
// Indicate that the next block should be cleared the next frame
if (++blockToClear >= NUM_BLOCKS)

blockToClear = 0;
// Wrap the global time stamp counter when it exceeds its maximum value
if (tickCounter >= MAX_COUNTER_VALUE - 1)

tickCounter = 0;

The same technique can be applied for amortized clearing of other buffers. For
example, by setting aside a few bits of the time stamp it could be used to spread the
clearing of a (software) Z-buffer over a number of frames.

7.8 Summary

Spatial partitioning is an approach to accelerating broad-phase processing by dividing
space into disjoint regions and associating scene objects with all regions they overlap.
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Pairwise tests then must be performed only for those objects that share a region. In
some cases objects are associated with just a single region, in which case neighboring
regions also must be explored for potential collisions.

In this chapter, three types of spatial partitioning methods were explored: grids,
trees, and spatial sorting. Grids are often uniform, meaning that they consist of grid
cells of equal size. When large, grids may consume large amounts of memory. One
way to reduce the memory requirements of grids is to use hashed storage, as described
in Section 7.1.3, which has the benefit of allowing the grid to be of infinite extent.
Grids can also be expressed implicitly. The implicit bit grid, in particular, is a very
efficient spatial partitioning method. The hierarchical grid addresses the problem of
objects being of greatly varying sizes, making it difficult to set a grid cell size for a
uniform grid.

One of the tree representations described was the octree. It partitions space into
eight uniform-size cells, then recursively partitions the cells in the same way. Thanks
to their regular structure, octrees can be represented linearly, obviating the need to
represent tree links using pointers, and thereby saving memory. The octree can also
be made loose, meaning that its cells are expanded to overlap partially. Loose octrees
address the problem of objects not being able to descend farther down the tree when
they straddle a splitting plane (and are only allowed to be referenced from a single
octree cell).

The k-d tree is a generalization of the octree in that it can represent the same
spatial partitioning as the octree, but not vice versa. The k-d tree divides space into
two, along one dimension at a time and at an arbitrary position.The simpler structure
of the k-d tree makes queries on it easier.

Spatial sorting involves maintaining all objects in a sorted structure along one or
more axes.The sorted structure is incrementally updated when objects move. Because
the structure is sorted, object collisions are detected by examining neighboring objects
without requiring a search.

Chapter 8 discusses one additional tree representation, which is a generalization
of k-d trees. This representation can also be used as a spatial partitioning method.
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Chapter 8

BSP Tree Hierarchies

Of the many spatial partitioning methods available, the BSP tree is the most versatile.
It can perform the same tasks as the k-d tree, the quadtree, or the octree, but not
vice versa. In addition to spatial partitioning, the BSP tree can be used as a boundary
or solid representation of arbitrary polyhedral scenes. BSP trees are also powerful
structures for collision detection, which this chapter explores.

8.1 BSP Trees

A binary space-partitioning tree (or BSP tree for short) is a binary tree structure that
recursively partitions space into pairs of subspaces with respect to dividing planes
of arbitrary position and orientation. If the space being partitioned is n-dimensional,
the dividing planes are (n − 1)-dimensional hyperplanes. In practice, the working
space is usually 3D, and sometimes 2D. When the space being partitioned is 3D, the
dividing hyperplane is a plane. In two dimensions, the dividing hyperplane is a line.
The two partitions, or halfspaces, the space is divided into are commonly referred
to as the positive and negative halfspaces. The positive halfspace lies in front of the
dividing hyperplane and the negative halfspace behind it (see Section 3.6). Dividing
planes are also referred to as splitting planes or partitioning planes.

As a simple example of a BSP tree, consider the illustrations of Figure 8.1. The
square region defined by the gray outline is here the original space (note that this
space does not have to be bounded; the square could easily be a plane). A first
hyperplane, A, divides the original space into two regions, as illustrated in Figure
8.1a. Beneath the square is the corresponding BSP tree, with internal nodes shown
as circles and the leaves as squares. Figure 8.1b shows a second hyperplane, B,
dividing the negative halfspace of node A. Finally, a third hyperplane, C, is shown in
Figure 8.1c, this time dividing the positive halfspace of node A. Note that the spatial
regions corresponding to the leaves are always convex.

349
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Figure 8.1 The successive division of a square into four convex subspaces and the cor-
responding BSP tree. (a) The initial split. (b) The first second-level split. (c) The second
second-level split.

Originally, BSP trees were developed for addressing the hidden-surface problem
[Fuchs80]. BSP trees solve this problem by allowing a scene to be view-independently
decomposed in a preprocessing phase. The resulting tree can then be traversed at
runtime to give the correct (back-to-front or front-to-back) sorting order of objects
or individual polygons from an arbitrary viewpoint.

BSP trees have found uses in such varied applications as ray tracing, constructive
solid geometry (CSG), and robot motion and path planning, to name a few. BSP trees
are also very versatile when it comes to collision detection as they can serve both as a
spatial partitioning (a nonboundary representation) and as a volume representation
(a boundary representation, for a solid object). As a spatial partitioning scheme,
BSP trees are very similar to quadtrees, octrees, and k-d trees, but BSP trees are
more general as they can emulate these other spatial data structures. As a volume
representation, BSP trees can be used to represent and distinguish the interiors of
polygons and polyhedra from their exteriors.

Figure 8.2 illustrates the use of BSP trees for spatial partitioning and volume rep-
resentation. Figure 8.2a shows how a space can be spatially partitioned to accelerate
collision queries against the objects of the space. Thanks to the hierarchy formed
by the BSP tree, with n objects in the tree only on the order of O(log n) objects are
typically tested by a query, in that half of the remaining objects can be expected to be
discarded by each successive test against a partitioning plane. (However, degenerate
situations may cause all n objects to be tested — for example, if the query object is
very large or if the tree is poorly built.)

Figure 8.2b shows how the dividing planes can be selected to coincide with the
faces of a polygonal object, thus allowing the exterior of the shape to be partitioned
from the interior of the shape. The spatial region associated with each leaf of this tree
lies either fully inside or fully outside the original shape.
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Figure 8.2 The recursive division of space in half can be used as (a) a spatial partitioning over
a number of objects. It can also be used as (b) a volume or boundary representation of an
object.

When, as in the latter example, the dividing planes are selected to coincide with the
faces of the input geometry, they are commonly called autopartitioning (and sometimes
polygon aligned). Dividing planes coplanar to the xy, xz, or yz plane are called axis
aligned. BSP trees using only axis-aligned dividing planes are commonly referred to
as k-d trees (as described in Chapter 7). Dividing planes that have no restrictions put
on them (nor on the partitionings they form) are here called arbitrary or general.

Constructing a BSP tree from scratch or recomputing parts of a tree is sufficiently
expensive that they are rarely built or modified at runtime. For this reason, BSP trees
are primarily used to hold static background geometry. Collision detection among
moving objects is usually handled through some other method.

8.2 Types of BSP Trees

BSP trees can be categorized in many ways, such as how the dividing planes are
oriented, if geometry is stored in the nodes or the leaves (if at all), and whether they
are used for spatial partitioning or as a volume representation. In particular, three
types of BSP trees are commonly identified, here called node-storing, leaf-storing, and
solid-leaf (or just solid) BSP trees. These types are described in more detail in the
following sections.

8.2.1 Node-storing BSP Trees

A node-storing (or node-based) BSP tree is autopartitioning, thus selecting support-
ing planes of faces from the geometry as the dividing planes used during construction.
As the name suggests, the face whose supporting plane was selected as the dividing
plane and all other faces coplanar with it are stored in the node. Remaining faces
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are passed to the appropriate side of the plane in order to recursively construct the
subtrees of the node, thus ending up stored in the nodes further down the tree. Any
straddling faces are split against the dividing plane before the resulting pieces are
passed down. Leaves of a node-storing tree may be empty (as all polygons can be
stored in the nodes) or may contain a single face (plus any eventual faces coplanar
with this face). Because faces are stored in the nodes, it is not strictly necessary to
also store planes in the nodes (as they can be derived from the stored faces).

Traditionally, node-storing trees have mainly been used for software rendering of
3D environments, as keeping faces in the nodes results in fewer splits than with other
BSP variants, in turn resulting in fewer faces to render. With the advent of 3D graphics
hardware, using node-storing trees no longer makes sense in that they excessively
divide the geometry into individual polygons. Effective use of 3D rendering hard-
ware instead involves drawing long tri-strips or large patches of faces of the same
material to minimize expensive state changes and to reduce the number of vertices
transmitted to the graphics card. Such savings are not facilitated by the node-storing
BSP tree.

Node-storing trees are not really suitable for collision detection either. Faces
stored on the nodes have no spatial relationship to the position of a query object
and are thus likely not to intersect the query object. However, these faces must still
be tested against, as the query object traverses the dividing plane with which they are
associated. In particular, architectural scenes — which tend to feature many coplanar
faces — suffer from such overtesting.

Figure 8.3 illustrates the first step of building a node-storing BSP tree. The origi-
nal 12-polygon input geometry is shown in Figure 8.3a. An initial dividing plane is
selected to go through the plane of face A (Figure 8.3b). Because G also lies on this
plane, both A and G are stored in the root node. Two faces, D and J, are straddling the
divider plane and must be split, after which all faces lie entirely on one side of the
dividing plane and can be uniquely assigned to the appropriate subtree. For the next
ply of the tree, the plane through B is here selected as the dividing plane for the left
subtree and the plane through H for the right subtree. Figure 8.3c shows the BSP tree
after these splits have been performed. Construction proceeds in a similar manner
until a termination criterion has been met.

The original BSP tree as described by [Fuchs83] is a node-storing BSP tree in which
only the polygon whose supporting plane is selected as the dividing plane is stored in
the node. Any other polygons coplanar to this plane are described as going arbitrarily
to either side.

8.2.2 Leaf-storing BSP Trees

The term leaf-storing (or leaf-based) BSP tree refers to any BSP tree in which geometry
is stored in the leaves of the tree rather than in the internal nodes. An internal tree
node only contains the dividing plane and references to the child subtrees of the
node. With no polygons on the internal nodes, queries on leaf-storing trees do not
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Figure 8.3 (a) The original 12-polygon input geometry. (b) The initial dividing plane is selected
to pass through face A (and face G). (c) For the next ply of the tree dividing planes are selected
to pass through faces B and H.

suffer from having to test unnecessary polygons when traversing a dividing plane.
Collision queries on leaf-storing trees perform tests on all polygons contained in the
leaves overlapped by the query object. Tests on the tree may exit early if a collision is
detected.

The dividing planes of leaf-storing trees can be either general or autopartitioning.
Regardless of which, any eventual faces coplanar with the selected dividing plane are
not stored in the node but sent down either the front or back side child tree. When
autopartitioning, all faces coplanar with a selected dividing plane should be marked
so as to exclude them from consideration when selecting future dividing planes. If
they are not excluded, theoretically a dividing plane could be reselected further down
the tree, which does not make sense.

The construction of a leaf-storing tree is shown in Figure 8.4. Using arbi-
trary partitioning, the initially selected dividing plane divides the input set in half.
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Figure 8.4 First steps of the construction of a leaf-storing BSP tree, using the same geometry
as before.

These two halves are then divided again, at which point the construction is stopped,
in that a reasonable partitioning has been obtained. Leaf-storing BSP trees (along
with k-d trees, quadtrees, and octrees) are common collision geometry data structures,
in particular when the collision geometry is given as a polygon soup.

8.2.3 Solid-leaf BSP Trees

Unlike the previous two BSP tree types, solid-leaf BSP trees are built to represent the
solid volume occupied by the input geometry. That is, dividing planes are ultimately
selected to separate the solid volume from the exterior of the object. A 2D example
is shown in Figure 8.5, in which a solid-leaf BSP tree is constructed to represent the
interior of a concave (dart-shaped) polygon.

Note that the supporting plane of every polygon in the input geometry must be
selected as a dividing plane or the object’s volume will not be correctly represented.
Specifically, the dividing plane immediately before a leaf node always corresponds
to a supporting plane. However, other internal tree nodes can use arbitrary dividing
planes, allowing for a better balancing of the tree. In fact, for the object in Figure 8.5
a better BSP tree could be constructed by starting with a dividing plane through the
concave vertex and its opposing vertex.

Note also that no geometry is stored in the tree. The leaf nodes only indicate
whether the remaining area in front and behind of the dividing plane is empty or solid.
In other words, a solid-leaf BSP tree can be seen as partitioning the input volume
into a collection of convex polyhedra, which are then represented as the intersection
volume of a number of halfspaces. The dividing planes of the BSP tree correspond to
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Figure 8.5 A solid figure cut by a number of dividing planes and the resulting solid-leaf
BSP tree.

the partitioning planes, plus the boundary planes of the convex polyhedra. In terms of
Figure 8.5, the initial dividing plane partitions the nonconvex shape into two (convex)
triangles. The remaining dividing planes describe the boundary of these triangles.

Solid-leaf BSP trees have a number of valuable properties as far as collision detec-
tion goes. They allow trivial detection of robustness problems such as fall-throughs,
in that intersection tests directly report whether an object lies in solid or empty space.
Because the representation effectively encodes the boundary polygons of the input
geometry, there is also no need to perform specific polygon tests (as no polygons are
explicitly stored). The lack of special tests for polygons makes for very nice, uniform
code.

It is also possible to create a hybrid between a solid-leaf and a leaf-storing BSP
tree. An example of a hybrid tree is the brush-storing tree popularized through its use
in the Quake II and Quake III games from id Software. This tree explicitly stores the
planes that form the halfspace intersection volume that is the solid volume occu-
pied by the leaf (where brush is the Quake terminology for this collection of planes).
Additionally, the tree contains the beveling planes described in Section 8.4.3 to allow
efficient AABB queries on the tree.

The various data formats used in the Quake games are well documented on the
Internet. For example, the Quake II BSP file format is described in [McGuire00], as
well as implicitly through the Quake II source code itself [idSoftware01]. The collision
detection of Quake III is discussed in [Ostgard03].

8.3 Building the BSP Tree

Building a BSP tree involves three steps.

1. Selection of a partitioning plane.

2. Partitioning of the input geometry into two sets with respect to the plane; the
geometry in front of the plane and the geometry behind it. Geometry that straddles
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the plane is split to the plane before partitioning. (Polygons on the plane are treated
differently depending on what type of tree is constructed.)

3. The forming of a tree by connecting with a new tree node the two subtrees created
by recursively calling the construction algorithm with the two partitioned sets
obtained in the previous step.

These steps translate directly into code as follows (here illustrated for the construction
of a leaf-storing tree).

// Constructs BSP tree from an input vector of polygons. Pass ‘depth’ as 0 on entry
BSPNode *BuildBSPTree(std::vector<Polygon *> &polygons, int depth)
{

// Return NULL tree if there are no polygons
if (polygons.empty()) return NULL;

// Get number of polygons in the input vector
int numPolygons = polygons.size();

// If criterion for a leaf is matched, create a leaf node from remaining polygons
if (depth >= MAX_DEPTH || numPolygons <= MIN_LEAF_SIZE) || ...etc...)

return new BSPNode(polygons);

// Select best possible partitioning plane based on the input geometry
Plane splitPlane = PickSplittingPlane(polygons);

std::vector<Polygon *> frontList, backList;

// Test each polygon against the dividing plane, adding them
// to the front list, back list, or both, as appropriate
for (int i = 0; i < numPolygons; i++) {

Polygon *poly = polygons[i], *frontPart, *backPart;
switch (ClassifyPolygonToPlane(poly, splitPlane)) {
case COPLANAR_WITH_PLANE:

// What’s done in this case depends on what type of tree is being
// built. For a node-storing tree, the polygon is stored inside
// the node at this level (along with all other polygons coplanar
// with the plane). Here, for a leaf-storing tree, coplanar polygons
// are sent to either side of the plane. In this case, to the front
// side, by falling through to the next case

case IN_FRONT_OF_PLANE:
frontList.push_back(poly);
break;
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case BEHIND_PLANE:
backList.push_back(poly);
break;

case STRADDLING_PLANE:
// Split polygon to plane and send a part to each side of the plane
SplitPolygon(*poly, splitPlane, &frontPart, &backPart);
frontList.push_back(frontPart);
backList.push_back(backPart);
break;

}
}

// Recursively build child subtrees and return new tree root combining them
BSPNode *frontTree = BuildBSPTree(frontList, depth + 1);
BSPNode *backTree = BuildBSPTree(backList, depth + 1);
return new BSPNode(frontTree, backTree);

}

For constructing leaf-storing or solid trees, polygons that lie on the partitioning
plane are sent to either side of the plane (here, to the front side of the plane). For
node-storing trees, coplanar polygons are instead stored in the node itself.

Although simple in structure, there are a few problems hidden in the helper func-
tions called by this code. Specifically, having PickSplittingPlane() select a good
partitioning plane is a nontrivial problem. Sections 8.3.1 and 8.3.2 cover this problem
in more detail.There are also some subtle issues to do with robustness involved in clas-
sifying and splitting a polygon to a plane in the functions ClassifyPolygonToPlane()
and SplitPolygon(), discussed further in Sections 8.3.3 through 8.3.5.

A third issue is determining when to stop the tree construction. This depends on
the type of BSP tree being built. For a node-storing tree, the recursive construction
proceeds until the set of remaining input polygons becomes empty. The same applies
for a solid-leaf tree. The construction of a leaf-storing BSP tree is typically stopped
when:

● The leaf contains less than some preset number of polygons.

● A fixed cutoff depth has been reached.

● A good dividing plane cannot be found.

The examples presented in this chapter use the same tree representation for
construction of the tree and for runtime queries. However, it is important to stress
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that a quality production system is likely to use two completely different representa-
tions for performance reasons. The BSP tree used during tree construction should be
designed for easy manipulation using regular pointers to address child nodes, and
it should have full-size uncompressed fields. In contrast, the BSP tree used at run-
time should be designed to use little memory (using compressed nodes and pointers)
and have its nodes output in a cache-efficient format (as discussed in Chapters 6
and 13).

8.3.1 Selecting Dividing Planes

The order in which dividing planes are selected during tree construction greatly affects
the size and shape of the resulting tree, and therefore the effectiveness of the tree
for querying. It also affects the tree’s memory requirements. Due to the sheer num-
ber of possible plane orderings, computing an optimal BSP tree is an intractable
problem. Fortunately, in practice good or even near-optimal solutions can be obtained
by trying a number of candidate dividing planes at each level of the tree, proceeding
with the one that scores best according to an evaluation function (as described in
Section 8.3.2).

Because there are infinitely many arbitrary dividing planes, one approach of con-
straining the problem is limiting the set of possible dividing planes to a finite number
by relying on autopartitioning. That is, the strategy is to restrict the search to the
supporting planes of the faces in the input geometry.

Autopartitioning is simple to implement. It is also a natural choice for a node-
storing tree. However, autopartitioning (alone) is not always ideal. In some cases —
such as for a leaf-storing tree — relying on autopartitioning alone may lead to more
splitting than is desired. To illustrate the point, Figure 8.6a shows a geometrical
configuration in which all possible autopartitioned dividing planes end up splitting
several faces. Figure 8.6b shows how, by using general dividing planes, the groups of
polygons can be separated from each other, resulting in no splits at all. (However, it
is important to note that if the three groups are moved closer to one another it will
be impossible to find even a general dividing plane to separate the groups.)

For another drawback of using just autopartitioning, consider the problem of
building a BSP tree from a polygon sphere. Because the sphere is a convex shape,
all sphere faces will lie on just one side of a plane through any one of its faces.
The resulting tree will in some sense therefore be maximally unbalanced, with a
depth equal to the number of faces in the sphere (Figure 8.7a). Determining point
containment — a typical worst-case query — is now an O(n) operation. In contrast, if
selected planes are instead allowed to cut across the sphere, roughly half the faces can
be discarded for each plane tested, making the same worst-case query an O(log n)
operation (Figure 8.7b).

If the BSP tree is computed as a boundary representation of the sphere, the sup-
porting planes of the sphere faces at some point must be selected as dividing planes.
One option is to perform general splits, dividing the geometry in half until only a
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(a) (b)

Figure 8.6 (a) A configuration of 12 faces wherein all possible autopartitioned dividing
planes end up splitting four faces. (b) Using arbitrary splits can allow the configuration to
be partitioned in such a way that the problem disappears or is reduced.
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Figure 8.7 (a) An autopartitioned BSP tree for a polygonal sphere has worst-case O(n) height.
(b) Allowing arbitrary cuts across the sphere, tree height is reduced to O(log n). (c) Nay-
lor’s hybrid approach of alternating autopartitioning and general cuts also allows a boundary
representation of the sphere to have O(log n) height, additionally providing early outs.

single polygon is left in the leaves, at which point its supporting plane is selected as
the dividing plane. The drawback with this approach is that all leaves are now at an
O(log n) depth, and thus there are no early outs for queries such as those well outside
the sphere.

A better option is suggested by [Naylor93]. He proposes using a hybrid approach
of alternating autopartitioning and general cuts to get both an O(log n) tree height
and potential early outs. A set of autopartitioning planes is first selected to separate
the sphere from the surrounding empty space, forming a tetrahedron surrounding
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the sphere (illustrated in Figure 8.7c by the triangle formed by A, B, and C).The result-
ing volume is then separated into five disjoint parts through four planes interior to
the sphere (illustrated by D, E, and F). One region corresponds to a solid tetrahe-
dron interior to the sphere. The remaining four regions (three in the 2D illustration)
are recursively subjected to the same separating procedure until all faces have been
processed. The resulting tree can be seen as providing a sequence of approximations
of the sphere through successive refinement, becoming more and more accurate with
each additional level of the tree. There are strong similarities between this approach
and the Dobkin–Kirkpatrick hierarchy described in Chapter 9.

Generalizing Naylor’s approach to a full scene implies that an efficient way of
dealing with highly detailed objects within a scene is to provide bounding volume
approximations of the objects and autopartition through the faces of the bounding
volumes before performing any splitting involving the geometry within the bounding
volumes. Alternative candidate dividing planes — not autopartitioning — can be
made to include, for example:

● Planes in a few predetermined directions (such as aligned with the coordinate
axes) going through a polygon vertex.

● Planes in predetermined directions evenly distributed across the extents of the
input geometry (forming a grid across the geometry).

● Planes through an edge of one polygon and a vertex of another.

Rather than relying exclusively on automatic selection of dividing planes, manu-
ally placed hinting planes can be used to guide the plane selection. These correspond
to specially marked polygons that are not output as geometry but serve only
to define planes considered dividing planes. Possible strategies for hint planes
include:

● If a hint plane is present, pick a hint plane before anything else.

● Allow picking of any plane, with the caveat that a hint plane is not allowed to
be split by a non-hint plane.

As an example, a good use of hint planes could be placing them aligned with the
floors of a multi-story building. Such hint planes would quickly localize the proper
floor within which search could then continue.

Finally, arbitrary planes can also be selected through a simple hill-climbing
approach. That is, after an initial dividing plane has been found (through what-
ever means), a small neighborhood of similar planes obtained from slight offsetting
and tilting is evaluated. If a better dividing plane is found, the new plane is kept and
the hill climbing is repeated until a (local) maximum is found or a specified time limit
is exceeded.
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8.3.2 Evaluating Dividing Planes

Many general strategies have been suggested for evaluating splitting planes (see,
for example, [James99]). A majority of these are based on the assumption of a node-
storing tree, such as selecting the supporting plane of the face with the largest number
of coplanar faces or of the face with the largest area. Storing these faces in the node
would thus remove from further consideration a large number of faces (in the first
case) or a face with a high likelihood of being split (in the second case).

Two strategies particularly relevant to collision detection are to pick planes so as
to minimize splitting of geometry and to attempt to balance the geometry equally
on both sides of the splitting plane. The former least-crossed strategy attempts to
minimize the duplication of geometry due to splitting. Worst case, when starting
with n polygons each split can introduce n additional polygons through splitting.
Thus, it is possible to end up with O(n2) polygons in the final result. Because dividing
planes with few straddling polygons are usually found at the periphery of a scene, used
in isolation the least-crossed strategy is therefore likely to produce very unbalanced
trees. On the other hand, balancing cuts — although they produce nicely structured
trees — are likely to cause an excessive amount of split geometry because they tend to
cut straight down the middle of a scene and its objects. A weighted linear combination
of the two is therefore used in practice. Reducing splitting is often weighted much
higher than balancing. Figure 8.8 illustrates a split intended to minimize straddling
polygons, a split to achieve balance of the number of polygons on either side of the
splitting plane, and a split intended as a compromise between minimizing straddling
and balancing of polygons.

The following code fragment illustrates a very basic autopartitioning selection of a
splitting plane. Here, all supporting planes of the set of polygons are considered for
splitting. A weighted linear combination between the conflicting goals of trying to
reduce splitting and attempting to increase balancing is used to evaluate the planes.

AC

B

Figure 8.8 Part of a city grid split to minimize straddling polygons (A), balance the number
of polygons on either side of the dividing plane (B), and compromise between minimizing
straddling and balancing of polygons (C ).
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// Given a vector of polygons, attempts to compute a good splitting plane
Plane PickSplittingPlane(std::vector<Polygon *> &polygons)
{

// Blend factor for optimizing for balance or splits (should be tweaked)
const float K = 0.8f;
// Variables for tracking best splitting plane seen so far
Plane bestPlane;
float bestScore = FLT_MAX;

// Try the plane of each polygon as a dividing plane
for (int i = 0; i < polygons.size(); i++) {

int numInFront = 0, numBehind = 0, numStraddling = 0;
Plane plane = GetPlaneFromPolygon(polygons[i]);
// Test against all other polygons
for (int j = 0; j < polygons.size(); j++) {

// Ignore testing against self
if (i == j) continue;
// Keep standing count of the various poly-plane relationships
switch (ClassifyPolygonToPlane(polygons[j], plane)) {
case POLYGON_COPLANAR_WITH_PLANE:

/* Coplanar polygons treated as being in front of plane */
case POLYGON_IN_FRONT_OF_PLANE:

numInFront++;
break;

case POLYGON_BEHIND_PLANE:
numBehind++;
break;

case POLYGON_STRADDLING_PLANE:
numStraddling++;
break;

}
}
// Compute score as a weighted combination (based on K, with K in range
// 0..1) between balance and splits (lower score is better)
float score = K * numStraddling + (1.0f - K) * Abs(numInFront - numBehind);
if (score < bestScore) {

bestScore = score;
bestPlane = plane;

}
}
return bestPlane;

}
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Here, the variable K controlling the blending of the least-crossed and balancing
strategies is given as a constant. In practice, it can be made to vary with the depth of
the current node during construction.

Because most collision queries will only traverse tree nodes to visit the one (or a
few) leaves of the tree overlapped by the query object, a well-balanced tree means
that all leaves are roughly at the same depth and worst-case behavior is avoided.
However, to improve average-case behavior dividing planes should not be selected
for balancing but instead to provide short traversal paths to areas that have a high
probability of being subject to query. As an illustration, consider the configuration
shown in Figure 8.9. In illustration (a) a dividing plane splits the space in half,
achieving perfect balance through an equal number of polygons on both sides of
the plane. Assuming point queries uniformly distributed over the space, the expected
number of polygons that would have to be tested is in this case 0. 5 · 5 + 0. 5 · 5 = 5.
In illustration (b), the plane has instead been selected to divide the space into a 2/3
ratio, with two polygons on one side and eight on the other. The expected number
of polygons tested by the same uniform point query is now 2/3 · 2 + 1/3 · 8 = 4, one
less than before. Instead of just assuming a uniform distribution of queries, as was
done here, statistics of query locations from actual runs could be used to determine
accurate probability values in these calculations.

In general, research indicates that not very many splitting planes must be con-
sidered for good results. Fuchs et al. point out that for the least-crossed criterion
near-minimal trees were obtained from just randomly selecting five candidate poly-
gons at each level and testing these against the other polygons [Fuchs80]. This result
is corroborated in [James99]. However, it should be noted that both results were
obtained using autopartitioning and node-storing trees. (In fact, a majority of the-
oretical results on BSP trees are based on using autopartitioning and node-storing
trees, thus differing greatly from typical practical use.)

More sophisticated evaluation methods have also been suggested, including con-
flict minimization [Fuchs80] and conflict neutralization [James00]. These approaches
consider two or more consecutive dividing planes at a time, selecting the plane at
the current level of the tree so as to reduce conflicts as much as possible (wherein
a conflict is the splitting of one or more faces by a possible future dividing plane).

(a) (b)

Figure 8.9 (a) A balancing split. (b) A split to minimize expected query cost.



364 Chapter 8 BSP Tree Hierarchies

Again, these methods have largely been studied in conjunction with autopartitioning
and not with general dividing planes.

Certain evaluation criteria, such as balancing, naturally tend to avoid the reselec-
tion of dividing planes. Even so, it may still be useful to include an explicit mechanism
for avoiding reselection of a dividing plane that has already been used. When autopar-
titioning, reselection is easily avoided by tagging polygons as their supporting planes
are selected and then not selecting supporting planes of marked polygons. In other
cases, a history list of previously selected planes works as a simple solution.

8.3.3 Classifying Polygons with Respect to a Plane

As part of the BSP tree construction, after a dividing plane has been selected all
polygons must be partitioned with respect to this plane into one of the following
four categories.

● Polygons that lie in front of the dividing plane.

● Polygons that lie behind the dividing plane.

● Polygons straddling the dividing plane.

● Polygons coincident with the dividing plane.

Although theoretically straightforward, there is a problem with this classification
when working with floating-point arithmetic. The problem is that points computed
to lie on a given plane typically do not end up exactly on the plane but some small
distance away from the plane. This slight deviation from the plane means that when
a polygon is split by a dividing plane the resulting pieces do not necessarily classify
as one lying in front of the dividing plane and one lying behind it. For example,
inaccuracies in the computed intersection points could have both pieces straddling
the dividing plane even though the splitting operation conceptually created the two
pieces to lie on different sides of the plane. Addressing the floating-point issue is
necessary for robust classification of polygons into these four categories.

A practical solution to this problem is to work with thick planes, meaning that all
points within a small distance from the plane are considered lying on the plane. More
specifically, instead of working with a plane defined as n · (X − P) = 0 points are
considered on the plane if they satisfy

∣∣n · (X − P)
∣∣ < ε for some ε. The following

function shows how the classification of a point to a thick plane can be implemented.

// Classify point p to a plane thickened by a given thickness epsilon
int ClassifyPointToPlane(Point p, Plane plane)
{
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// Compute signed distance of point from plane
float dist = Dot(plane.n, p) - plane.d;
// Classify p based on the signed distance
if (dist > PLANE_THICKNESS_EPSILON)

return POINT_IN_FRONT_OF_PLANE;
if (dist < -PLANE_THICKNESS_EPSILON)

return POINT_BEHIND_PLANE;
return POINT_ON_PLANE;

}

Determining appropriate epsilon values is surprisingly nontrivial. Whereas the
issue is glossed over here, Chapter 11 discusses this issue in detail.

As an example of classification of polygons to a thick plane, consider the four
triangles of Figure 8.10. For triangle ABC, vertex A lies on the plane, and vertices B
and C lie behind the plane. Because there is at least one vertex behind the plane and
no vertices in front of the plane, ABC is classified as lying behind the plane. Triangle
DEF has one vertex, D, in front of the plane and two vertices, E and F, on the plane.
As there is at least one vertex in front of the plane and no vertices behind the plane,
DEF is classified as lying in front of the plane. Note that DEF is considered in front of
the plane even though E lies in the negative halfspace of the plane n · (X − P) = 0,
as E is classified as being on the plane rather than behind it.

The triangle GHI is classified as straddling the dividing plane because there is at
least one vertex in front of the plane and one behind the plane (G and I, respectively).
Triangle JKL is classified as coplanar with the plane in that all of its vertices lie on
the thickened plane. The following code illustrates how this approach extends to
classifying an arbitrary polygon with respect to a dividing plane.
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Figure 8.10 Triangle ABC lies behind the plane and triangle DEF lies in front of the plane.
Triangle GHI straddles the plane and triangle JKL lies on the plane.
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// Return value specifying whether the polygon ‘poly’ lies in front of,
// behind of, on, or straddles the plane ‘plane’
int ClassifyPolygonToPlane(Polygon *poly, Plane plane)
{

// Loop over all polygon vertices and count how many vertices
// lie in front of and how many lie behind of the thickened plane
int numInFront = 0, numBehind = 0;
int numVerts = poly->NumVertices();
for (int i = 0; i < numVerts; i++) {

Point p = poly->GetVertex(i);
switch (ClassifyPointToPlane(p, plane)) {
case POINT_IN_FRONT_OF_PLANE:

numInFront++;
break;

case POINT_BEHIND_PLANE:
numBehind++;
break;

}
}
// If vertices on both sides of the plane, the polygon is straddling
if (numBehind != 0 && numInFront != 0)

return POLYGON_STRADDLING_PLANE;
// If one or more vertices in front of the plane and no vertices behind
// the plane, the polygon lies in front of the plane
if (numInFront != 0)

return POLYGON_IN_FRONT_OF_PLANE;
// Ditto, the polygon lies behind the plane if no vertices in front of
// the plane, and one or more vertices behind the plane
if (numBehind != 0)

return POLYGON_BEHIND_PLANE;
// All vertices lie on the plane so the polygon is coplanar with the plane
return POLYGON_COPLANAR_WITH_PLANE;

}

Because the introduction of an epsilon only moves the problem of correctly deter-
mining if points lie on the plane to correctly determining if points lie at epsilon
distance from the plane, it may seem like nothing is gained by this procedure.
However, two things are gained. First, polygon edges are guaranteed to have both
endpoints at (roughly) epsilon distance or more from the plane. Having a minimum
distance for the endpoints from the plane increases the angle of the edge to the
plane, in turn increasing the accuracy in computing the intersection point between
the edge and the plane. Second, with an appropriate epsilon the intersection point
can be guaranteed to lie on the thick plane. Although points lying at (near) epsilon
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distance from the plane are still misclassified, the misclassification no longer affects
the robustness of polygon splitting, in that computed intersection points correctly
classify as lying on the thick plane.

Traditional methods for splitting a polygon to a plane must be changed slightly to
deal with a thick plane. These changes are discussed next.

8.3.4 Splitting Polygons Against a Plane

During BSP tree construction, when a polygon is found straddling a dividing plane
it must be split in two. One piece is then sent down one side of the plane, and the
other piece down the other side. To see why polygons must be split, consider the
illustration in Figure 8.11. Here, two splits have been made, dividing the world into
the three areas A, B, and C. The triangle T overlaps regions A and B, and thus should
be referenced in those leaves. However, if T is not split the following happens. First,
T is found straddling plane 1 and is sent down both sides. On the right side,T is now
tested against plane 2 and again sent down both sides. At this point all leaves have
been reached and T ends up in all of them!

When T is split against plane 1, only the small piece on the right side of the plane
goes down the right side of the tree. This piece lies fully on one side of plane 2,
and thus nothing goes into the leaf for region C. In other words, it is important to
perform clipping of polygons during tree construction. Such clipping limits polygons
from ending up in leaves whose associated spatial volume they did not intersect in
the first place.

An alternative is to maintain the spatial volumes corresponding to the leaves and
to perform polygon–convex-polyhedron tests to determine if a polygon should be
added to a leaf. Maintaining such volumes is only practically feasible for axis-aligned
BSP trees for which the leaf volumes are AABBs. In other cases, it is cheaper to split
the polygons during construction.

The act of clipping the polygon against a plane is commonly performed using the
Sutherland–Hodgman clipping algorithm [Sutherland74]. The algorithm proceeds

A

T

B

C

2

1

Figure 8.11 If T is not split by the first dividing plane, T straddles the second dividing plane
and a copy ends up in the leaf for C, which otherwise would have remained empty.
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Figure 8.12 Clipping the polygon ABDE illustrates the four cases of the Sutherland–Hodgman
polygon-clipping algorithm. The points of the output polygon BCFA are shown in gray in the
cases in which they are output.

one polygon edge at a time and has four cases based on what sides of the clip-
ping plane the edge startpoints and endpoints lie. The four cases are illustrated in
Figure 8.12. In the first case, when both points lie in front of the plane the endpoint
is output. The second case is the edge going from in front of the plane to behind the
plane, for which the intersection point of the edge with the plane is output. The third
case is when both points lie behind the plane, for which nothing is output. Finally,
the forth case is when the edge goes from behind the plane to in front of the plane.
In this case, both the intersection point and the endpoint are output.

With the Sutherland–Hodgman algorithm, only the portion of the polygon in front
of the plane is retained. Because both pieces of the polygon must be retained for
the BSP tree construction, the algorithm must be extended accordingly. In addition,
because the clipping plane has been made thick one or more rules dealing with
vertices lying on the plane must be added. One commonly used set of rules is outlined
in Table 8.1, to which a fifth case has been added to the original four to deal with
points on the plane.

One reason for working with thick planes was previously mentioned: inherent
floating-point inaccuracies in computing the intersection point I means it will not lie
exactly on the mathematical plane. Another related benefit of working with a thick

Table 8.1 Output rules for the modified Sutherland–Hodgman clipping algorithm dealing
with a thickened plane and retaining both parts of the polygon. The rules are given in terms
of the directed segment AB. I represents the intersection point of AB with the clipping plane.

Front Polygon Back Polygon
A (previous vertex) B (current vertex) Output Output

In front In front B None
Behind In front I, B I
In front Behind I I, B
Behind Behind None B
Any On B B
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Figure 8.13 A potential problem with the modified clipping algorithm is that the resulting
pieces (shown in dark gray) may overlap.

plane is that an intersection point is computed only for an edge with one endpoint
in front of and the other endpoint behind the plane. Thanks to the thickness of the
plane, a limit is therefore placed on how parallel to the plane the edge can become,
which greatly increases the accuracy of the intersection point. Chapter 11 discusses
these floating-point issues further.

For most applications, the set of rules presented in Table 8.1 works fine, but it is
important to be aware that the two resulting polygon pieces may overlap in some
cases. Consider the quad ABCD of Figure 8.13. When it is split against the plane, the
subtriangle BCE will end up in both outputs.

For robust clipping of the polygon, so that no overlap exists between the generated
pieces, a full set of all nine possible cases is necessary. Such a set is outlined inTable 8.2.

An implementation of these nine rules might look as follows.

Table 8.2 The final modified clipping algorithm for robustly clipping a polygon against a
thick plane.

Front Polygon Back Polygon
A (previous vertex) B (current vertex) Output Output

In front In front B None
On In front B None
Behind In front I, B I
In front On B None
On On B None
Behind On B B
In front Behind I I, B
On Behind None A, B
Behind Behind None B
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void SplitPolygon(Polygon &poly, Plane plane, Polygon **frontPoly, Polygon **backPoly)
{

int numFront = 0, numBack = 0;
Point frontVerts[MAX_POINTS], backVerts[MAX_POINTS];

// Test all edges (a, b) starting with edge from last to first vertex
int numVerts = poly.NumVertices();
Point a = poly.GetVertex(numVerts – 1);
int aSide = ClassifyPointToPlane(a, plane);

// Loop over all edges given by vertex pair (n - 1, n)
for (int n = 0; n < numVerts; n++) {

Point b = poly.GetVertex(n);
int bSide = ClassifyPointToPlane(b, plane);
if (bSide == POINT_IN_FRONT_OF_PLANE) {

if (aSide == POINT_BEHIND_PLANE) {
// Edge (a, b) straddles, output intersection point to both sides
Point i = IntersectEdgeAgainstPlane(a, b, plane);
assert(ClassifyPointToPlane(i, plane) == POINT_ON_PLANE);
frontVerts[numFront++] = backVerts[numBack++] = i;

}
// In all three cases, output b to the front side
frontVerts[numFront++] = b;

} else if (bSide == POINT_BEHIND_PLANE) {
if (aSide == POINT_IN_FRONT_OF_PLANE) {

// Edge (a, b) straddles plane, output intersection point
Point i = IntersectEdgeAgainstPlane(a, b, plane);
assert(ClassifyPointToPlane(i, plane) == POINT_ON_PLANE);
frontVerts[numFront++] = backVerts[numBack++] = i;

} else if (aSide == POINT_ON_PLANE) {
// Output a when edge (a, b) goes from ‘on’ to ‘behind’ plane
backVerts[numBack++] = a;

}
// In all three cases, output b to the back side
backVerts[numBack++] = b;

} else {
// b is on the plane. In all three cases output b to the front side
frontVerts[numFront++] = b;
// In one case, also output b to back side
if (aSide == POINT_BEHIND_PLANE)

backVerts[numBack++] = b;
}
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// Keep b as the starting point of the next edge
a = b;
aSide = bSide;

}

// Create (and return) two new polygons from the two vertex lists
*frontPoly = new Polygon(numFront, frontVerts);
*backPoly = new Polygon(numBack, backVerts);

}

Note that calls to assert() have been added to verify that the computed intersec-
tion points really do lie on the thick plane. The call serves as a sanity check that the
plane thickness has been well chosen with respect to the range of coordinate values
present in the input data.

Figure 8.14 illustrates the result of splitting two polygons against a plane. The
original polygons are given in outlines and the resulting pieces are shown in gray,
slightly inset.

Although polygons are split during the construction of the tree, this does not
necessarily mean that the polygon fragments ending up in the leaves must be the
polygons output in the final tree.

For collision detection, it is better to store a reference to the original polygon
with each fragment generated during splitting. In the leaves, the reference is output,
rather than the fragment itself. Storing a reference to the original polygon avoids
many robustness issues caused by clipping to planes, such as the introduction of
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Figure 8.14 Two different polygons clipped to a thickened plane using the modified robust
clipping algorithm. Resulting polygon pieces are shown in dark gray (slightly inset).
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sliver polygons and T-junctions. Clipping also generates extra vertices, and thus not
clipping saves memory as well. The drawback of not clipping is that it may now be
important to make sure the intersection with a polygon takes place inside the volume
of the leaf and not with the part of the polygon that lies outside the leaf volume.
Without this test, a near-to-far traversal of the BSP tree could not be guaranteed to
find the nearest point of intersection for a ray intersection test.

Most BSP tree presentations and resources on polygon clipping do not cover the
use of thick planes for robustness. A notable exception is [Chin92], in discussion on
robust polygon clipping.

8.3.5 More on Polygon Splitting Robustness

Although the previous section presented a thorough description of how to split a
single polygon in a robust manner, there is one remaining issue that arises when
clipping a shared edge of two neighboring polygons. Consider the two triangles ABC
and CBD of Figure 8.15a, both with their vertices given in counterclockwise order.
Splitting these triangles against the plane clips the shared edge BC twice: once for
each triangle. There is a subtle yet crucial point here: the edge is defined as BC for
triangle ABC and as CB for triangle CBD. Due to the differences between floating-
point arithmetic and real arithmetic, intersecting BC against a plane P does not, in
general, result in the same intersection point as intersecting CB with the same plane.
Naive clipping code, which moves around the boundaries of the two triangles and
clips the edges as they are encountered, will therefore introduce cracks between the
two neighboring triangles (as the computed intersection points differ subtly).

Figure 8.15b illustrates the problem case. For triangle ABC, edges BC and CA are
clipped against the plane. BC intersects the plane at FBC. For triangle CBD, edges
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Figure 8.15 (a) Original geometry of two triangles intersecting a plane. (b) Inconsistent han-
dling of the shared edge results in two different intersection points, which introduces cracking.
(c) The correct result when the shared edge is handled consistently.
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CB and BD must be clipped. CB intersects the plane at FCB, subtly different from FBC

(the errors of the intersection points have been exaggerated to better illustrate the
point). As can be seen from the illustration, this clearly introduces a crack between
the clipped faces.

To robustly deal with this case, the clipping code must always intersect the given
edge consistently as either BC or CB, but not both. Fortunately, the change is trivial:
because an edge is only clipped when its endpoints lie on different sides of the plane,
the edge can always be intersected as if it were ordered going from in front of the
plane to behind the plane (or vice versa).

For the clipping code of the previous section, the only change required
is thus swapping the edge endpoints for the arguments to the first call to
IntersectEdgeAgainstPlane(), as follows.

...
if (bSide == POINT_IN_FRONT_OF_PLANE) {

if (aSide == POINT_BEHIND_PLANE) {
// Edge (a, b) straddles, output intersection point to both sides.
// Consistently clip edge as ordered going from in front -> behind
Point i = IntersectEdgeAgainstPlane(b, a, plane);
...

}
...

Figure 8.15c illustrates the result of using a correct clipping procedure: the crack
between the triangles exists no longer.

8.3.6 Tuning BSP Tree Performance

Tuning various BSP tree parameters to achieve best possible performance is a difficult
problem. Is splitting strategy A better than strategy B? At what depth should tree
construction stop? What is the most appropriate value of the variable K in the function
PickSplittingPlane()?

To help evaluate different settings of various parameters, a good approach is to
build a reference database of queries that occur at runtime, for example by player or
enemies. These are logged during a normal run and saved along with the world col-
lision geometry used. Because this database can be used to perform identical queries
against different spatial partitionings of the collision geometry, it now becomes easy
to compare different parameter settings, allowing the creation of a good spatial parti-
tioning. If desired, tuning of the parameters themselves can be easily automated
through a hill-climbing-like mechanism (such as simulated annealing or genetic
algorithms).
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8.4 Using the BSP Tree

As an example of the ease with which BSP trees handle certain problems, con-
sider the problem of rendering the faces on the nodes of a node-storing BSP tree in
back-to-front order. By construction, the geometry on each side of a dividing plane
does not intersect. Consequently, if the camera lies on the front side of a dividing
plane no geometry on the back side of the dividing plane can obscure the geometry
on the front side (nor the geometry on the plane itself). Thus, all that is needed to
render the tree back to front is to recursively render the far subtree of the current
node, then the faces stored in the node, then recursively render the near subtree
(the one corresponding to the side on which the camera lies). The implementation
of back-to-front rendering of a BSP tree then becomes:

// Render node-storing BSP tree back-to-front w/ respect to cameraPos
void RenderBSP(BSPNode *node, Point cameraPos)
{

// Get index of which child to visit first (0 = front, 1 = back)
int index = ClassifyPointToPlane(cameraPos, node->plane) == POINT_IN_FRONT_OF_PLANE;

// First visit the side the camera is NOT on
if (node->child[index]) RenderBSP(node->child[index], cameraPos);
// Render all polygons stored in the node
DrawFrontfacingPolygons(node->pPolyList);
// Then visit the other side (the one the camera is on)
if (node->child[index ∧ 1]) RenderBSP(node->child[index ∧ 1], cameraPos);

}

The same recursive approach is used for all queries on BSP trees. In that leaf-storing
BSP trees are really just another form of spatial partitioning, discussed in detail in
Chapter 7, the following section focuses specifically on the implementation of basic
collision queries on solid-leaf BSP trees.

8.4.1 Testing a Point Against a Solid-leaf BSP Tree

Testing if a point lies in empty or solid space of a solid-leaf BSP tree is a largely
straightforward application. At each node, the point is evaluated with respect to the
dividing plane at that node. If the point lies in front of the plane, the child node
representing the front tree is visited, and vice versa. Traversal continues until a leaf
node is reached, at which point the solidity of the leaf indicates the result.

The only complication lies in correctly determining if the query point lies on the
boundary of the solid volume represented by the BSP tree. To handle the boundary
case, both subtrees are traversed when the point lies on a dividing plane. If the
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subtree results indicate the same result (solid or empty space), that is the result.
Otherwise, the point lies in the boundary. The following code illustrates how this test
may be implemented (using a thick plane for robustness).

int PointInSolidSpace(BSPNode *node, Point p)
{

while (!node->IsLeaf()) {
// Compute distance of point to dividing plane
float dist = Dot(node->plane.n, p) - node->plane.d;
if (dist > EPSILON) {

// Point in front of plane, so traverse front of tree
node = node->child[0];

} else if (dist < -EPSILON) {
// Point behind of plane, so traverse back of tree
node = node->child[1];

} else {
// Point on dividing plane; must traverse both sides
int front = PointInSolidSpace(node->child[0], p);
int back = PointInSolidSpace(node->child[1], p);
// If results agree, return that, else point is on boundary
return (front == back) ? front : POINT_ON_BOUNDARY;

}
}
// Now at a leaf, inside/outside status determined by solid flag
return node->IsSolid() ? POINT_INSIDE : POINT_OUTSIDE;

}

If it is not necessary to categorize points as lying on the boundary and they can
instead be considered inside the solid, this test can be simplified to visit the back side
when the point is categorized as on the dividing plane. The code then becomes:

int PointInSolidSpace(BSPNode *node, Point p)
{

while (!node->IsLeaf()) {
// Compute distance of point to dividing plane
float dist = Dot(node->plane.n, p) - node->plane.d;
// Traverse front of tree when point in front of plane, else back of tree
node = node->child[dist <= EPSILON];

}
// Now at a leaf, inside/outside status determined by solid flag
return node->IsSolid() ? POINT_INSIDE : POINT_OUTSIDE;

}
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8.4.2 Intersecting a Ray Against a Solid-leaf BSP Tree

A typical query on a BSP tree is the intersection of a ray or segment against the tree.
One solution is to adapt the function VisitNodes(), discussed in Section 7.4.1, for
traversing all nodes of a node-storing k-d tree intersected by a segment. Here, an
alternative, nonrecursive, traversal routine is given.

One important difference between VisitNodes() and the discussed query is that
the former computes the intersection point of the segment and a dividing plane. It
then breaks the segment into two subsegments at this point. These subsegments
are then subject to splitting in a similar manner as they are passed down the tree
recursively. Due to accumulation of errors, this means that the computed intersection
points are likely to drift off the original segment. The further down the tree a query
traversal reaches the farther from the original segment the intersection points are
expected to move. From a robustness standpoint, this is not very good.

The accumulation of error can be avoided by working exclusively with the inter-
section times of the ray with the dividing planes, without ever computing the
intersection points. Use of thick planes hides the errors remaining in intersection
time computations.

The routine to intersect the ray R(t) = P + td, tmin ≤ t ≤ tmax , against a solid-leaf
BSP tree follows. The time thit of the first intersection with a solid leaf is returned
when such an intersection exists.

// Intersect ray/segment R(t) = p + t*d, tmin <= t <= tmax, against bsp tree
// ’node’, returning time thit of first intersection with a solid leaf, if any
int RayIntersect(BSPNode *node, Point p, Vector d, float tmin, float tmax, float *thit)
{

std::stack<BSPNode *> nodeStack;
std::stack<float> timeStack;

assert(node != NULL);
while (1) {

if (!node->IsLeaf()) {
float denom = Dot(node->plane.n, d);
float dist = node->plane.d - Dot(node->plane.n, p);
int nearIndex = dist > 0.0f;
// If denom is zero, ray runs parallel to plane. In this case,
// just fall through to visit the near side (the one p lies on)
if (denom != 0.0f) {

float t = dist / denom;
if (0.0f <= t && t <= tmax) {

if (t >= tmin) {
// Straddling, push far side onto stack, then visit near side
nodeStack.push(node->child[1 ∧ nearIndex]);
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timeStack.push(tmax);
tmax = t;

} else nearIndex = 1 ∧ nearIndex; // 0 <= t < tmin, visit far side
}

}
node = node->child[nearIndex];

} else {
// Now at a leaf. If it is solid, there’s a hit at time tmin, so exit
if (node->IsSolid()) {

*thit = tmin;
return 1;

}
// Exit if no more subtrees to visit, else pop off a node and continue
if (nodeStack.empty()) break;
tmin = tmax;
node = nodeStack.top(); nodeStack.pop();
tmax = timeStack.top(); timeStack.pop();

}
}
// No hit
return 0;

}

Computing the intersection time t of the ray with a plane determines the sidedness
of P with respect to the plane as a subcomputation. This information can be reused
when determining which side(s) of the plane the ray should be sent down. It turns
out that there are four cases that must be handled when considering the active section
([tmin, tmax]) of the ray against a dividing plane (illustrated in Figure 8.16). In the cases
in which t < 0 and t > tmax , respectively, only the near side of the plane (where P
lies) should be traversed. When 0 ≤ t < tmin, only the far side should be traversed.
In the last case, where tmin ≤ t ≤ tmax , the near side should be traversed with the ray
interval [tmin, t] and the far side with the interval [t, tmax].

To turn this into a test against thick planes, an epsilon term should be added to
the plane comparisons to ensure that both sides are visited when the ray touches the
thick plane. It is important that this epsilon term be larger than the thickness term
used during construction of the tree.

If the ray is intersected against a leaf-storing tree rather than a solid-leaf tree, care
must be taken when polygons have been sent down both sides of a dividing plane
instead of being clipped to the plane. In this case, the same problem as when tracing
a ray through a grid occurs: the ray might intersect a polygon at a point that lies
outside the volume of the current leaf. Any intersection points outside the current
leaf must be detected, allowing processing to continue unhindered.
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Figure 8.16 The four cases encountered when intersecting the active section of the ray
against a plane (the plane shown in gray).

8.4.3 Polytope Queries on Solid-leaf BSP Trees

In addition to point and ray queries it is important to be able to perform volume
queries against the BSP tree, such as an AABB test. A rather brute-force solution is to
send each boundary polygon of the AABB down the BSP tree, splitting the polygons
as they straddle dividing planes. If any part of a polygon ends up in a solid leaf, there
is a collision. The implementation of this approach is straightforward and might look
as follows.

// Intersect polygon ’p’ against the solid-leaf BSP tree ’node’
int PolygonInSolidSpace(Polygon *p, BSPNode *node)
{

Polygon *frontPart, *backPart;
while (!node->IsLeaf()) {

switch (ClassifyPolygonToPlane(p, node->plane)) {
case POLYGON_IN_FRONT_OF_PLANE:

node = node->child[0];
break;

case POLYGON_BEHIND_PLANE:
node = node->child[1];
break;

case POLYGON_STRADDLING_PLANE:
SplitPolygon(*p, node->plane, &frontPart, &backPart);
if (PolygonInSolidSpace(frontPart, node->child[0])) return 1;
if (PolygonInSolidSpace(backPart, node->child[1])) return 1;



8.4 Using the BSP Tree 379

// No collision
return 0;

}
}
// Now at a leaf, inside/outside status determined by solid flag
return node->IsSolid();

}

Unfortunately, there are (at least) two problems with this solution. First, as a
boundary test this will not detect a collision if the AABB ends up fully encompassing
some small free-floating part of the solid represented by the BSP tree. Second, this
test is quite expensive, as it may have to perform up to six subqueries to determine
the query result (and even more for general polytopes).

The first objection can be addressed by representing the query volume as a solid
BSP tree and then testing if the intersection of the two trees is empty through the set
operations on BSP trees described in [Thibault87]. However, intersecting BSP trees
against each other does not really address the second objection.

A more interesting approach is to attempt to form a new BSP tree that represents
the expanded volume corresponding to the Minkowski sum of the AABB and the
original BSP tree [Melax00]. Testing a stationary AABB against the original BSP tree is
now just a point query against the new expanded tree. (The expanded tree is sometimes
also called a bloated, or grown, tree.) Similarly, the intersection of a moving AABB
against the original tree becomes a ray test against the new tree. In both cases, the
query on the tree now corresponds to a problem already solved.

The expanded volume can, in part, be formed by offsetting all planes in the original
BSP tree outward along their normals by the radius r of the AABB (with respect to
the plane normal). If the stored plane equation at a tree node is given by n · X = d,
the offset plane is obtained by adding r to the d-term: n · X = d + r. The projected
radius r itself is given by

r = e0 |nx| + e1
∣∣ny

∣∣ + e2 |nz| ,

where e0, e1, and e2 are the half-extents of the AABB and n = (a, b, c) is the normal
of the stored plane equation (see Section 5.2.3).

However, although offsetting the existing planes in the BSP tree is necessary it is
not sufficient. As the rightmost drawing of Figure 8.17 illustrates, the resulting volume
extends too far at the vertices (and, in 3D, at the edges), causing false collisions in
these regions. To obtain the correct result, additional beveling planes must be added to
the new tree so that when offset with the other planes they help form the Minkowski
sum between the BSP tree and the AABB (Figure 8.18).

To see what additional planes are needed, note first that due to being the inter-
section of a number of halfspaces the volume described by a solid leaf of a solid BSP
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(a) (b)

Figure 8.17 (a) An AABB query against the original intersection volume. (b) To allow the
AABB query to be replaced by a point query, the planes of the halfspace intersection volume
are offset outward by the radius of the AABB (as projected onto their plane normals) to form
an expanded volume. However, this alone does not form the proper Minkowski sum, as the
offset shape extends too far at the corners, causing false collisions in these regions.

(a) (b)

Beveling
planes

Figure 8.18 (a) To form the Minkowski sum of the intersection volume and the AABB, addi-
tional beveling planes must be added to the BSP tree. (b) The planes after offsetting correspond
to the shape formed by sweeping the AABB around the boundary of the intersection volume.

tree corresponds to a convex polyhedron. Therefore, the AABB query on the BSP tree
can be seen as intersection tests between the AABB and the polytopes “stored” in
the solid leaves.

For a givenAABB polytope test, the separating-axis test specifies exactly which axes
must be tested to determine if a collision has occurred. The planes of the polytope,
as stored in the BSP tree, correspond to the separating axes of the polytope faces.
The missing beveling planes are therefore those corresponding to the separating axes
of the AABB faces and those corresponding to the cross product of edges from the
AABB and edges from the polytope.
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Figure 8.19 (a) The unbeveled tree for a triangle. (b) Beveling planes inserted between the
solid leaf and its parent node.

Specifically, each supporting plane through theAABB faces is added at the polytope
vertices most extreme in the direction of that plane normal (except in the case in
which this plane is already present in the BSP tree). The planes corresponding to
the edge-edge cross products are placed so as to pass through the edges of the leaf
polytope.

Because the orientation of an AABB is fixed, if only AABB queries are performed
on the solid BSP tree the additional beveling planes required can be precomputed
and stored in the tree. They would be added between each solid leaf and the leaf’s
parent node, as illustrated in Figure 8.19.

When performing arbitrary polytope queries against the BSP tree, including OBB
or sphere queries, the beveling planes cannot be precomputed but must instead be
computed at runtime. This also holds when the BSP tree itself is not fixed but is
allowed to rotate. To facilitate the computation of the required beveling planes using
the separating-axis test, the solid BSP tree must be enhanced to contain an explicit
boundary description of the solid leaf volumes of the tree.

Note that when performing a point or ray query against the expanded tree all
dividing planes must be offset as the hierarchy is traversed, not just the planes cor-
responding to a boundary of the solid represented by the BSP tree. Otherwise, the
query would not correctly end up in all of the leaves the original query volume would
be overlapping.

8.5 Summary

In this chapter the BSP tree was presented as the most versatile spatial partitioning
method, capable of performing the same tasks as quadtrees, octrees, and k-d trees,
albeit at the cost of requiring more memory for storing full plane equations at each
node of the tree. Additionally, it was shown how BSP trees can also be used as a
boundary or solid representation of polyhedral objects.
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Three types of BSP trees were described: node-storing, leaf-storing, and solid-leaf
BSP trees. Recursive top-down construction of these trees was discussed, along with
how to select and score dividing planes to form good trees.

For BSP trees (and similar structures), it is important to consider the robustness of
inserting primitives and performing queries on the tree, to ensure that both primitives
and queries end up in all nodes they overlap. It was shown how thick planes help in
this respect, and both classification and clipping of polygons to a thick plane were
described.

Point and ray queries were used to illustrate the basic recursive approach to per-
forming BSP tree queries. Last, it was shown how polytope queries can be facilitated
on BSP trees through the process of adding beveling planes and offsetting the divid-
ing planes at query time to form an expanded tree. The expanded tree effectively
forms the Minkowski sum of the polytope and the original BSP tree and therefore
enables a simple ray query on the tree to substitute as the polytope query.



Chapter 9

Convexity-based
Methods

It is not a coincidence that the bounding volume representations explored in this book
have one feature in common: they are convex objects. Convex objects have certain
properties that make them highly suitable for use in collision detection tests. One
important property is the existence of a separating plane for nonintersecting convex
objects (see Section 3.8). Another property of convex objects is that the distance
between two points — one from each object — is at a local minimum. The distance is
also a global minimum (Figure 9.1a). This property ensures that the global minimum
distance between two convex objects can be found by simple hill climbing. That is,
starting with any pair of points and moving each point gradually closer to the other
(without moving outside the objects) a globally closest pair of points is eventually
attained.

Concave objects do not share these characteristics. For example, for two concave
objects a local minimum is not necessarily a global minimum (Figure 9.1b).

By exploiting the special properties of convex objects, it is possible to design effi-
cient collision detection algorithms for them. This chapter discusses algorithms of
this type. The algorithms deal largely with (convex) polyhedra, but some algorithms
— notably the GJK algorithm of Section 9.5 — also deal with general convex objects.
In the following, polyhedra are assumed convex unless otherwise stated.

9.1 Boundary-based Collision Detection

Toestablisha reference framebefore lookingatmoreadvancedconvexity-basedmeth-
ods, a simple solution to the collision detection problem for two polyhedra is to base
the test on the boundary description of the objects. Let two polyhedra P and Q be
given in a form allowing easy access to their vertices and faces (and therefore edges).

383
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(a) (b)

Figure 9.1 (a) For two convex objects a local minimum distance between two points is always
a global minimum. (b) For two concave objects the local minimum distance between two points
(in gray) is not necessarily a global minimum (in black).

Assuming the polyhedra are both in the same frame of reference (accomplished by,
for example, transforming Q into the space of P), their intersection can be determined
as follows [Moore88].

1. Intersect each edge of P against polyhedron Q (for example, using the method
described in Section 5.3.8). If an edge lies partly or fully inside Q, stop and report
the polyhedra as intersecting.

2. Conversely, intersect each edge of Q against polyhedron P. If an edge lies partly
or fully inside P, stop and report P and Q as intersecting.

3. Finally, to deal with the degenerate case of identical objects (such as cubes) passing
through each other with their faces aligned, test the centroid of each face of
Q against all faces of P. If a centroid is found contained in P, stop and return
intersection.

4. Return nonintersection.

It may seem like the tests of steps 1 and 2 would subsume step 3. However,
floating-point inaccuracies may cause the tests of the first two steps to fail in the
situation described in step 3, thus making the centroid test necessary to handle this
(infrequent) case. In that the edge tests of steps 1 and 2 are quite expensive, the test
might be better expressed as follows.

1. Test each vertex of Q against all faces of P. If any vertex is found to lie inside all
faces of P, stop and return the polyhedra as intersecting.

2. Repeat the previous step, but now testing each vertex of P against the
faces of Q.
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3. Intersect each edge of Q against polyhedron P (for example, using the method
described in Section 5.3.8). If an edge intersects P, stop and report the polyhedra
as intersecting.

4. To deal with the degenerate case of identical objects (such as cubes) passing
through each other with their faces aligned, test the centroid of each face of
Q against all faces of P. If a centroid is found contained in P, stop and return
intersection as a result.

5. Return nonintersection.

Both algorithm formulations are O(n2) in the number of vertices or edges tested.
In practice, even though the tests remain O(n2) worst case they can be improved
by providing a bounding box for each polyhedron and restricting the testing to the
vertices, edges, and faces intersecting the overlap volume of the two boxes. If the
polyhedra are not intersecting, the bounding boxes typically overlap only a little (if at
all) and most vertices, edges, and faces are culled from the expensive test. When the
polyhedra are intersecting, the chance of detecting an intersection early — for exam-
ple, by determining a vertex lying inside the other polyhedron — increases greatly. As
a result, near linear behavior can be expected in most cases. However, linear behavior
is still not as efficient as possible. By better exploiting the convexity of the objects,
faster collision algorithms can be obtained. Such algorithms are explored ahead.

9.2 Closest-features Algorithms

In real-time simulations objects tend to move or rotate by small amounts from one
frame to the next. For convex objects, this frame-to-frame coherence suggests that
in general the closest points between two nonintersecting objects are located in the
near vicinity of the closest points between the objects of the previous frame. However,
although an accurate observation for strictly convex sets (informally, that curve every-
where) this it is not always true for polyhedra. For a polyhedron, even a minute change
in orientation can cause the closest point to move from one side to the opposite side
of one of its faces, which (depending on the size of the face) may be arbitrarily far
away. Thus, for polyhedra, rather than tracking the closest points and using the clos-
est points of the previous frame as a starting point a better approach is to track the
closest features (vertices, edges, or faces) from frame to frame. A pair of features, one
from each of two disjoint polyhedra, are said to be the closest features if they contain
a pair of closest points for the polyhedra.

Perhaps the earliest and most well known collision detection algorithm based
on the tracking of closest features is the Lin–Canny algorithm [Lin91]. A later, sim-
ilar algorithm, addressing some serious flaws in the Lin–Canny algorithm, is the
Voronoi-Clip, or V-Clip algorithm [Mirtich98]. The V-Clip algorithm is summarized in
the next section.
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A

B
V,PA

PBVR(V)

VR(F)

F

Figure 9.2 Two nonintersecting 2D polyhedra A and B. Indicated is the vertex-face feature
pair V and F, constituting the closest pair of features and containing the closest pair of points,
PA and PB, between the objects.

9.2.1 The V-Clip Algorithm

The V-Clip algorithm operates on a pair of polyhedra and is based on the following
theorem, defining the closest points between the pair in terms of the closest features
of the polyhedra.

Theorem: Let FA and FB be a pair of features from two disjoint convex polyhedra, A
and B, and let VR(FA) and VR(FB) denote their Voronoi regions. Let PA ∈ FA and
PB ∈ FB be a pair of closest points between the features. Then, if PA ∈ VR(FB) and
PB ∈ VR(FA), FA and FB are a globally closest pair of features and PA and PB are a
globally closest pair of points between A and B (albeit not necessarily unique).

Figure 9.2 illustrates a pair of (2D) polyhedra satisfying the conditions of this
theorem.

V-Clip starts with two features, one from each input polyhedron. At each iteration
of the algorithm, the features are tested to see if they meet the conditions of the
theorem for being a closest pair of features. If so, the algorithm terminates, returning
a result of nonintersection along with the pair of closest features. If the conditions
are not met,V-Clip updates one of the features to a neighboring feature, where the
neighbors of a feature are defined as follows.

● The neighbors of a vertex are the edges incident to the vertex.

● The neighbors of a face are the edges bounding the face.

● The neighbors of an edge are the two vertices and the two faces incident to
the edge.

Figure 9.3 shows a chart of the possible feature pairs and legal transitions between
them, according to the previously listed neighbor definitions. Solid arrows in the chart
indicate that the interfeature distance is strictly decreased by a transition. Dashed
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Figure 9.3 Feature pair transition chart in which solid arrows indicate strict decrease of
interfeature distance and dashed arrows indicate no change.

arrows indicate no change in distance taking place. Because the chart does not contain
a transition cycle of only dashed arrows, only a finite number of feature transitions
can be performed before the feature distance is strictly decreased. In addition, there
are no transitions that increase the interfeature distance. Therefore, convergence is
assured and the algorithm eventually terminates with the closest pair of features (and
thus, implicitly, with a closest pair of points).

One of the transitions in the chart of Figure 9.3 does not follow from the neighbor
definitions: the (solid) arrow from the vertex-face state back to itself. This transition
is present because it is possible for theV-Clip algorithm to become trapped in a local
minimum in the vertex-face state. The problem occurs for objects in configurations
similar to that shown in Figure 9.4, where the vertexV lies below the supporting plane
of face F and at the same time lies inside allVoronoi planes of theVoronoi region, VR(F),
of F. In this situation there are no legal state transitions per the chart of Figure 9.3.
Any attempted transition would either increase the interfeature distance or increase
the dimension of a feature while the interfeature distance stayed the same, neither
of which are allowed by the algorithm. When this problem situation is detected, an
O(n) brute-force test is performed of the vertexV against all face planes of object A. If
V lies inside all face planes, the objects are intersecting and the algorithm stops and
reports the objects as penetrating. Otherwise, F is updated to the face G of A that V
has the largest positive signed distance from. This choice of a new face guarantees
there is no possibility of descending into the same local minimum again, in that V is
strictly closer to G than to F and is at least as close to G as to all other faces of A.

The test for the features being a closest pair of features is handled differently for
each of the five possible feature pair types, the details of which are too elaborate to
explore here. Unlike the Lin–Canny algorithm, V-Clip avoids explicitly computing
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A

B

V

F

VR(F)

Figure 9.4 Two objects in a configuration for which the V-Clip algorithm becomes trapped
in a local minimum (after [Mirtich98]).

the closest points between the features to perform the closest pair test, making V-
Clip quite robust. Full implementational details on theV-Clip algorithm are given in
[Mirtich98] and [Coutinho01], and a solid implementation is available on the Internet.
It should be noted that theV-Clip algorithm is covered by U.S. patent 6,054,997.

9.3 Hierarchical Polyhedron Representations

Just as bounding volume hierarchies can accelerate queries on, say, polygon soups,
hierarchical representations are also useful to accelerate many queries on polyhedra.
BSP trees, as described in Chapter 8, constitute one possible representation. An alter-
native form of hierarchical representation is the forming of a sequence of polyhedra,
nested inside each other like Russian dolls. Starting from the original polyhedron,
each inscribed polyhedron of the sequence is a simplified version of its immediate
outer parent. Given such a hierarchy, the idea is to perform queries starting at the
simplest innermost polyhedron and moving up through the hierarchy to the original
polyhedron. With just a small topological difference from one polyhedron to the next,
only a small amount of work must be performed at each step, typically resulting in
O(log n) queries.

Most well known of the nested polyhedron representations is the Dobkin–
Kirkpatrick hierarchy, described in the following section. The Dobkin–Kirkpatrick
hierarchy can be used for queries such as finding an extreme vertex in a given direc-
tion, locating the point on a polyhedron closest to a given point, or determining the
intersection of two polyhedra. The Dobkin–Kirkpatrick hierarchy has inspired several
other collision detection algorithms, such as the hybrid of the Dobkin–Kirkpatrick
hierarchy and the Lin–Canny algorithm presented in [Guibas99] and the multires-
olution representation presented in [Ehmann00]. The Dobkin–Kirkpatrick hierarchy
is described in the next section.
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9.3.1 The Dobkin–Kirkpatrick Hierarchy

The Dobkin–Kirkpatrick (DK) hierarchy of a d-dimensional polyhedron P is a
sequence P0, P1, . . . , Pk of nested increasingly smaller polytopal approximations of
P, where P = P0 and Pi+1 is obtained from Pi by deletion of a subset of the vertices
of Pi. The subset of vertices is selected to form a maximal set of independent vertices
(that is, such that no two vertices in the set are adjacent to each other). The construc-
tion of the hierarchy stops with the innermost polyhedron Pk being a d-simplex (a
tetrahedron, in 3D). [Edelsbrunner87] shows that every polyhedron allows the con-
struction of a maximal set of independent vertices through a simple greedy algorithm.
In pseudocode, the algorithm is as follows.

// Given a set s of vertices, compute a maximal set of independent vertices
Set IndependentSet(Set s)
{

// Initialize i to the empty set
Set i = EmptySet();
// Loop over all vertices in the input set
for (all vertices v in s) {

// If unmarked and has 8 or fewer neighboring vertices...
if (!Marked(v) && Degree(v) <= 8) {

// Add v to the independent set and mark all of v’s neighbors
i.Add(v);
s.MarkAllVerticesAdjacentToVertex(v);

}
}
return i;

}

The independent set is guaranteed to be a constant fractional size of the current set
of vertices, in turn guaranteeing a height of O(log n) for the DK hierarchy. Additionally,
during the hierarchy construction pointers are added to connect deleted features of
polyhedron Pi to new features of polyhedron Pi+1, and vice versa. These pointers help
facilitate efficient queries on the hierarchy.

Figure 9.5 illustrates the construction of the Dobkin–Kirkpatrick hierarchy for a
convex polygon P as specified by vertices V0 through V11. P0 is set to be equivalent
to P. P1 is obtained from P0 by deleting, say, the vertices V1, V3, V5, V7, V9, and
V11 (which form a maximal independent set). P2 is similarly obtained from P1 by
deleting vertices V2, V6, and V10. Because P2 is a 2-simplex (a triangle), the hierarchy
construction stops.

Given a DK hierarchy, many different queries can be answered in an efficient
manner. For example, the point on P closest to a query point S can be located through
a simple recursive procedure. As an illustration, consider the case of Figure 9.6.



390 Chapter 9 Convexity-based Methods

P0

V10 V9

V8

V7

V6

V5
V4

V3

V2

V1

V0

V11

P1 P2

Figure 9.5 The Dobkin–Kirkpatrick hierarchy of the convex polygon P = P0.
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Figure 9.6 The supporting plane H, for (a) P2 and (b) P1, through the point on the poly-
hedron closest to a query point S.

Starting at the innermost polyhedra Pi, i = 2, the closest point Ri on Pi to S is
found through straightforward calculation (see Section 5.1.6). If Ri = S, then S is
contained in P and the algorithm stops. Otherwise, knowing Ri, the closest point for
Pi−1 is found as follows. Let H be the supporting plane for Pi through Ri. Pi−1 can
now be described as consisting of the part in front of H and the part behind H:

Pi−1 = (
Pi−1 ∩ H+) ∪ (

Pi−1 ∩ H−) .

The closest point Ri−1 is therefore realized either between Pi−1 ∩ H+ and S or
between Pi−1 ∩H− and S. The closest point between Pi−1 ∩H− and S is directly given
by Ri. Because Pi−1 ∩ H+ (due to the construction of the hierarchy) is defined by one
vertex and two edges, the closest point between Pi−1 ∩ H+ and S is computed in
constant time. Consequently, the point on P closest to the query point S is located in
O(log n) steps and in O(log n) time.

A DK hierarchy can also be used to locate the extreme vertex in direction d through
a relatively simple recursive procedure. First, the most extreme vertex Vk of the inner-
most polyhedron Pk is located by examining all four of its vertices. Knowing Vk, only
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a few vertices in Pk−1, all of them neighbors of Vk, must be examined to find the
most extreme vertex in Pk−1. By stepping up the hierarchy in this manner until P0

is reached, the most extreme vertex of the original polyhedron is found in O(log n)
steps. It can be shown that the tests at each step can be performed in constant time
and consequently the extreme vertex is found in O(log n) time.

An accessible account of the DK hierarchy is given in [O’Rourke98]. Simultane-
ously traversing two hierarchical representations allows the intersection between two
convex polygons to be determined in O(log n) time and between convex polyhedra
in O(log2 n) time [Dobkin90].

Specifically for the problem of finding extreme vertices of a polyhedron, the BSP
tree-based acceleration structure presented in [Eberly04] is a worthy alternative to
the DK hierarchy, in that the former is easier to implement and uses less memory.

9.4 Linear and Quadratic Programming

Although it is natural to view the problem of detecting collision between two con-
vex polyhedra as a geometrical problem, it can also be treated as a mathematical
optimization problem. Considering each polyhedron as the intersection volume of a
number of halfspaces, the Boolean intersection test of the polyhedra is equivalent to
what is known as the feasibility problem of linear programming. The latter is the prob-
lem of determining if there is a solution to a set of linear inequalities. In terms of the
collision problem, this corresponds to determining if there exists a point interior to all
halfspaces of both polyhedra (each halfspace being a linear inequality). Beyond just
determining if the polyhedra intersect or not, determining the separation distance and
the closest points between them in the case they do not intersect also can be treated
as an optimization problem, specifically as a quadratic programming problem. Both
linear and quadratic programming problems are optimization problems with respect
to linear inequality constraints. In the linear programming problem, the goal is to
optimize a linear function with respect to these constraints. The quadratic program-
ming problem instead optimizes a quadratic function with respect to the constraints.
The following sections describe in more detail how collision detection problems can
be expressed as linear and quadratic programming problems. The following material
also outlines methods for solving these problems.

9.4.1 Linear Programming

Let a linear function be a function of the form f (x1, x2, . . . , xn) = c1x1 + c2x2 +· · ·+ cnxn,
where the ci terms are real number constants. Let a linear constraint be a linear
equation or a linear inequality, where a linear equation is of the form f (x1, x2, . . . , xn) = c
and linear inequalities are of the form f (x1, x2, . . . , xn) ≤ c or f (x1, x2, . . . , xn) ≥ c.
Then, the linear programming problem is the problem of optimizing (maximizing or
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minimizing) a linear function with respect to a finite set of linear constraints. The
linear function to be optimized is called the objective function. Without loss of gener-
ality, linear programming (LP) problems are here restricted to maximization of the
objective function and to involve constraints of the form f (x1, x2, . . . , xn) ≤ c only
(because f (x1, x2, . . . , xn) ≥ c can be written as −f (x1, x2, . . . , xn) ≤ −c). Equality
constraints, if needed, can be stated by requiring both f (x1, x2, . . . , xn) ≤ c and
f (x1, x2, . . . , xn) ≥ c.

Note that a linear inequality of n variables geometrically defines a halfspace in
R

n. The region of feasible solutions defined by a set of m inequalities therefore cor-
responds to the intersection of m halfspaces Hi, 1 ≤ i ≤ m. In turn, this intersection
corresponds to a convex polyhedron P, P = H1 ∩ H2 ∩ . . . ∩ Hm. Note also that the
objective function can be seen as a dot product between the vectors x = (x1, x2, . . . , xn)
and c = (c1, c2, . . . , cn). The LP problem is therefore geometrically equivalent to that
of finding a supporting point x of P in direction c. (In fact, because P is a convex poly-
hedron the supporting point x can always be made to correspond to a supporting
vertex.)

In the literature, LP problems are often abstractly stated in terms of matrix-vector
formulations, rather than as a geometric optimization over a convex polyhedron.
In a matrix formulation the LP problem is to maximize (or minimize) the objective
function cTx, where c is a (column) vector of d constants and x = (x1, x2, . . . , xd)T

satisfies the constraint inequalities Ax ≤ b (where A is an n×d matrix of coefficients
and b is a column vector of n constants). The geometric interpretation is preferred in
this book.

Given two convex polyhedra, A and B, each expressed as the intersection of half-
spaces, the convex polyhedron C that is their intersection volume is described
(perhaps redundantly) by the intersection of all halfspaces from both A and B. A
and B are therefore in collision if and only if there is a solution to the LP problem
with the defining halfspaces of A and B as the linear constraints. Because any point
common to both polyhedra will serve as a witness to their collision, the objective
function can be chosen arbitrarily, for example as c = (1, 0, . . . , 0).

As an example of how polyhedral intersection can be treated as an LP problem,
consider the two triangles, A and B, given in Figure 9.7. Triangle A is described by
the halfspaces −x + y ≤ −1, −x − 4y ≤ −1, and 4x + y ≤ 19, and triangle B by
the halfspaces −4x + y ≤ 0, x − 4y ≤ 0, and x + y ≤ 5. The triangles are therefore
intersecting if the following LP problem has a solution.

Maximize x

subject to: − x + y ≤ −1

−x − 4y ≤ −1

4x + y ≤ 19

−4x + y ≤ 0
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A:  –x + y   –1
     –x – 4y   –1
     4x + y   19

B:  –4x + y   0
x – 4y   0
x + y   5

B

A

Figure 9.7 The two triangles A = (1, 0), (5, −1), (4, 3) and B = (0, 0), (4, 1), (1, 4) defined
as the intersection of three halfspaces each.

x − 4y ≤ 0

x + y ≤ 5

By inspection of Figure 9.7, this problem has a solution, with the maximum assumed
for x = 4.

Alternatively, the intersection problem can be expressed as an LP problem in the
following way. Let the two polyhedra be given in terms of their vertices. Now a linear
programming problem can be set up to determine whether there exist coefficients for
a plane such that it forms a separating plane for the two polyhedra. For example, for
the setup of Figure 9.7 the problem can be restated to attempt to find a separating
line f (x, y) = ax + by + c for some a, b, and c with the constraints that f (Ai) ≤ 0 and
f (Bi) > 0, where Ai and Bi are the vertices of the two polyhedra. Specifically, for the
setup of Figure 9.7 the two triangles are nonintersecting if the following LP problem
has a solution.

Maximize a

subject to: a + c ≤ 0

5a − b + c ≤ 0

4a + 3b + c ≤ 0

c > 0

4a + b + c > 0

a + 4b + c > 0

In that it is already established that triangles A and B are intersecting, this
particular LP problem does not have a solution.
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The most famous method for solving linear programming problems is the simplex
method, due to Danzig. A highly readable presentation of the simplex method is given
in [Chvatal83]. When the LP problems are, as here, of low dimension and with few
constraints, other (simpler) methods are often preferred. One such method, and the
one presented here, is a randomized algorithm due to [Seidel90]. Before describing
Seidel’s algorithm, another even simpler algorithm is introduced. This algorithm,
Fourier–Motzkin elimination, gives further insight into the problem of determining
whether a set of inequality constraints provides a feasible solution. (Fourier–Motzkin
elimination is also the method of choice for solving small systems by hand.)

9.4.1.1 Fourier–Motzkin Elimination

A simple approach for determining the consistency of a system of linear inequalities
is the method known as Fourier–Motzkin elimination. It operates by successive rewrites
of the system, eliminating one variable from the system on each rewrite. When only
one variable is left, the system is trivially consistent if the largest lower bound for the
variable is less than the smallest upper bound for the variable. More specifically, let
the system be given as m constraints in n variables:

a11x1 + a12x2 + . . . + a1nxn ≤ b1

a21x1 + a22x2 + . . . + a2nxn ≤ b2

...

am1x1 + am2x2 + . . . + amnxn ≤ bm

A variable xk is selected for elimination and each inequality is “solved” for xk,
resulting in s lower and t upper bounds on xk:

L1(x1, x2, . . . , xk−1, xk+1, . . . , xn) ≤ xk

L2(x1, x2, . . . , xk−1, xk+1, . . . , xn) ≤ xk

...

Ls(x1, x2, . . . , xk−1, xk+1, . . . , xn) ≤ xk

xk ≤ U1(x1, x2, . . . , xk−1, xk+1, . . . , xn)

xk ≤ U2(x1, x2, . . . , xk−1, xk+1, . . . , xn)
...

xk ≤ Ut(x1, x2, . . . , xk−1, xk+1, . . . , xn)

Because every lower bound on xk must be less than or equal to every upper bound
on xk, it is possible to completely eliminate xk by replacing the current set of inequal-
ities with a new set of st inequalities formed by all pairwise combinations of lower
and upper bounds for xk. That is,

Li(x1, x2, . . . , xk−1, xk+1, . . . , xn) ≤ Uj(x1, x2, . . . , xk−1, xk+1, . . . , xn)

for all 1 ≤ i ≤ s, 1 ≤ j ≤ t.
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The process is repeated, removing one variable for each iteration until just one
variable remains and the consistency test can be trivially performed. To help illustrate
the method, consider again the six inequalities for the two triangles of Figure 9.7.
Rewritten to expose the variable x, the six inequalities become:

x ≥ 1 + y x ≥ y/4

x ≥ 1 − 4y x ≤ 4y

x ≤ (19 − y)/4 x ≤ 5 − y

Rearranging the order, these provide three lower bounds (left) and three upper
bounds (right) for x:

y/4 ≤ x x ≤ 4y

1 + y ≤ x x ≤ 5 − y

1 − 4y ≤ x x ≤ (19 − y)/4

Because every lower bound on x must be less than or equal to every upper bound
on x, it is possible to completely eliminate x by forming the following nine constraints
from all pairwise combinations of lower and upper bounds for x.

y/4 ≤ 4y 1 + y ≤ 4y 1 − 4y ≤ 4y

y/4 ≤ 5 − y 1 + y ≤ 5 − y 1 − 4y ≤ 5 − y

y/4 ≤ (19 − y)/4 1 + y ≤ (19 − y)/4 1 − 4y ≤ (19 − y)/4

When simplified, these give the following constraints on y:

−4/3 ≤ −1 ≤ 0 ≤ 1/8 ≤ 1/3 ≤ y ≤ 2 ≤ 3 ≤ 4 ≤ 19/2

From these it is clear that y is most tightly bounded by

1/3 ≤ y ≤ 2.

This is a feasible bound, and thus the original system is consistent and the two
triangles have one (or more) points in common. Note that the bound agrees with
the illustration in Figure 9.7, and in fact provides the interval of projection of the
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intersection volume onto the y axis. By picking a value for y from this interval and
substituting it in the original set of inequalities, a similar bound will be given for x,
from which a value for x can be chosen. The (x, y) pair of coordinates corresponds
to a feasible point in the interior of the intersection volume. Here, arbitrarily setting
y = 2 the bounds on x become

−7 ≤ 1/2 ≤ 3 ≤ x ≤ 3 ≤ 17/4 ≤ 8,

from which the only valid choice for x is x = 3. By inspection, Figure 9.7 has it that
(3, 2) is a vertex of the intersection volume.

Although Fourier–Motzkin elimination is both conceptually simple and straightfor-
ward to implement, a major drawback is the rapid increase of inequalities as variables
are eliminated. Worst case, the number of inequalities is squared in each iteration,
giving an exponential complexity. The situation can be improved somewhat through
heuristic rules, such as eliminating the variable producing the least number of inequal-
ities. In that most of the produced inequalities are redundant, removing these will
also curb the exponential growth, as described in [Imbert93]. Despite the worst-case
exponential complexity, Fourier–Motzkin elimination is still interesting (for small
problems) in that the method is amenable to parallelization. Fourier–Motzkin elim-
ination is closely related to a method for enumerating the vertices of a polyhedron,
known as the double description method [Motzkin53].

9.4.1.2 Seidel’s Algorithm

A simple method for solving linear programming problems in d variables and m
inequality constraints is Seidel’s algorithm. Seidel’s algorithm has an expected run-
ning time of O(d!m). Therefore, although the algorithm is not practical for large d it is
quite efficient for small d; in particular for d ≤ 3, which are the dimensions of interest
for most collision detection problems. Before continuing to describe the algorithm,
the LP problem is first restated for convenience. Given is a set {H1, H2, . . . , Hm} of m
d-dimensional halfspaces. The intersection of these halfspaces forms a (possibly
empty) polyhedron P, P = H1 ∩ H2 ∩ · · · ∩ Hm. Given is also an objective vector
c in R

d. Wanted is a vertex v of P such that v is most extreme in direction c (or an
indication that the problem is infeasible when P is empty).

Seidel’s algorithm is incremental in nature. It loops over the halfspaces and at each
iteration computes the optimum vertex vi for the polyhedron Pi = H1 ∩ H2 ∩ · · · ∩ Hi

from vi−1 of Pi−1 of the previous iteration. There are two cases to consider each time
a new halfspace Hi is introduced (Figure 9.8).

In the first case, when vi−1 lies inside Hi, vi−1 remains a feasible solution and
nothing needs to be done (thus, vi = vi−1). On the other hand, in the case in which
vi−1 lies outside Hi, vi−1 cannot be a feasible solution. In this case, however, vi must
be contained in the bounding hyperplane π of Hi (because otherwise there would
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Figure 9.8 (a) vi−1 is contained in Hi, and thus vi = vi−1. (b) vi−1 violates Hi, and thus vi
must lie somewhere on the bounding hyperplane of Hi, specifically as indicated.

be some other feasible point on the segment between vi and vi−1 more extreme in
direction c than vi, leading to a contradiction). vi therefore can be found by reducing
the current LP problem to d − 1 dimensions as follows. Let c′ be the projection of c
into π . Let Gi be the intersection of Hj, 1 ≤ j < i, with π . Then, vi is the solution to
the d − 1-dimensional LP problem specified by the Gi constraints and the objective
vector c′. Thus, vi can be solved for recursively, with the recursion bottoming out
when d = 1. In the 1D case, vi is trivially found as the largest or smallest value
(depending on the direction of c′) satisfying all constraints. At this point, infeasibility
of the LP problem is also trivially detected as a contradiction in the constraints.

To start the algorithm, an initial value for v0 is required. Its value is obtained by
means of introducing a bounding box P0 large enough to encapsulate the intersection
volume P. Because an optimum vertex for P remains an optimum vertex for P0 ∩P, the
problem can be restated as computing, at each iteration, the optimum vertex vi for
the polyhedron Pi = P0∩H1∩H2∩· · ·∩Hi (from vi−1 of Pi−1 of the previous iteration).
The initial value of v0 now simply corresponds to the vertex of P0 most extreme in
direction c (trivially assigned based on the signs of the coordinate components of c).

It is shown in [Seidel90] that the expected running time of this algorithm is O(d!m).
Seidel’s algorithm is a randomized algorithm [Mulmuley94], here meaning that the
underlying analysis behind the given time complexity relies on the halfspaces initially
being put in random order. This randomization is also important for the practical
performance of the algorithm.

Figure 9.9 graphically illustrates Seidel’s algorithm applied to the triangles from
Figure 9.7. The top left-hand illustration shows the six original halfspaces. The next
seven illustrations show (in order, one illustration each) P0 through H6 being pro-
cessed. At each step, the processed halfspace Hi is drawn in thick black, along with the
vi for that iteration. With the given (random) ordering of the halfspaces, three recur-
sive 1D calls are made: for halfspaces H2, H5, and H6. For these, the 1D constraints
in their respective bounding hyperplane are shown as arrows.
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Figure 9.9 At top left, the six halfspaces from Figure 9.7. Remaining illustrations show
Seidel’s algorithm applied to these six halfspaces. The feasible region is shown in light gray
and the current halfspace is shown in thick black. Arrows indicate the 1D constraints in the
recursive call.

9.4.2 Quadratic Programming

Although linear programming is effective for determining if two polyhedra are inter-
secting, no other particular information is returned when the two polyhedra are not
intersecting. In some cases it is desirable to have the closest points between the two
polyhedra be returned, effectively giving the distance between the polyhedra. It turns
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out that the polyhedron distance problem can be stated as a quadratic programming
problem. Similar to LP problems, quadratic programming (QP) problems have linear
constraints. However, the objective function is no longer linear but quadratic. One
possible QP formulation of the polyhedron distance problem is to let the two disjoint
polyhedra A and B each be defined as the convex hull of a finite set of points in R

d:

A = CH(SA), SA = {A1, A2, . . . , Am}
B = CH(SB), SB = {B1, B2, . . . , Bn}

The goal is now to find points P in A and Q in B such that the distance between P
and Q, or equivalently that the length of the (column) vector v = P−Q, is minimized.
Let G be the d×m matrix containing (as columns) the points of SA. Let H be the d×n
matrix containing (as columns) the points of SB. The polyhedron distance problem
is now to solve the following QP problem in the variables x = (x1, x2, . . . , xm)T and
y = (y1, y2, . . . , yn)T .

Minimize vTv

subject to: Gx − Hy = v

x1 + x2 + . . . + xm = 1

y1 + y2 + . . . + yn = 1

x1, x2, . . . , xm ≥ 0

y1, y2, . . . , yn ≥ 0

Solving QP problems is, in general, more difficult than solving LP problems. Many
algorithms have been suggested for solving QP problems. For the size of a problem
typical of collision detection, two practical algorithms are given by Botkin [Botkin],
[Botkin95] and Gärtner [Gärtner00]. Both algorithms share similarities with Seidel’s
algorithm for linear programming. Botkin’s algorithm has an expected running time
of O(dd!n). No time complexity is given for Gärtner’s algorithm.

9.5 The Gilbert–Johnson–Keerthi Algorithm

One of the most effective methods for determining intersection between two polyhe-
dra is an iterative algorithm due to Gilbert, Johnson, and Keerthi, commonly referred
to as the GJK algorithm [Gilbert88]. As originally described, GJK is a simplex-based
descent algorithm that given two sets of vertices as inputs finds the Euclidean dis-
tance (and closest points) between the convex hulls of these sets. In a generalized
form, the GJK algorithm can also be applied to arbitrary convex point sets, not just
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polyhedra [Gilbert90]. Whereas the examples presented here are in terms of poly-
topes, the described algorithm is the generalized version that applies to nonpolygonal
convex sets in a straightforward way.

Although the original presentation of the GJK algorithm is quite technical, neither
the algorithm itself nor its implementation are very complicated in practice. However,
understanding of the algorithm does require familiarity with some concepts from
convex analysis and the theory of convex sets on which the algorithm relies.

An important point is that the GJK algorithm does not actually operate on the
two input objects per se but on the Minkowski difference between the objects. This
transformation of the problem reduces the problem from finding the distance between
two convex sets to that of finding the distance between the origin and a single convex
set. The GJK algorithm searches the Minkowski difference object iteratively a sub-
volume at a time, each such volume being a simplex. The Minkowski difference is not
explicitly computed but sampled through a support mapping function on demand.
These concepts (Minkowski difference, simplices, and support mapping functions)
were described in Chapter 3, and in the following it is assumed the reader is familiar
with them.

9.5.1 The Gilbert–Johnson–Keerthi Algorithm

As mentioned earlier, the GJK algorithm effectively determines intersection between
polyhedra by computing the Euclidean distance between them. The algorithm is
based on the fact that the separation distance between two polyhedra A and B is
equivalent to the distance between their Minkowski difference C, C = A
B, and the
origin (Figure 9.10). Thus, the problem is reduced to that of finding the point on C
closest to the origin. At the outset, this does not seem like much of an improvement,
as the Minkowski difference is nontrivial to compute explicitly. However, a key point
of the GJK algorithm is that it does not explicitly compute the Minkowski differ-
ence C. It only samples the Minkowski difference point set using a support mapping

A

B

A � (–B)

Figure 9.10 The distance between A and B is equivalent to the distance between their
Minkowski difference and the origin.
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of C = A 
 B. Specifically, a support mapping is a function sA(d) that maps a given
direction d into a supporting point for the convex object A in that direction. Because
the support mapping function is the maximum over a linear function, the support
mapping for C, sA
B(d), can be expressed in terms of the support mappings for A and
B as sA
B(d) = sA (d) − sB(−d). Thus, points from the Minkowski difference can be
computed, on demand, from supporting points of the individual polyhedra A and B.

To search the Minkowski difference C for the point closest to the origin, the GJK
algorithm utilizes a result known as Carathéodory’s theorem [Rockafellar96]. The the-
orem says that for a convex body H of R

d each point of H can be expressed as the
convex combination of no more than d + 1 points from H. This allows the GJK algo-
rithm to search the volume of the Minkowski difference C by maintaining a set Q of
up to d + 1 points from C at each iteration. The convex hull of Q forms a simplex
inside C. If the origin is contained in the current simplex, A and B are intersecting
and the algorithm stops. Otherwise, the set Q is updated to form a new simplex,
guaranteed to contain points closer to the origin than the current simplex. Eventually
this process must terminate with a Q containing the closest point to the origin. In
the nonintersecting case, the smallest distance between A and B is realized by the
point of minimum norm in CH(Q) (the convex hull of Q). The following step-by-step
description of the GJK algorithm specifies in more detail how the set Q is updated.

1. Initialize the simplex set Q to one or more points (up to d + 1 points, where d is
the dimension) from the Minkowski difference of A and B.

2. Compute the point P of minimum norm in CH(Q).

3. If P is the origin itself, the origin is clearly contained in the Minkowski difference
of A and B. Stop and return A and B as intersecting.

4. Reduce Q to the smallest subset Q′ of Q such that P ∈ CH(Q′). That is, remove
any points from Q not determining the subsimplex of Q in which P lies.

5. Let V = sA
B(−P) = sA (−P) − sB(P) be a supporting point in direction −P.

6. If V is no more extremal in direction −P than P itself, stop and return A and B as
not intersecting. The length of the vector from the origin to P is the separation
distance of A and B.

7. Add V to Q and go to 2.

Figure 9.11 illustrates how GJK iteratively finds the point on a polygon closest
to the origin O for a 2D problem. The algorithm arbitrarily starts with the vertex A
as the initial simplex set Q, Q = {A}. For a single-vertex simplex, the vertex itself is
the closest point to the origin. Searching for the supporting vertex in direction −A
results in B. B is added to the simplex set, giving Q = {A, B}. The point on CH(Q)
closest to the origin is C. Because both A and B are needed to express C as a convex
combination, both are kept in Q. D is the supporting vertex in direction −C and it is
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Figure 9.11 GJK finding the point on a polygon closest to the origin.

added to Q, giving Q = {A, B, D}. The closest point on CH(Q) to the origin is now E.
Because only B and D are needed to express E as a convex combination of vertices
in Q, Q is updated to Q = {B, D}. The supporting vertex in direction −E is F, which
is added to Q. The point on CH(Q) closest to the origin is now G. D and F is the
smallest set of vertices in Q needed to express G as a convex combination, and thus
Q is updated to Q = {D, F}. At this point, because no vertex is closer to the origin in
direction −G than G itself G must be the closest point to the origin, and the algorithm
terminates.

Note that the GJK algorithm trivially deals with spherically extended polyhedra
by comparing the computed distance between the inner polyhedron structures with
the sum of the radii of their spherical extension. Note also that if the GJK algorithm
is applied to the vertex sets of nonconvex polyhedra it will compute the smallest
distance between the convex hulls of these nonconvex polyhedra.

Although presented here as a method operating on polyhedra only, the GJK algo-
rithm can in fact be applied to arbitrary convex bodies [Gilbert90]. Because the input
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bodies are always sampled through their support mappings, all that is required to
allow the GJK algorithm to work with general convex objects is to supply appropriate
support mappings (see Section 3.8).

The GJK algorithm terminates with the separation distance in a finite number
of steps for polyhedra. However, it only asymptotically converges to the separation
distance for arbitrary convex bodies. Therefore, a suitable tolerance should be added
to the termination condition to allow the algorithm to terminate correctly when
operating on nonpolyhedral objects.

Upon termination with nonintersection, in addition to returning the separation
distance it is possible to have GJK compute the closest points between the input
objects, computed from the points of objects A and B that formed the points in the
last copy of simplex set Q. The steps of this computation are outlined in Section
9.5.3.

For an excellent in-depth description of the GJK algorithm, see [Bergen03]. A
good presentation is also given in [Coutinho01]. A conversion to C of the origi-
nal FORTRAN implementation of the GJK algorithm is available on the Internet
[Ruspini].

9.5.2 Finding the Point of Minimum Norm in a Simplex

It remains to describe how to determine the point P of minimum norm in CH(Q)
for a simplex set Q = {Q1, Q2, . . . , Qk}, 1 ≤ k ≤ 4. In the original presentation
of GJK, this is done through a single procedure called the distance subalgorithm (or
Johnson’s algorithm). The distance subalgorithm reduces the problem to considering
all subsets of Q separately. For example, for k = 4 there are 15 subsets corresponding
to 4 vertices (Q1, Q2, Q3, Q4), 6 edges (Q1Q2, Q1Q3, Q1Q4, Q2Q3, Q2Q4, Q3Q4), 4 faces
(Q1Q2Q3, Q1Q2Q4, Q1Q3Q4, Q2Q3Q4), and the interior of the simplex (Q1Q2Q3Q4).
The subsets are searched one by one, in order of increasing size. The search stops
when the origin is contained in the Voronoi region of the feature (vertex, edge, or
face) specified by the examined subset (or, for the subset corresponding to the interior
of the simplex when the origin is inside the simplex). Once a feature has been located,
the point of minimum norm on this feature is given by the orthogonal projection of
the origin onto the feature.

Consider again the case of Q = {Q1, Q2, Q3, Q4}. An arbitrary point P (specifically
the origin) lies in the Voronoi region for, say, vertex Q1 if and only if the following
inequalities are satisfied:

(P − Q1) · (Q2 − Q1) ≤ 0

(P − Q1) · (Q3 − Q1) ≤ 0

(P − Q1) · (Q4 − Q1) ≤ 0.
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P lies in theVoronoi region associated with edge Q1Q2 if and only if the following
inequalities are satisfied:

(P − Q1) · (Q2 − Q1) ≥ 0

(P − Q2) · (Q1 − Q2) ≥ 0

(P − Q1) · ((Q2 − Q1) × n123) ≥ 0

(P − Q1) · (n142 × (Q2 − Q1)) ≥ 0,

where

n123 = (Q2 − Q1) × (Q3 − Q1)

n142 = (Q4 − Q1) × (Q2 − Q1).

If P does not lie in a vertex or edge Voronoi region, face regions are tested by
checking if P and the remaining point from Q lie on opposite sides of the plane
through the three points from Q chosen to form the face. For example, P lies in the
Voronoi region of Q1Q2Q3 if and only if the following inequality holds:

((P − Q1) · n123)((Q4 − Q1) · n123) < 0,

where again

n123 = (Q2 − Q1) × (Q3 − Q1).

Analogous sets of inequalities can be defined for testing containment in the
remaining vertex, edge, and face Voronoi regions. Note that most of the computed
quantities are shared between differentVoronoi region tests and need not be recom-
puted, resulting in an efficient test overall. Simplex sets of fewer than four points are
handled in a corresponding way.

If what was just described seems familiar, it is because the routines given in
Sections 5.1.2, 5.1.5, and 5.1.6 — for finding the point on a segment, on a trian-
gle, and on a tetrahedron closest to a given point, respectively — utilize exactly
the same approach. Indeed, the original implementation of the GJK algorithm also
uses this optimized case-based approach to implementing the distance subalgorithm
[Ruspini].
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9.5.3 GJK, Closest Points, and Contact Manifolds

In addition to the separation distance, the GJK algorithm can provide a pair of closest
points between the input objects. Upon termination with nonintersection, the set
Q contains up to three points Qi, forming a simplex from the Minkowski difference
C = A
B. Let k denote the number of points in Q and let P be the point of minimum
norm in CH(Q). Because Q contains the smallest number of vertices needed to express
P as a convex combination, P can be expressed as

P =
∑

1≤i≤k

ciQi,
∑

1≤i≤k

ci = 1, ci > 0,

where (c1, c2, . . . , ck) are the barycentric coordinates of P with respect to points Qi.
Given that each point Qi is the difference of points Ai and Bi from input objects A
and B, respectively, P can be rewritten as

P =
∑

1≤i≤k

ci(Ai − Bi) = G − H, where G =
∑

1≤i≤k

ciAi, H =
∑

1≤i≤k

ciBi.

Because P realizes the shortest distance between A and B, there must exist (not
necessarily unique) points on the boundaries of A and B such that their difference is
P. One such pair of points is G and H. Thus, by maintaining not just points Qi but Ai

and Bi a pair of closest points between A and B is directly obtained per the previous.
Note that the calculations needed to determine P on the convex hull of Q amounts
to computing the barycentric coordinates of P with respect to points Qi, and thus the
barycentric coordinates are effectively obtained for free.

In addition to the closest pair of points, it is possible to derive contact manifolds
from the simplices at the termination of the GJK algorithm for two colliding (or
near-colliding) polyhedra. See [Zhang95] and [Nagle02] for details.

9.5.4 Hill Climbing for Extreme Vertices

One of the most expensive steps of the GJK algorithm is finding an extreme vertex in a
given direction.Trivially, extreme vertices can be located in O(n) time by searching over
all n vertices. A better approach relies on having a data structure listing all adjacent
vertex neighbors for each vertex. Then an extreme vertex can be found through a
simple hill-climbing algorithm, greedily visiting more and more extreme vertices
until no vertex more extreme can be found. More specifically, from the current vertex
V neighboring vertices Vi are examined until some vertex Vj is found being more
extreme in the search direction thanV. At this point, Vj is made the current vertex and
the process repeats. Due to the convexity of the polyhedron, at the point where no
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Figure 9.12 (a) Hill climbing from V to the most extreme vertex E (in direction d) using
adjacent vertices only. (b) Accelerated hill climbing using additional (artificial adjacency)
information.

neighboring vertex is more extreme the current vertex is guaranteed to be an extreme
vertex. This approach is very efficient, as it explores only a small corridor of vertices
as it moves toward the extreme vertex.

Figure 9.12a illustrates the hill-climbing algorithm on a dodecahedron. Here, the
current vertex V has three adjacent vertices V0, V1, and V2. V0 is more extreme than
V in search direction d because (V0 − V ) · d > 0 and is thus made the new current
vertex. Three additional steps are taken in the same way (indicated by thick arrows)
until vertex E is finally reached. Because none of the neighbors of E are more extreme
than E itself, E must be the most extreme vertex in direction d, and the search stops.

For larger polyhedra, the hill climbing can be sped up by adding one or more
artificial neighbors to the adjacency list for a vertex. By linking to vertices at a greater
distance away from the current vertex (measured in the smallest number of steps
along edges between the two vertices), the hill-climbing algorithm is likely to make
faster progress toward the most extreme vertex when moving through these artificial
vertices. A simple approach is to assign artificial neighbors randomly. More intelligent
algorithms can be employed to ensure artificial neighbors are at least some distance
k away from the current vertex. To make sure the artificial neighbors are actually
considered during hill climbing, it is a good idea to list them first on the list of
neighboring vertices. Alternatively, a steepest descent rule can be employed: instead
of moving to the first neighboring vertex more extreme, all neighbors are examined
and the neighboring vertex most extreme is made the new current vertex. Figure 9.12b
illustrates the hill-climbing algorithm with the addition of two artificial neighbors to
the start vertexV and using a steepest descent rule. Now, E is reached in just two steps.
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Figure 9.13 (a) The vertex A is in a local minimum because hill climbing to either of its
neighbors B and C does not move closer to the extreme vertex E. (b) Adding an artificial
neighbor (here, D) not coplanar with the other neighbors avoids becoming stuck in the local
minimum.

However, for a polyhedron this small the amount of work is roughly the same in that
a larger number of neighbors must be examined at each step of the algorithm.

Adding artificial neighbors also addresses what is otherwise a problem for hill-
climbing-like methods; namely, coplanar faces. Figure 9.13 illustrates how hill
climbing can become stuck in a local minimum due to the presence of coplanar
faces (or, as here, edges). In Figure 9.13a, vertex A is in a local minimum in that
hill climbing to either of its neighbors B and C does not move closer to the extreme
vertex E. If moving randomly to either neighbor, the next step might move back to
A, causing infinite looping. In 2D, disallowing moving back to a previously visited
vertex can prevent such cycling, but this does not hold in 3D (in which a vertex may
end up with no remaining visitable neighbors during the search).

By adding an artificial neighbor N to each vertexV, where N is not coplanar withV
and its real neighbors, local minima can effectively be avoided during hill climbing.
Figure 9.13b shows how adding D as an artificial neighbor to A helps escape the local
minimum. Note that a hierarchical representation such as the Dobkin–Kirkpatrick
hierarchy could be used to locate an extreme vertex in logarithmic time.

9.5.5 Exploiting Coherence by Vertex Caching

The amount of effort spent hill climbing for an extreme vertex highly depends on the
choice of the starting point P. In the best case, P itself is the extreme vertex and the
search can terminate immediately. Worst case, P lies on the opposite side of where
the extreme vertex is located. Because objects tend not to move much from frame to
frame relative one another, a good choice for the initial point P would be the closest
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point to the other object as found on the previous frame. An alternative is to keep
the simplex from the previous frame. In both cases, an array or a hash table can
effectively hold this information for each pair of objects from one frame to the next.
When there is little frame-to-frame coherency, a better option might be to obtain
the vector between the object centroids, compute supporting vertices on both objects
with respect to the vector, and use these vertices as the starting points. This method
can also be useful as a first-time initialization.

9.5.6 Rotated Objects Optimization

To be able to collide two objects, they must be in the same reference frame, such
as both objects expressed in the coordinate system of the world space or one object
given in the coordinate system of the other (the latter being a cheaper option because
only one object must be transformed). However, for GJK rather than up-front trans-
forming all vertices of one object into the space of the other a better approach is
to simply transform the direction passed into the support mapping into the other
reference frame. In the former case, all n vertices of one object (preferably the one
with fewer vertices) must be transformed once. In the latter case, only a single vector
must be transformed but a vector must be transformed k times, once per iteration of
the algorithm. Generally k is much smaller than n, and thus the latter approach is
therefore much more effective. In addition, the first approach requires extra storage
to hold the transformed vertices, whereas the second alternative needs no additional
vertex storage. In both cases, after the closest points have been found two more
transformations may be needed to express these points in world space.

One scenario in which the latter approach may not be preferable is when a binary
search over time is performed to find the time t at which an object moving under
a linear translation intersects another object. The first approach still only requires n
transformations (in that a translation does not change the object’s rotation), whereas
the latter now requires km transformations, where m is the number of steps of the
binary search.

9.5.7 GJK for Moving Objects

Although the GJK algorithm is usually presented and thought of as operating on two
convex polyhedra, it is more general than this. Given two point sets, it computes
the minimum distance vector between the convex hulls of the point sets (an easy
way of seeing this is to note that the support mapping function never returns a point
interior to the hull). This is an important distinction, as it allows GJK to be used to
determine collisions between convex objects under linear translational motion in a
straightforward manner.

One approach to dealing with moving polyhedra is presented in [Xavier97]. Con-
sider two polyhedra P and Q, with movements given by the vectors t1 and t2,
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Vi Vi + t

t

Figure 9.14 For a convex polyhedron under a translational movement t, the convex hull of
the vertices Vi at the start and the vertices Vi + t at the end of motion corresponds to the
swept hull for the polyhedron.

respectively. To simplify the collision test, the problem is recast so that Q is sta-
tionary. The relative movement of P (with respect to Q) is now given by t = t1 − t2.
Let Vi be the vertices of P in its initial position. Vi + t describes the location of the
vertices of P at the end of its translational motion.

It is not difficult to see that as P moves from start to end over its range of motion
the volume swept out by P corresponds to the convex hull of the initial vertices Vi

and the final vertices Vi + t (Figure 9.14). Determining if P collides with Q during
its translational motion is therefore as simple as passing GJK the vertices of P at
both the start and end of P’s motion (in that this convex hull is what GJK effectively
computes, given these two point sets). A drawback with this solution is that doubling
the number of vertices for P increases the time to find a supporting vertex. A better
approach, which does not suffer from this problem, is to consider the movement
vector t of P with respect to d, the vector for which an extreme vertex is sought. From
the definition of the extreme vertex it is easy to see that when t is pointing away from
d, none of the vertices Vi + t can be more extreme than the vertices Vi. Thus, when
d · t ≤ 0, an extreme vertex is guaranteed to be found among the vertices Vi (Figure
9.15a). Similarly, when d · t > 0 only the vertices Vi + t need to be considered for
locating an extreme vertex (Figure 9.15b).

The second of the two presented approaches is effectively implemented by chang-
ing the support mapping function such that the motion vector is added to the vertices

Vi

t
d

(a)

Vi + t

t
d

(b)

Figure 9.15 (a) When d · t ≤ 0, the supporting vertex is found among the original vertices Vi
and the vertices Vi + t do not have to be tested. (b) Similarly, when d · t > 0 only the vertices
Vi + t have to be considered.
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during hill climbing. A drawback is that both presented methods only provide inter-
ference detection. However, interval halving can be effectively used to obtain the time
of collision. Using an interval-halving approach, the simplices from the previous iter-
ation are ideal candidates for starting the next iteration. Alternatively, the time of
collision can be obtained iteratively using a root finder such as Brent’s method, as
described in [Vlack01].

A recent method that also returns the time of collision is presented in [Bergen04].
Described is an iterative GJK-based algorithm for performing a ray cast against
a general convex object. This algorithm can trivially be used for detecting colli-
sion between two moving convex objects by forming the Minkowski sum of the
objects and casting a ray against their sum, where the ray corresponds to the relative
movement of one object with respect to the other.The time of collision is directly deter-
mined from the point along the ray at which intersection with the Minkowski sum
occurs.

9.6 The Chung–Wang Separating-vector Algorithm

The last convexity-based algorithm explored here is an algorithm given by Chung
and Wang [Chung96]. It is an original algorithm for intersection testing between
polyhedra P and Q, which is fast and simple to implement. In fact, the Chung–
Wang (CW) algorithm consists of two algorithms. The main algorithm starts from a
candidate separating vector and, in the case of nonintersection of P and Q, iteratively
updates the vector to one closer and closer to an actual separating vector. A supporting
subalgorithm detects the case in which P and Q are in collision, for which the main
algorithm would loop indefinitely.

Like the GJK algorithm, the CW algorithm operates on the vertices of the poly-
hedra. At each iteration i, the main algorithm computes the two vertices pi and qi

(pi ∈ P, qi ∈ Q) most extreme with respect to the current candidate separating-vector
si. If this pair of vertices indicates object separation along si, the algorithm exits with
no intersection. Otherwise, the algorithm computes a new candidate separating-
vector by reflecting si about the perpendicular to the line through to pi and qi. More
specifically, the main algorithm of the CW algorithm is given in the following five
steps (the notation used here follows that in [Chung96]).

1. Start with some candidate separating vector s0 and let i = 0.

2. Find extreme vertices pi of P and qi of Q such that pi ·si and qi ·−si are maximized.

3. If pi · si < qi · −si, then si is a separating axis. Exit reporting no intersection.

4. Otherwise, compute a new separating vector as si+1 = si − 2(ri · si)ri, where
ri = (qi − pi)

/∥∥qi − pi
∥∥.

5. Let i = i + 1 and go to 2.
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Figure 9.16 (a) The first iteration of the CW algorithm for polygons P and Q. (b) A separating
vector is found in the second iteration.

Figure 9.16 illustrates two steps of the main algorithm. In Figure 9.16a s0 is the initial
candidate vector for which the supporting vertices p0 and q0 are computed. These do
not indicate that s0 separates P and Q, and thus s0 is reflected in the perpendicular
r⊥
0 to the (unit) vector r0 from p0 to q0 to give a new candidate vector s1. In the

next iteration of the algorithm, illustrated in Figure 9.16b, the supporting vertices p1

and q1 now show that s1 is a separating vector and the algorithm terminates with
nonintersection for the two polyhedra.

A subalgorithm is used to terminate the CW algorithm when the polyhedra inter-
sect. It attempts to find a vector m such that m · ri ≥ 0 for 0 ≤ i ≤ k. If no such
vector can be found, the origin must lie inside the Minkowski difference of P and Q,
and the polyhedra intersect. The provided algorithm is O(k), where k is the number
of iterations performed. To reduce execution time, the subalgorithm can be executed
on every n-th iteration rather than on every iteration.

The motivation for the update rule used (in step 4) is that for two spheres it pro-
vides a separating vector in one step. A proof of convergence for this rule is given in
[Chung96]. It states that if v is any separating vector for P and Q then sk+1 ·v > sk ·v,
decreasing the angle between the candidate separating vector and the true separating
vector on each iteration and thus showing convergence. However, [Bergen99] notes
that the given proof is flawed and that it is only shown that sk+1 · v ≥ sk · v. Con-
vergence for the CW algorithm is thus not quite proven. Even so, the CW algorithm
appears to behave well in practice. By tracking the separating vector for two objects
and using it as the initial candidate vector of a subsequent test, the CW algorithm
runs in near constant time. In [Bergen99] the CW algorithm is reported twice as fast
(on average) as a separating-axis-enhanced version of GJK. Experiments reported in
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[Chung96] show that three iterations were sufficient to identify noncolliding objects
in over 95% of cases when utilizing temporal coherence for the starting vector.

9.7 Summary

Collision systems work almost exclusively with convex objects because they have
certain properties that make them highly suitable for intersection testing. One of
these properties is the existence of a separating plane (or, equivalently, a separating
axis) for two nonintersecting convex objects. Another property of convex objects is
that when the distance between two points from two different convex objects are at
a minimum they are at a global minimum. This allows closest pairs of points to be
located using simple hill-climbing techniques.

One algorithm that utilizes hill climbing is theV-Clip algorithm. It tracks a pair of
features, one from each input polytope, updating the features by walking across the
surface of the polytopes so as to decrease the distance until the closest pair of fea-
tures has been obtained. Closest-point queries on polytopes can also be accelerated
using hierarchical representations, one example of which is the Dobkin–Kirkpatrick
hierarchy.

Intersection queries on polytopes can also be answered using mathematical opti-
mization methods. If a Boolean result is sufficient, linear programming can be used
to determine the intersection status of two (or more) polytopes. However, linear
programming cannot determine the closest points between two polytopes. For this
problem, quadratic programming must be used instead.

Effectively a specialized quadratic programming method, the GJK algorithm is one
of the most efficient methods for determining intersection between two polytopes,
or in its generalized form between two arbitrary convex objects (as long as they can
be described by a support mapping function). As was shown, the GJK algorithm
also extends to handle objects moving under linear translational motion. Last, the
CW separating-vector algorithm was presented as an efficient approach to finding a
separating axis for two nonintersecting objects.



Chapter 10

GPU-assisted Collision
Detection

Today, commodity graphics processing units (GPUs) have advanced to a state in
which more raw processing power is inherent in GPUs than in main CPUs. This
development is facilitated by GPUs working in a very restricted domain, allowing
rendering tasks to be parallelized across many deeply pipelined, highly specialized
computational units. This parallelism gives an overall speed advantage to GPUs, even
though GPUs typically work at lower clock speeds than CPUs. Coupled with recent
GPU improvements, such as increased programmability of vertex and pixel shaders
and the introduction of floating-point textures, the computational power of GPUs
has generated a lot of interest in mapping nonrendering-related, general-purpose
computations — normally performed on the CPU — onto the GPU. For collision
detection, there are two primary ways in which to utilize GPUs: for fast image-space-
based intersection techniques or as a co-processor for accelerating mathematics or
geometry calculations. Image-space-based intersection techniques rely on rasterizing
the objects of a collision query into color, depth, or stencil buffers and from that
determining whether the objects are in intersection.

Image-spaced-based techniques are generally easy to implement, work on any
rasterizable primitives (including, for example, Bezier and NURBS patches), and do
not require complex collision data structures in that they operate directly on the
rendering geometry (and therefore also deal well with deformable nonstatic geome-
try). Because the testing is performed to the resolution of the buffer(s) to which the
objects are rendered, all image-space collision detection methods are approximate.
They can therefore report collision when two objects are actually separated; for exam-
ple, when two objects separated by a small distance are far away from the rendering
viewplane. They can also report no collision when objects are in fact colliding; for
example, when the objects are so small or are so far away from the viewplane that
no pixels are rasterized when rendering the objects. These issues can be largely ame-
liorated by rendering objects as close to the viewplane as possible (without incurring
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clipping) and by picking a view direction to maximize on-screen projection. As will
be discussed further on, image-spaced-based techniques also have problems with
polygons edge-on to the viewer (in that these are not rasterized).

By carefully arranging data into textures, it is also possible to perform general-
purpose computations on a GPU through programmable pixel shaders (or even
through blending operations). For example, a static triangle mesh can be repre-
sented by a number of textures, encoding the component values of the vertices and
(implicitly) the vertex-face connectivity. With an appropriate pixel shader program
it is then possible to perform a ray intersection test against all encoded triangles in
parallel. Using GPUs for general-purpose calculations is a new, highly active, area of
research at present. For example, [Carr02] and [Purcell02] describe efforts aimed at
accelerating ray-triangle intersection tests in the domain of ray tracing using GPUs.

This chapter looks at how image-spaced-based collision detection techniques can
be used to determine the intersection between both convex and concave objects.
An image-space collision-filtering algorithm is also described. Because the area of
GPU-accelerated mathematics and geometry calculations is still young, it is not
yet clear how useful or practical such techniques are for collision detection prob-
lems in general. Therefore, GPU-supported acceleration of calculations is not further
explored here.

10.1 Interfacing with the GPU

Using GPUs as computation devices — a task they were not quite designed for —
means that there are some practical issues to resolve. On the GPU input side, this
means that data must be packeted in terms of vertex streams or as textures. Such
packeting requires some care but is largely straightforward. The larger problem is
that of moving results, computed on the GPU, back to main memory. On most
current systems, reading data back from the GPU incurs a large performance penalty,
in part caused by stalls and lost parallelism due to the readback. In some cases, buffer
readbacks are unavoidable, but often algorithms can be structured to avoid these
through the use of hardware-supported occlusion queries. Even when buffer readbacks
are necessary, it is often possible through careful design to limit the amount of data
read back. The next two sections discuss buffer readbacks in more detail, elaborating
on how they can be reduced and even fully avoided.

10.1.1 Buffer Readbacks

Several algorithms have been proposed that in some fashion rely on reading back
image buffers to main memory and analyzing their content to determine collisions
(including [Boyles99] and [Dinerstein02]). For example, in OpenGL rectangular
areas of a buffer can be read back using glReadPixels(), from the buffer specified
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using glReadBuffer(). Unfortunately, reading buffers from GPU memory is usually a
very slow operation, making buffer readbacks unappealing. There are several reasons
these operations are slow. To read data back, all operations in the graphics pipeline
must be completed, and no rendering to the read area can be allowed while the read
is in progress. Effectively, the rendering pipeline stalls during the readback. In addi-
tion, because a GPU is primarily an output device bus transfer is usually optimized
for sending data to the card (not for fetching data back). Finally, once the data arrives
back in main memory the data might additionally need massaging by the driver to
match the desired format specified in the read request. If buffer readbacks are used,
it is therefore important to try to reduce both the number of readbacks issued and
the amount of data read back.

Some have suggested using histogram queries to get data back from the GPU, such
as through the OpenGL extension EXT_histogram [Boyles99]. Unfortunately, even
when available histogram extensions are unlikely to be faster than buffer readbacks,
in that they are typically implemented as buffer readbacks in the graphics card driver
and are performed on the CPU (rather than being natively hardware accelerated).

Where available, one way of reducing the data readback is to trade fill rate for
transfer bandwidth by downsampling the transfer area to quarter size using bilinear
filtering. For example, assume the purpose of the readback is to detect the presence of
white (255, 255, 255) 24-bit pixels on an otherwise black (0, 0, 0) background. After one
round of downsampling, pixels can have values of (0, 0, 0), (64, 64, 64), (128, 128, 128),
or (191, 191, 191), assuming rounding to nearest value. Any nonblack pixels indicate a
white pixel present in the original image. In this scenario, the downsampling process
can be performed four times before the ability to discern white pixels in the original
image is lost (Figure 10.1). After four rounds of downsampling it is only necessary to
read back 1/256 of the original image to main memory, thereby greatly reducing the
time required to perform the transfer. Accumulating several downsampled buffers
— concatenated into a single contiguous area — before reading data back to main
memory also allows the number of readbacks to be reduced.

(255,255,255)

(64,64,64)

(16,16,16)
(4,4,4) (1,1,1)

Figure 10.1 The presence of one or more white pixels on an otherwise black background
remains detectable after (at most) four bilinear downsampling passes of an image. Numbers
designate the RGB value of the nonblack pixel. Black pixels have an RGB value of (0,0,0).
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10.1.2 Occlusion Queries

One way of completely avoiding buffer readbacks from the GPU is to recast algorithms
to utilize the occlusion query feature available on most current commodity graphics
hardware. When enabled, the occlusion query counts the number of pixels (or, tech-
nically, samples) of a triangle (or other rendering primitives) passing the current set
of active tests (such as depth and stencil tests). Counter size varies among hardware
implementations, from 1 bit upward. Counter overflows are usually saturated to the
maximum value to ensure expected behavior.

Typical intended use for occlusion queries is for the application to render the major
occluders of a scene first. After they have been rendered, for each (complex) detail
object Oi an occlusion query is performed for a simple fully encompassing bounding
volume of Oi before Oi itself is rendered. If the occlusion query says no part of the
bounding volume is visible, Oi must be occluded and consequently can be culled
rather than being rendered. When issuing an occlusion query, writes to color, depth,
and stencil buffers are usually disabled to save processing time and to not interfere
with the query (for example, in the case of multiple back-to-back queries).

In OpenGL, for example, an occlusion query core feature is provided as of
version 1.5 [Segal03]. This feature supports a test that returns the number of sam-
ples of the occlusion-tested geometry passing stencil and depth tests. It also allows
several outstanding occlusion queries, which greatly increases the opportunity for
parallelism between CPU and GPU by minimizing stalls otherwise caused by wait-
ing for an occlusion query to finish. In earlier versions of OpenGL, occlusion
queries are supported through the vendor-specific extensions HP_occlusion_test
and NV_occlusion_query.

In addition to helping to solve visibility problems, occlusion queries are effective
for determining if two convex objects are intersecting. Such a test is explored in the
next section.

10.2 Testing Convex Objects

Several treatments have been forwarded for GPU-assisted collision detection for con-
vex objects; for example, by [Myszkowski95] and [Baciu99]. The basic idea behind
these methods is to consider each render buffer pixel as a ray, perpendicular to the
viewplane, cast toward the objects. When the ray intersects an object, the intersec-
tion can be described as an interval of first and last intersection with the ray. For a
configuration of two convex objects, looking at the possible cases of intervals along
a ray results in nine overall cases, illustrated in Figure 10.2. If any one of cases 5
through 8 occurs for a single pixel, the objects are in collision; otherwise, they are
nonintersecting.

These early accounts rely on reading back the stencil buffer to perform the test.
With modern graphics hardware, buffer readback is neither necessary nor indeed
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Figure 10.2 The nine cases in which a ray may intersect two convex objects, A and B.

desired. Instead, the test can be effectively performed on the GPU without buffer
readbacks using occlusion queries. The modified test is quite simple, performed in
two passes, with a fifty-fifty chance of early exit (with a result of nonintersection)
after the first pass.

In the first pass, object A is rendered into the depth buffer, using a depth test of
less-equal. The depth test is then changed to greater-than, depth buffer updates are
disabled, and object B is rendered with occlusion querying enabled. If the occlusion
query reports that no pixels of B are visible, B must lie fully in front of A, and the
objects cannot be in collision. Otherwise, a second pass is performed, identical to the
first, but with the roles of A and B reversed. At the start of both passes, the depth
buffer is initialized to far Z. Color buffer updates are disabled throughout the test. It
is not necessary to initialize the depth buffer on the second pass if the rendering at
the start of each pass involves only the front faces of the object and the depth test
is set to always. Similarly, the occlusion queries can be optimized by testing just the
back faces.

Figure 10.3 illustrates this occlusion query collision test. Illustration (a) shows
objects A and B, and the depth buffer initialized to far Z (as shown in gray). Drawing
(b) shows the first pass, in which object A has been rendered to the depth buffer. In
this case, a majority of the fragments of B pass the greater-than test, and thus a second
pass is performed. In the second pass, illustrated in (c), object B is first rendered into
the depth buffer. When object A is then tested, no fragments pass the greater-than
test, and the conclusion is that A and B are separated. Note that this test does not
require that objects A and B be polyhedral. They could equally well consist of, say,
curved surfaces. For correct intersection determination the objects must be convex,
however. A sample OpenGL implementation of this occlusion-based collision test is
provided in Table 10.1.
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Znear Zfar

Figure 10.3 Occlusion queries can be used to determine if (convex) objects A and B are
intersecting.

Table 10.1 Implementation of a collision test for two convex objects using OpenGL occlusion queries.

Pass Code

0

// Initialize depth buffer to far Z (1.0)
glClearDepth(1.0f);
glClear(GL_DEPTH_BUFFER_BIT);
// Disable color buffer writes
glColorMask(GL_FALSE, GL_FALSE, GL_FALSE, GL_FALSE);
// Enable depth testing
glEnable(GL_DEPTH_TEST);
// Initialize occlusion queries
Gluint query[1], numSamplesRendered;
glGenQueries(1, query);

1

// Set pixels to always write depth
glDepthFunc(GL_ALWAYS);
glDepthMask(GL_TRUE);
// Draw front faces of object A
glCullFace(GL_BACK);
RenderObject(A);
// Pass pixels if depth is greater than current depth value
glDepthFunc(GL_GREATER);
// Disable depth buffer updates
glDepthMask(GL_FALSE);
// Render back faces of B with occlusion testing enabled
glBeginQuery(GL_SAMPLES_PASSED, query[0]);
glCullFace(GL_FRONT);
RenderObject(B);
glEndQuery(GL_SAMPLES_PASSED);

(continued)
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Table 10.1 Continued.

Pass Code

// If occlusion test indicates no samples rendered, exit with no collision
glGetQueryObjectuiv(query[0], GL_QUERY_RESULT, &numSamplesRendered);
if (numSamplesRendered == 0) return NO_COLLISION;

2

// Set pixels to always write depth
glDepthFunc(GL_ALWAYS);
glDepthMask(GL_TRUE);
// Draw front faces of object B
glCullFace(GL_BACK);
RenderObject(B);
// Pass pixels if depth is greater than current depth value
glDepthFunc(GL_GREATER);
// Disable depth buffer updates
glDepthMask(GL_FALSE);
// Render back faces of A with occlusion testing enabled
glBeginQuery(GL_SAMPLES_PASSED, query[0]);
glCullFace(GL_FRONT);
RenderObject(A);
glEndQuery(GL_SAMPLES_PASSED);
// If occlusion test indicates no pixels rendered, exit with no collision
glGetQueryObjectuiv(query[0], GL_QUERY_RESULT, &numSamplesRendered);
if (numSamplesRendered == 0) return NO_COLLISION;
// Objects A and B must be intersecting
return COLLISION;

Better collision results than a simple Boolean result could be obtained through
enhanced hardware occlusion query functionality. For example, in addition to the
number of samples passed, hardware returning a screen-space bounding box and
the closest and farthest z value of samples passed during the occlusion query would
provide further information about where a collision occurs and the level of object
penetration.

It is worth noting that the presented test also serves as a conservative test for concave
objects A and B. If the test reports A and B as not intersecting, they are indeed not
intersecting (within the accuracy of the rasterized approximation). However, if the
test reports the concave objects as intersecting, they may or may not actually be
intersecting in reality. Accurately dealing with concave geometry requires a different
approach, as described in the next section.
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10.3 Testing Concave Objects

A method that avoids the false positives on concave geometry returned by the algo-
rithm of Section 10.2 is found in [Knott03a, Knott03b] and is described here. Recall
that two objects A and B (whether convex or concave) are in collision if and only if
they have a point in common. When A and B are polyhedral, they intersect if and
only if part of an edge of one object lies inside the volume of the other object. Thus,
if A and B intersect there exists a point on some edge of either object that belongs to
both objects. A ray cast from this point — in any direction, but in particular toward
the viewer — passes through the boundary of object A (or object B) an odd number
of times (effectively exiting the solid object one more time than it is entering it). This
scenario is illustrated in Figure 10.4. In (a), objects A and B are shown in perspective,
with only the edges of object B drawn. Illustration (b) shows the objects from the side,
here with four rays cast from different edges of B toward the viewer. Of the four rays,
one passes through the boundary of object A an odd number of times, indicating that
A and B must be intersecting. To ensure proper collision detection, a ray test must be
performed for all points on all edges of object B against the volume of object A. If an
intersection is not detected, the edges of object A must be tested against the volume
of object B in a second pass.

Using graphics hardware, all required ray intersection tests of one pass can be
effectively performed in parallel with the help of stencil buffer tests. Three major
steps are involved.

0. Initialize:

● Disable color buffer writes.

● Initialize depth and stencil buffers.

● Enable depth buffer testing.

A

(a) (b)

0
4
1
2

A

B B

Figure 10.4 Drawing the edges of B and then testing these against the faces of A using
the described algorithm corresponds to performing a point-in-polyhedron query for all pixels
rasterized by the edges of B, testing if any ray from a pixel toward the viewer intersects object
A an odd number of times.
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1. Render edges:

● Enable depth buffer updates.

● Set all pixels to pass always.

● Draw all edges of object B, writing their depth into the depth buffer.

2. Render faces:

● Disable depth buffer updates.

● Set pixels to pass if they are nearer than the stored depth value.

● Enable the stencil buffer test.

● Render front faces of object A. Increment stencil buffer for pixels that pass.

● Render back faces of object A. Decrement stencil buffer for pixels that pass.

After all three steps have been executed, the stencil buffer contains nonzero values
if objects A and B are in collision. A sample OpenGL implementation of this collision
test is provided in Table 10.2.

Rather than actually reading back the stencil buffer, nonzero values in the stencil
buffer can be detected using an occlusion query for the screen-space bounding box
of the smaller of the two objects. By passing query pixels that have a nonzero stencil
value, the objects are intersecting if and only if the occlusion query reports pixels
passing the stencil test.

It is important to note that the method described in this section is not without
problems and may fail in certain situations. As an example, consider the case of
Figure 10.5, in which two AABBs, A and B, are intersecting. Because those edges of A
in intersection with object B are aimed straight into the screen, they are not rasterized.
Thus, the only depth values written by A are those for the edges of the frontmost
or backmost face. In that none of these edges interpenetrate B, and because no
edges of B interpenetrate A, the result is that collision is not detected. Fortunately, in
practice this situation can be made unlikely to happen by rendering the objects using
perspective rather than orthographic projection. Although similar configurations can
be constructed for perspective projection, the odds of shapes aligning into a similar
situation in perspective projection are low. When alignment is still a concern, testing
collision from multiple viewpoints would further reduce the odds of this type of
failure.

The current test is not limited to detecting the intersection of only two objects. The
intersections of multiple objects can be tested by changing the algorithm to first render
all objects (rather than just one) in wireframe, followed by rendering all objects (rather
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Table 10.2 Implementation outline of a concave object collision test using OpenGL.

Step Code

0

// Disable color buffer writes
glColorMask(GL_FALSE, GL_FALSE, GL_FALSE, GL_FALSE);
// Clear depth and stencil buffers, initializing depth buffer to far Z (1.0)
glClearDepth(1.0f);
glClear(GL_DEPTH_BUFFER_BIT | GL_STENCIL_BUFFER_BIT);
// Enable depth buffer testing
glEnable(GL_DEPTH_TEST);

1

// Enable depth buffer updates. Set all pixels to pass always
glDepthMask(GL_TRUE);
glDepthFunc(GL_ALWAYS);
// Draw edges of object B
glPushAttrib(GL_POLYGON_BIT);
glPolygonMode(GL_FRONT_AND_BACK, GL_LINE);
DrawObject(B);
glPopAttrib();

2

// Disable depth buffer updates. Pass pixels if nearer than stored depth value
glDepthMask(GL_FALSE);
glDepthFunc(GL_LESS);
// Increment stencil buffer for object A frontfaces
glEnable(GL_STENCIL_TEST);
glStencilOp(GL_KEEP, GL_KEEP, GL_INCR);
glCullFace(GL_BACK);
DrawObject(A);
// Decrement stencil buffer for object A backfaces
glStencilOp(GL_KEEP, GL_KEEP, GL_DECR);
glCullFace(GL_FRONT);
DrawObject(A);
// Read back stencil buffer. Nonzero stencil values implies collision
...

than just one) solidly. In order to know which two objects intersect when a collision
is detected, object (and edge and face) IDs can be encoded in bits of the color buffer
during rendering of both wireframe edges and solid faces. Where nonzero stencil
buffer values indicate an object collision, the bits at the corresponding position in
the color buffer now identify the objects (and edges and faces) in collision. Due to
hardware rasterization issues, lines do not rasterize in the same way as polygons.
Specifically, the edges of a polygon, rasterized as lines, do not necessarily occupy
the same pixels at the same depths as the polygon edge pixels. Thus, when several
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Figure 10.5 Two AABBs in a configuration in which the algorithm fails to detect inter-
section, assuming orthographic projection. (a) Side view. (b) Front view.

objects are tested at once using this method edges must be offset away from the
object volume during rendering by some appropriate amount in order to avoid object
self-intersections.This test deals only with closed objects. As such, it is important that
no objects undergo clipping during rendering, as this effectively renders the objects
nonclosed.

The ray intersection parity test used here has strong similarities to the tests used
in stencil-buffer shadow volumes [Everitt02] and [Lengyel02] and CSG rendering
[Rossignac92], [Stewart02], and [Guha03]. As is the case for stencil-buffer shadow
volumes, hardware stencil buffer support is not actually required to perform the ray
intersection counting done here. For example, the equivalent of stencil operations
can be implemented using additive and subtractive blending on any one of the RGBA
channels of a color buffer [Röttger02].

If the concave objects A and B are given as CSG objects, GPU-based CSG rendering
techniques (referenced previously) can also be used to determine collision between
them. The objects are in collision if any pixels of the intersection of the two CSG trees
are rendered.

10.4 GPU-based Collision Filtering

In addition to being used as a pairwise test, the test of Section 10.2 can, with minor
changes, form the basis of a simple collision-filtering algorithm [Govindaraju03].
Recall that two objects are tested as nonintersecting if all fragments generated during
rasterization of a second object lie closer to the viewer than the values present in the
depth buffer from rendering a first object. For this case, the second object is said to
be fully visible with respect to the first object. By rasterizing several objects into the
depth buffer before the last object is tested, the test extends to multiple objects. If
the last tested object is fully visible, it follows that it is not in intersection with any of
the previous objects. The converse is not true, however. An object not in intersection
with other objects is not necessarily fully visible with respect to those objects. The
test is therefore conservative when applied to multiple objects.
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Given a set of objects, it is now straightforward to implement a collision-filtering
algorithm in terms of a number of repeated tests to see if an object from the set is
fully visible with respect to the other objects. If so, this object is discarded as not
intersecting any objects. Tests are repeated until no more objects can be discarded
in this manner. Upon exit, the remaining set of objects — the potentially colliding set
(PCS) — contains the objects that may be in collision. At this point, further pairwise
tests can determine which exact objects of the set are intersecting, if desired.

Let S = {O1, O2, . . . , On} be a set of n objects. Testing whether object Oi is fully
visible with respect to the rest of the objects, O1, O2, . . . , Oi−1, Oi+1, . . . , On, can be
performed for all objects at once, using a simple two-pass approach in which objects
are rendered and simultaneously tested for full visibility. In the first pass the objects
are rendered and tested one by one in the order O1, O2, . . . , On. The fully visible status
of each object is recorded. In the second pass, the objects are rendered and tested in
the reverse order, On, On−1, . . . , O1, and their status is again recorded. Now, for each
object Oi if Oi is found fully visible with respect to O1, O2, . . . , Oi−1 on the first pass
and fully visible with respect to On, On−1, . . . , Oi+1 on the second pass Oi is fully visible
with respect to all other objects and therefore cannot be in collision. Thus, any object
that was marked fully visible in both passes can be safely removed from the PCS.
Additionally, if all of the last r rendered objects, Or , Or+1, . . . , On, have been marked
fully visible during the first pass (or all of the last s rendered objects, Os, Os−1, . . . , O1,
during the second pass), they too can be removed from the PCS. The “fully visible”
test for object Oi during each pass can be implemented in terms of an occlusion query
as follows.

1. Disable depth buffer writes.

2. Enable depth testing, with pixels passing if their depth is greater than current
value.

3. Perform an occlusion query on object Oi.

4. Enable depth buffer writes.

5. Set depth test to less-than or equal.

6. Render object Oi.

7. Get the result from the occlusion query. If no pixels passed the test, flag object
Oi as fully visible during this pass.

These steps are repeated for all n objects. The test assumes the depth buffer is
initially set to Z-far.

In a scene with n nonintersecting objects stacked n deep, the two-pass filtering
algorithm is able to mark only the frontmost object as fully visible, leaving the remain-
ing n − 1 objects in the PCS. It thus takes n repetitions to mark all objects as fully
visible and to reduce the PCS to empty. The overall algorithm performance is there-
fore linearly dependent on the depth complexity of the scene. Because scenes rarely
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have uniform depth complexity in all directions, the problem of high depth com-
plexity can be alleviated by rendering the objects along different view directions from
pass to pass. A simple alternative is to alternate between viewing down the three
principal axes in a cyclic fashion. High depth complexity along one but not all axes is
thus effectively handled. Although problem configurations are still possible, they are
unlikely to occur in practice.

Figure 10.6 illustrates the algorithm on the set of objects S = {A, B, . . . , H}. In the
first pass of the filtering algorithm, objects are rendered in order A through H. After
the first pass, objects A, B, C, D, G, and H have been marked fully visible (Figure
10.6a). In the second pass, objects are rendered in order H through A. At the end of
the second pass, objects H, G, F, and B have been marked fully visible (Figure 10.6b).
After the first round (of two passes), objects B, G, and H have been marked fully
visible in both passes. These three objects can therefore safely be pruned from the
PCS (Figure 10.6c). If a second round of filtering is performed, object C can be culled
after the two passes. The remaining set of four objects (A, D, E, and F) cannot be
pruned further using the same view axis. However, if a horizontal view axis is used
object E can be pruned as well, ultimately leaving objects A, D, and F in the PCS (and
thus as conservatively colliding).

The filtering algorithm can be applied directly to the objects (whether convex or
concave). If the objects are of high complexity, it may be better to filter the objects
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Figure 10.6 Objects, shown in gray, are those considered fully visible in (a) the first and
(b) the second pass. (c) Objects B, G, and H are fully visible in both passes and can be pruned
from the PCS.
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on their bounding boxes first, before filtering on the objects themselves. Because
the test does not rely on closed geometry, when a set of objects has been identified
as potentially colliding the faces of the objects can be treated as individual objects.
Reapplying the algorithm on the face sets returns the set of potentially colliding faces
upon exit. Knowing these faces, exact intersection points can then be computed on
the CPU if needed.

10.5 Summary

This chapter looked at utilizing the increasing processing power of GPUs for image-
space-based intersection techniques. When the GPU is used for such purposes, it
is important to restrict the communication between GPU and CPU because reading
back data to the CPU is often slow. The main solution to overcoming this commu-
nication bottleneck relies on using hardware-supported occlusion queries to pass
information back to the CPU. The tests presented in the chapter all use these occlu-
sion queries. An alternative solution is to perform buffer readbacks of buffers that
have been reduced in size through (possibly repeated) downsampling using bilinear
filtering.

Image-space-based overlap tests for both convex and concave objects were
presented, and inherent accuracy problems with image-space-based tests were
noted. Last, a filtering method to cull a set of objects down to a small set of
potentially colliding objects was discussed. This filtering method can be applied
both as a broad-phase filtering method to the objects’ bounding volumes or as a
narrow-phase filtering method to the objects themselves.



Chapter 11

Numerical Robustness

An issue that has only had sporadic coverage so far is that of algorithm robustness.
Formal definitions of robustness are possible. As briefly discussed in Chapter 2, in this
book robustness is used simply to refer to a program’s capacity to deal with numerical
computations and geometrical configurations that are in some way difficult to handle.
A robust program does not crash or get into infinite loops because of numerical errors.
A robust algorithm returns consistent results for equivalent inputs and deals with
degenerate situations in an expected way. A robust algorithm can still fail, but it fails
gracefully, returning results consistent with the global state of the algorithm.

Collision detection code is particularly sensitive to robustness problems due to
the numerical and geometrical nature of the algorithms involved. Specifically, solid
objects simply must not pass through each other or randomly fall through the ground.
Even so, there are still many reasons seemingly random fall-through may occur in
practice.This chapter discusses the numerical origins of these problems and means of
minimizing or even fully preventing them. Some geometrical sources of robustness
problems are also discussed.

11.1 Robustness Problem Types

For the type of computations used in collision detection applications, there are
two main categories of robustness problems: those due to precision inaccuracies and
those due to degeneracies. Precision problems are caused by the fact that calculations
on a computer are not performed with exact real arithmetic but limited-precision
floating-point or integer arithmetic. Degeneracies, in short, are special-case values
or conditions occurring during execution the algorithm in question was not designed
to handle.

Often algorithms are designed under the assumptions that all computations
are performed in exact real arithmetic and that no degeneracies exist in the

427
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data operated on. Unfortunately, in reality these assumptions are wrong. First,
computations — performed predominantly using floating-point arithmetic — are
not exact, but suffer from, for example, rounding errors. Second, degenerate situa-
tions occur all the time, in many cases deliberately by design (for example, collinear
points caused by aligning architectural designs to a grid).

The presence of problems from either category can give rise to, for example,
conflicting results from different computations, outright incorrect answers, and
even algorithms crashing or getting stuck in infinite loops. Numerical imprecision
originates from several identifiable sources.

1. Conversion and representation errors. Many errors stem from decimal numbers, in
general, not being exactly representable as binary numbers, which is the typical
radix used in fixed-point or floating-point arithmetic. Irrational numbers, such as√

2, are not representable in any (integral) number base, further compounding
the problem.

2. Overflow and underflow errors. Numbers that become too large to be expressed in
the given representation give rise to overflow errors (or underflow errors when
the numbers are too small). These errors typically occur in multiplying two large
(or small) numbers or dividing a large number by a small one (or vice versa).

3. Round-off errors. Consider the multiplication operation: in multiplying two real
numbers the product c = ab requires higher precision to represent than either a or
b themselves. When the exact representation of c requires more than the n bits the
representation allows, c must be rounded or truncated to n bits and consequently
will be inexact in the last representable digit. Most operations cause round-off
errors, not just multiplication.

4. Digit-cancellation errors. Cancellation errors occur when nearly equal values are
subtracted or when a small value is added or subtracted from a large one.

5. Input errors. Errors may also stem from input data. These errors may be modeling
errors, measurement errors, or errors due to previous inexact calculations.

Issues that would never arise in working with exact arithmetic must in finite-
precision arithmetic be identified and dealt with properly. For example, the computed
intersection point of a line with a triangle may actually lie slightly outside the triangle.
Similarly, the midpoint of a line segment is unlikely to lie on the supporting line of
the segment.

Degeneracies refer to special cases that in some way require special treatment.
Degeneracies typically manifest themselves through predicate failures. A predicate
is an elementary geometric query returning one of a small number of enumer-
ated values. Failures occur when a predicate result is incorrectly computed or when
it is not correctly handled by the calling code. In geometrical algorithms, predi-
cates commonly return a result based on the sign of a polynomial expression. In
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fact, the determinant predicates given in Chapter 3 are examples of this type of
predicate. Consider, for example, the ORIENT2D(A, B, C) predicate. Recall that it
returns whether the 2D point C is to the left, to the right, or on the directed line AB.
When the three points lie on a line, the smallest errors in position for any one point
can throw the result either way. If the predicate is evaluated using floating-point arith-
metic, the predicate result is therefore likely completely unreliable. Similar robustness
problems occur for all other determinant predicates presented in Chapter 3.

Many algorithms are formulated — explicitly or implicitly — in terms of predi-
cates. When these predicates fail, the algorithm as a whole may fail, returning the
wrong result (perhaps an impossible result) or may even get stuck in an infinite loop.
Addressing degeneracy problems involves fixing the algorithms to deal gracefully
with predicates that may return the incorrect result, adjusting the input so that trou-
blesome cases do not appear or relying on extended or arbitrary precision arithmetic
to evaluate the predicate expressions exactly.

To fully understand and ultimately address robustness problems in collision
detection algorithms it is important to have a good understanding of the inherent
peculiarities and restrictions of limited-precision computer arithmetic. The remain-
der of this chapter focuses particularly on the floating-point representation of real
numbers and some measures that allow for robust usage of floating-point arithmetic.

11.2 Representing Real Numbers

Although there is an infinite number of real numbers, on a computer representa-
tions of real numbers must be finite in size. Consequently, a given representation
will not be able to represent all real numbers exactly. Those real numbers not
directly representable in the computer representation are approximated by the near-
est representable number. The real numbers that are exactly expressible are called
machine representable numbers (or just machine numbers).

When talking about computer representations of real numbers it is important to
distinguish between the precision and the accuracy with which a number is given.
Precision specifies how many digits (binary, decimal, or otherwise) there are in the
representation. Accuracy concerns correctness and is related to how many digits of
an approximation are correct. Thus, it is not unreasonable for an inaccurate value to
be given precisely. For example, at 10 significant decimal digits, 3.123456789 is quite
a precise but very inaccurate approximation (two correct digits) of π (3.14159. . .).

There are two common computer representations for real numbers: fixed-point
numbers and floating-point numbers. Fixed-point numbers allocate a set number of
digits for the integer and the fractional part of the real number. A 32-bit quantity, for
example, may hold 16 bits for both the integer and fractional parts (a so-called 16.16
fixed-point number) or hold 8 bits for the integer part and 24 bits for the fractional
part (an 8.24 fixed-point number). Given a real number r, the corresponding fixed-
point number with n bits of fraction is normally represented as the integer part of 2nr.
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0

Figure 11.1 Fixed-point numbers are equally spaced on the number line.

For example, 1/3 can be represented as the 16.16 fixed-point number 21846 (216/3) or
the 8.24 fixed-point number 5592405 (224/3). As a consequence, fixed-point numbers
are equally spaced on the number line (Figure 11.1). With fixed-point numbers there
is a trade-off between the range over which the numbers may span and the precision
with which the fractional part may be given. If numbers are known to be in a limited
range around zero, fixed-point numbers allow high fractional precision (and thus
potentially high accuracy).

In contrast, the decimal point of a floating-point number is not fixed at any given
position but is allowed to“float”as needed.The floating of the decimal point is accom-
plished by expressing numbers in a normalized format similar to scientific notation. In
scientific notation, decimal numbers are written as a number c (the coefficient), with
an absolute value in the range 1 ≤ |c| < 10 multiplied by 10 to some (signed) integer
power. For example:

8174.12 = 8.17412 · 103

−12.345 = −1.2345 · 101

0.0000724 = 7.24 · 10−5

Floating-point representations are generally not decimal but binary. Thus,
(nonzero) numbers are instead typically given in the form ±(1. f ) ∗ 2e. Here, f corre-
sponds to a number of fractional bits and e is called the exponent. For example, −8.75
would be represented as −1.00011 ∗ 23. The 1. f part is referred to as the mantissa or
significand. The f term alone is sometimes also called the fraction. For this format, the
number 0 is handled as a special case (as discussed in the next section).

Floating-point values are normalized to derive several benefits. First, each number
is guaranteed a unique representation and thus there is no confusion whether 100
should be represented as, say, 10 · 101, 1 · 102, or 0.1 · 103. Second, leading zeroes in
a number such as 0.00001 do not have to be represented, giving more precision for
small numbers. Third, as the leading bit before the fractional part is always 1, it does
not have to be stored, giving an extra bit of mantissa for free.

Unlike fixed-point numbers, for floating-point numbers the density of rep-
resentable numbers varies with the exponent, as all (normalized) numbers are
represented using the same number of mantissa bits. On the number line, the spac-
ing between representable numbers increases the farther away from zero a number
is located (Figure 11.2). Specifically, for a binary floating-point representation the
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0

Figure 11.2 Floating-point numbers are not evenly spaced on the number line. They are
denser around zero (except for a normalization gap immediately surrounding zero) and
become more and more sparse the farther from zero they are. The spacing between succes-
sive representable numbers doubles for each increase in the exponent.

number range corresponding to the exponent of k + 1 has a spacing twice that of
the number range corresponding to the exponent of k. Consequently, the density of
floating-point numbers is highest around zero. (The exception is a region immedi-
ately surrounding zero, where there is a gap. This gap is caused by the normalization
fixing the leading bit to 1, in conjunction with the fixed range for the exponent.) As
an example, for the IEEE single-precision format described in the next section there
are as many numbers between 1.0 and 2.0 as there are between 256.0 and 512.0.
There are also many more numbers between 10.0 and 11.0 than between 10000.0 and
10001.0 (1048575 and 1023, respectively).

Compared to fixed-point numbers, floating-point numbers allow a much larger
range of values to be represented at the same time good precision is maintained
for small near-zero numbers. The larger range makes floating-point numbers more
convenient to work with than fixed-point numbers. It is still possible for numbers to
become larger than can be expressed with a fixed-size exponent. When the floating-
point number becomes too large it is said to have overflowed. Similarly, when the
number becomes smaller than can be represented with a fixed-size exponent it is
said to have underflowed. Because a fixed number of bits is always reserved for the
exponent, floating-point numbers may be less precise than fixed-point numbers for
certain number ranges. Today, with the exception of some handheld game consoles
all home computers and game consoles have hardware-supported floating-point
arithmetic, with speeds matching and often exceeding that of integer and fixed-point
arithmetic.

As will be made clear in the next couple of sections, floating-point arithmetic does
not have the same properties as has arithmetic on real numbers, which can be quite
surprising to the uninitiated. To fully understand the issues associated with using
floating-point arithmetic, it is important to be familiar with the representation and
its properties. Today, virtually all platforms adhere (or nearly adhere) to the IEEE-754
floating-point standard, discussed next.

11.2.1 The IEEE-754 Floating-point Formats

The IEEE-754 standard, introduced in 1985, is today the de facto floating-point
standard. It specifies two basic binary floating-point formats: single-precision and
double-precision floating-point numbers.
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Sign (1) Exponent (8) Fraction (23)

31 30–23 22–0

Sign (1) Exponent (11) Fraction (52)

63 62–52 51–0

Figure 11.3 The IEEE-754 single-precision (top) and double-precision (bottom) floating-point
formats.

In the single-precision floating-point format, floating-point numbers are at the
binary level 32-bit entities consisting of three parts: 1 sign bit (S), 8 bits of exponent
(E), and 23 bits of fraction (F) (as illustrated in Figure 11.3). The leading bit of the
mantissa, before the fractional part, is not stored because it is always 1. This bit
is therefore referred to as the hidden or implicit bit. The exponent is also not stored
directly as is. To represent both positive and negative exponents, a bias is added to the
exponent before it is stored. For single-precision numbers this bias is +127.The stored
exponents 0 (all zeroes) and 255 (all ones) are reserved to represent special values
(discussed ahead). Therefore, the effective range for E becomes −126 ≤ E ≤ 127. All
in all, the value V of a stored IEEE-754 single-precision number is therefore

V = (−1)S ∗ (1. F) ∗ 2E−127.

The IEEE-754 double-precision format is a 64-bit format. It consists of 1 sign bit,
11 bits of exponent, and 52 bits of fraction (Figure 11.3). The exponent is given with
a bias of 1023. The value of a stored IEEE-754 double-precision number is therefore

V = (−1)S ∗ (1. F) ∗ 2E−1023.

With their 8-bit exponent, IEEE-754 single-precision numbers can represent num-
bers of absolute value in the range of approximately 10−38 to 1038. The 24-bit
significand means that these numbers have a precision of six to nine decimal dig-
its. The double-precision format can represent numbers of absolute value between
approximately 10−308 and 10308, with a precision of 15 to 17 decimal digits. Table 11.1
outlines the representation for a few single-precision floating-point numbers.

Thanks to the bias, floating-point numbers have the useful property that comparing
the bit patterns of two positive floating-point numbers as if they were two 32-bit inte-
gers will give the same Boolean result as a direct floating-point comparison. Positive
floating-point numbers can therefore be correctly sorted on their integer representa-
tion. However, when negative floating-point numbers are involved a signed integer
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Table 11.1 The integer representation (in hex), sign, exponent, and mantissa (in binary) of
some IEEE-754 single-precision floating-point numbers.

Number Bit Pattern S Exp Mantissa (Binary)

0.0f 0x00000000 0 0 (0.)000 0000 0000 0000 0000 0000
0.1f 0x3dcccccd 0 123 (1.)100 1100 1100 1100 1100 1101
0.33333333f 0x3eaaaaab 0 125 (1.)010 1010 1010 1010 1010 1011
1.0f 0x3f800000 0 127 (1.)000 0000 0000 0000 0000 0000
2.0f 0x40000000 0 128 (1.)000 0000 0000 0000 0000 0000
100.0f 0x42c80000 0 133 (1.)100 1000 0000 0000 0000 0000
1000000.0f 0x49742400 0 146 (1.)111 0100 0010 0100 0000 0000
−10.0f 0xc1200000 1 130 (1.)010 0000 0000 0000 0000 0000
machine epsilon (2−23) 0x34000000 0 104 (1.)000 0000 0000 0000 0000 0000
smallest positive (2−126) 0x00800000 0 1 (1.)000 0000 0000 0000 0000 0000

comparison would order the numbers as follows:

−0.0 < −1.0 < −2.0 < . . . < 0.0 < 1.0 < 2.0 < . . .

If desired, this problem can be overcome by inverting the integer range correspond-
ing to the negative floating-point numbers (by treating the float as an integer in some
machine-specific manner) before ordering the numbers and afterward restoring the
floating-point values through an inverse process.

Note that the number 0 cannot be directly represented by the expression V =
(−1)S ∗ (1. F)∗2E−127. In fact, certain bit strings have been set aside in the representa-
tion to correspond to specific values, such as zero. These special values are indicated
by the exponent field being 0 or 255. The possible values are determined as described
in Table 11.2.

Using the normalized numbers alone, there is a small gap around zero when
looking at the possible representable numbers on the number line. To fill this gap,
the IEEE standard includes denormalized (or subnormal) numbers, an extra range of
small numbers used to represent values smaller than the smallest possible normalized
number (Figure 11.4).

The IEEE standard also defines the special values plus infinity, minus infinity,
and not-a-number (+INF, −INF, and NaN, respectively). These values are further
discussed in Section 11.2.2. The signed zero (−0) fills a special role to allow, for
example, the correct generation of +INF or −INF when dividing by zero. The signed
zero compares equal to 0; that is −0 = +0 is true.
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Table 11.2 The values assumed by IEEE-754 single-precision floating-point numbers based
on the values of the exponent, fraction, and sign fields.

Exponent Fraction Sign Value

0 < E < 255 V = (−1)S ∗ (1. F) ∗ 2E−127

E = 0 F = 0 S = 0 V = 0
E = 0 F = 0 S = 1 V = −0
E = 0 F �= 0 V = (−1)S ∗ (0. F) ∗ 2E−126

(denormalized numbers)
E = 255 F = 0 S = 0 V = +INF
E = 255 F = 0 S = 1 V = −INF
E = 255 F �= 0 V = NaN (signaling if top fraction bit is 0,

else quiet NaN)

0

0

Figure 11.4 Denormalized (or subnormal) floating-point numbers fill in the gap immediately
surrounding zero.

An important detail about the introduction and widespread acceptance of the
IEEE standard is its strict accuracy requirements of the arithmetic operators. In short,
the standard states that the floating-point operations must produce results that are
correct in all bits. If the result is not machine representable (that is, directly representable
in the IEEE format), the result must be correctly rounded (with minimal change in
value) with respect to the currently set rounding rule to either of the two machine-
representable numbers surrounding the real number.

For rounding to be performed correctly, the standard requires that three extra bits
are used during floating-point calculations: two guard bits and one sticky bit. The two
guard bits act as two extra bits of precision, effectively making the mantissa 26 rather
than 24 bits. The sticky bit becomes set if one of the omitted bits beyond the guard
bits would become nonzero, and is used to help determine the correctly rounded
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Table 11.3 Numbers rounded to one decimal digit under the four rounding modes supported
by the IEEE-754 standard.

Number Toward Nearest Toward −Infinity Toward +Infinity Toward Zero

−1.35 −1.4 −1.4 −1.3 −1.3
−1.25 −1.2 −1.3 −1.2 −1.2

1.25 1.2 1.2 1.3 1.2
1.35 1.4 1.3 1.4 1.3

result when the guard bits alone are not sufficient. The three extra bits are used only
internally during computations and are not stored.

The standard describes four rounding modes: round toward nearest (rounding
toward the nearest representable number, breaking ties by rounding to the even
number), round toward negative infinity (always rounding down), round toward positive
infinity (always rounding up), and round toward zero (truncating, or chopping, the
extra bits). Table 11.3 presents examples of the rounding of some numbers under
these rounding modes.

The error introduced by rounding is bounded by the value known as the machine
epsilon (or unit round-off error). The machine epsilon is the smallest nonzero machine-
representable number that added to 1 does not equal 1. Specifically, if fl(x) denotes
the mapping of the real number x to the nearest floating-point representation it can
be shown that

fl(x) = x(1 + ε), |ε| ≤ u,

where u is the machine epsilon. For single precision, machine epsilon is 2−23 ≈
1.1921 · 10−7, and for double precision 2−52 ≈ 2.2204 · 10−16. These values are in C
and C++ defined as the constants FLT_EPSILON and DBL_EPSILON, respectively. They
can be found in <float.h> for C and in <climits> for C++. The machine epsilon can
be used to estimate errors in floating-point calculations.

An in-depth presentation of floating-point numbers and related issues is given
in [Goldberg91]. In the following, floating-point numbers are assumed IEEE-754
single-precision numbers unless otherwise noted.

11.2.2 Infinity Arithmetic

In addition to allowing representation of real numbers, the IEEE-754 standard
also introduces the quasi-numbers negative infinity, positive infinity, and NaN
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(not-a-number, sometimes also referred to as indeterminate or indefinite). Arithmetic
on this extended domain is referred to as infinity arithmetic. Infinity arithmetic is
noteworthy in that its use often obviates the need to test for and handle special-case
exceptions such as division-by-zero errors. Relying on infinity arithmetic does, how-
ever, mean paying careful attention to details and making sure the code does exactly
the right thing in every case.

Positive (+INF, or just INF) and negative (−INF) infinity originate either from a
calculation overflow or as a result of an expression limit. Overflow is generated when
a finite result is produced that is larger than the maximum number representable. For
example, overflow can be generated by dividing a very large number by a very small
number:

float a = 1.0e20;
float b = 1.0e-20;
float c = a / b; // gives c = +INF
float d = -a / b; // gives d = -INF

For an expression such as 1/0, the result can be made arbitrarily large by choosing a
corresponding small (positive) number as the denominator. As the expression tends
to infinity as the denominator tends to zero, the expression result is taken to be the
limit INF. Similarly, 1/INF is zero, as the result can be made arbitrarily close to zero
by choosing a sufficiently large value for the denominator. In some cases, such as for
0/0, no limit exists. In these cases, the result is indeterminate (NaN):

float a = 0.0f;
float b = a / a; // gives b = NaN (and _not_ 1.0f)

NaN is also the result of operations such as
√−1, (INF − INF), and 0 · INF. (There

are in fact several distinct NaN codes returned for these different operations, but this
is irrelevant to the discussion here.)

For comparisons, four mutually exclusive relations between IEEE-754 values are
possible: less than, equal to, greater than, and unordered. For any pair of values
exactly one of these relations is true. Both INF and −INF behave as expected with
respect to comparison operations, and thus for instance INF = INF, −INF = −INF,
−INF < INF,−INF < 0, and 0 < INF all evaluate to true. NaN,however, is considered
unordered, which means that all comparisons involving NaN evaluate to false except
for NaN �= NaN (which is true). For arithmetic operations, if one or both operands
are NaN the result will also be NaN.

The introduction of NaNs is tricky in the sense that it leads to a trichotomy problem.
Previously it could be assumed that (exactly) one of a < b, a = b, or a > b was true.
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However, the assumption that a > b implies ¬(a ≤ b) does not hold for NaNs. Using
infinity arithmetic, the statement

if (a > b) x; else y;

is not equivalent to

if (a <= b) y; else x;

NaNs can therefore slip through range checks of the type illustrated in the following
code.

// Test if val is in the range [min..max]
int NumberInRange(float val, float min, float max)
{

if (val < min || val > max) return 0;
// Here val assumed to be in [min..max] range, but could actually be NaN
...
return 1;

}

The safe way of writing this test is as follows.

// Test if val is in the range [min..max]
int NumberInRange(float val, float min, float max)
{

if (val >= min && val <= max) {
// Here val guaranteed to be in [min..max] range (and not be NaN)
...
return 1;

} else return 0;
}

As an example of how a division-by-zero check can be avoided through infinity
arithmetic, consider the problem of intersecting a segment S with a plane P, as dis-
cussed in Section 5.3.1. Let P be given by (n ·X) = d and S by the parametric equation
S(t) = A + t (B − A) for 0 ≤ t ≤ 1. The t value for intersection of the segment with
the plane is given by

t = (d − n · A)
/

(n · (B − A)),
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which when substituted for t in S(t) gives the intersection point Q as

Q = A + [(d − n · A)
/

(n · (B − A))](B − A).

If the segment is parallel to the plane, the division denominator will be zero. Under
IEEE-754 arithmetic, for a nonzero x, x/0 gives INF or −INF (depending on the sign
of x). If x is zero, the result is NaN instead. In all of these cases, the code should
correctly return nonintersection as the result. This can be accomplished by making
sure the test for t being in the range [0, 1] is performed correctly, as illustrated by the
following code.

// Test if segment AB intersects plane p. If so, return 1, along with
// the intersection t value and the intersection point Q. If not, return 0
int IntersectSegmentPlane(Point a, Point b, Plane p, float &t, Point &q)
{

// Compute t value at which the directed line ab intersects the plane
Vector ab = b - a;
t = (p.d - Dot(p.n, a)) / Dot(p.n, ab);
// If t in [0..1] compute and return intersection point
if (t >= 0.0f && t <= 1.0f) {

q = a + t * ab;
return 1;

}
// Else t is +INF, -INF, NaN, or not in [0..1], so no intersection
return 0;

}

Under the IEEE-754 standard, INF and NaN exceptions are further supported by
the concept of “sticky” exception flag bits. These global flags are set whenever an
exception occurs, and remain set until cleared. They allow for implementing robust
code by first performing a quick-and-dirty solution that does not test for overflows,
division-by-zero errors, and so on. If after the computation no sticky bits are set, the
result can be used as is. However, if one or more exceptions occurred with corre-
sponding sticky bits set then a slower but more robust version of the code is called.
Not all compilers and not all machines are fully compliant with respect to the IEEE
rules of infinity arithmetic, and thus it is important to verify the correct behavior
before relying on these features in an implementation.

11.2.3 Floating-point Error Sources

Although well defined, floating-point representations and arithmetic are inherently
inexact. A first source of error is that certain numbers are not exactly representable in
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some number bases. For example, in base 10, 1/3 is not exactly representable in a fixed
number of digits; unlike, say, 0.1. However, in a binary floating-point representation
0.1 is no longer exactly representable but is instead given by the repeating fraction
(0.0001100110011. . .)2. When this number is normalized and rounded off to 24 bits
(including the one bit that is not stored) the mantissa bit pattern ends in . . .11001101,
where the last least significant bit has been rounded up. The IEEE single-precision
representation of 0.1 is therefore slightly larger than 0.1. As virtually all current CPUs
use binary floating-point systems, the following code is thus extremely likely to print
“Greater than”rather than anything else.

float tenth = 0.1f;
if (tenth * 10.0f > 1.0f)

printf("Greater than\n");
else if (tenth * 10.0f < 1.0f)

printf("Less than\n");
else if (tenth * 10.0f == 1.0f)

printf("Equal\n");
else

printf("Huh?\n");

That some numbers are not exactly representable also means that whereas
replacing x/2.0f with x*0.5f is exact (as both 2.0 and 0.5 are exactly representable)
replacing x/10.0f with x*0.1f is not. As multiplications are generally faster than
divisions (up to about a magnitude, but the gap is closing on current architectures),
the latter replacement is still frequently and deliberately performed for reasons of
efficiency.

It is important to realize that floating-point arithmetic does not obey ordinary
arithmetic rules. For example, round-off errors may cause a small but nonzero value
added to or subtracted from a large value to have no effect. Therefore, mathematically
equivalent expressions can produce completely different results when evaluated using
floating-point arithmetic.

Consider the expression 1.5e3 + 4.5e-6. In real arithmetic, this expression corre-
sponds to 1500.0 + 0.0000045, which equals 1500.0000045. Because single-precision
floats can hold only about seven decimal digits, the result is truncated to 1500.0 and
digits are lost. Thus, in floating-point arithmetic a + b can equal a even though b is
nonzero and both a and b can be expressed exactly!

A consequence of the presence of truncation errors is that floating-point arith-
metic is not associative. In other words, (a + b) + c is not necessarily the same as
a + (b + c). Consider the following three values of a, b, and c.

float a = 9876543.0f;
float b = -9876547.0f;
float c = 3.45f;
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Inserting the values into the expressions gives

(a + b) + c = (9876543.0f + -9876547.0f) + 3.45f = -4.0f + 3.45f = -0.55f
a + (b + c) = 9876543.0f + (-9876547.0f + 3.45f) = 9876543.0f + -9876544.0f = -1.0f

illustrating the difference between the two expressions.
As a corollary, note that a compiler will not (or should not) turn x + 2.0f + 0.5f

into x + 2.5f, as this could give a completely different result. The compiler will be
able to fold floating-point constants only from the left for left-associative operators
(which most operators are). That is, turning 2.0f + 0.5f + x into 2.5f + x at com-
pile time is sound. A good coding rule is to place floating-point constants to the left of
any variables (that is, unless something else specific is intended with the operation).

Repeated rounding errors cause numbers slowly to erode from the right, from the
least significant digits. This leads to loss of precision, which can be a serious problem.
Even worse is the problem of cancellation, which can lead to significant digits being
lost at the front (left) of a number. This loss is usually the result of a single operation:
the subtraction of two subexpressions nearly equal in value (or, equivalently, the
addition of two numbers of near equal magnitude but of opposite sign).

As an example, consider computing the discriminator b2 − 4ac of a quadratic
equation for b = 3.456, a = 1.727, and c = 1.729. The exact answer is 4 · 10−6,
but single-precision evaluation gives the result as 4.82387 · 10−6, of which only the
first single digit is correct! When, as here, errors become significant due to cancella-
tion, the cancellation is referred to as catastrophic. Cancellation does not have to be
catastrophic, however. For example, consider the subtraction 1.875 − 1.625 = 0.25.
Expressed in binary it reads 1.111 − 1.101 = 0.010. Although significant digits have
been lost in the subtraction, this time it is not a problem because all three quantities
are exactly representable. In this case, the cancellation is benign.

In all, extreme care must be taken when working with floating-point arithmetic.
Even something as seemingly simple as selecting between the two expressions a(b−c)
and ab − ac is deceptively difficult. If b and c are close in magnitude, the first expres-
sion exhibits a cancellation problem. The second expression also has a cancellation
problem when ab and ac are near equal. When |a| > 1, the difference between ab and
ac increases more (compared to that between b and c) and the cancellation problem
of the second expression is reduced. However, when |a| < 1 the terms ab and ac
become smaller, amplifying the cancellation error, while at the same time the can-
cellation error in the first expression is scaled down. Selecting the best expression is
therefore contingent on knowledge about the values taken by the involved variables.
(Other factors should also be considered, such as overflow and underflow errors.)

In many cases rewriting an expression can help avoid a cancellation error.
For example, the function

f (x) = 1 − cos(x)
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suffers from cancellation errors when x is near zero. By rewriting the function as

f (x) = 2 sin2(x/2), or f (x) = sin2(x)
1 + cos x

this problem is avoided. Similarly, the function

g(x) = √
x + 1 − √

x

has a cancellation error for large x. This error is removed by rewriting the function as

g(x) = 1√
x + 1 + √

x
.

Many practical examples of avoiding errors in finite-precision calculations are
provided in [Acton96].

11.3 Robust Floating-point Usage

Despite some apparent shortcomings, floating-point arithmetic often remains the
most convenient number representation for real-time applications such as collision
detection. With some care, the floating-point use in these applications frequently can
be made robust. The most important tool for accomplishing this task is the use of
tolerances.The following sections look at how tolerances are used with floating-point
numbers and, as examples, discusses how simple intersection tests of lines against
planes and triangles are made robust using tolerances. Another important device
is to ensure consistency between related calculations by properly sharing common
subexpressions between the calculations. This approach is again exemplified in terms
of the intersection between lines and triangles.

11.3.1 Tolerance Comparisons for Floating-point Values

Working with floating-point arithmetic, it is important to be aware of the fact that
direct comparisons of floating-point values are almost always the wrong thing to
do, due to the accumulation of rounding and cancellation errors. For example, a test
such as

if (x == 0.0f) ...
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is likely to fail due to accumulated errors in x, making it perhaps very close to but
never quite equal to zero. A better approach in this case is to use a tolerance and
consider x zero when within some small range of values centered on zero. This is
done by writing the test as

if (Abs(x) <= epsilon) ...

where epsilon is a small value chosen to match the desired tolerance.This epsilon could
be as small as, say, 10−6, but could also be upward of 0.1 or larger, all depending on
the range for x and the computations performed. Comparing x against an arbitrary
value y turns the test into its generalized form:

if (Abs(x - y) <= epsilon) ... // Absolute tolerance comparison

This described use of an epsilon tolerance value to compare two floating-point
values for equality is referred to as absolute tolerance, as the epsilon value is fixed. The
drawback with an absolute tolerance test is that it is difficult to find relevant epsilon
values.The epsilon value depends on the range of values for the input data and on the
floating-point format used. It is not possible to pick one epsilon value for the entire
range of floating-point numbers. For very small (nonequal) values of x and y their
difference may always be smaller, and for large values larger, than the epsilon value.
Another way of looking at it is that as the tested numbers grow larger the absolute
test requires that more and more digits agree. When the numbers are sufficiently
larger than the fixed epsilon, the test will always fail unless the numbers are exactly
equal, which is usually not intended. An absolute tolerance should therefore only be
used when the orders of magnitude of the numbers are known in advance and the
tolerance value can be set accordingly.

An alternative solution is to use a relative tolerance. Here, the basic idea is to divide
the one number by the other and see how close the result is to 1. Assuming |x| ≤ |y|,
the test becomes

if (Abs(x / y - 1.0f) <= epsilon) ...

This expression can be written as

if (Abs((x - y) / y) <= epsilon) ...

To avoid the costly division operation and to guard against division-by-zero errors,
multiplying by Abs(y) on both sides of the latter expression simplifies it to

if (Abs(x - y) <= epsilon * Abs(y)) ...
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Removing the assumption of |x| ≤ |y| turns the expression into its final form:

if (Abs(x - y) <= epsilon * Max(Abs(x), Abs(y))) ... // Relative tolerance comparison

Note that it is important for the comparison for the relative test to be less-equal
and not less-than. Otherwise, the test fails when both numbers are exactly zero.

The relative test is also not without problems. Note that the test expression behaves
as desired when Abs(x) and Abs(y) are greater than 1, but when they are less than 1
the effective epsilon is made smaller, and the smaller the numbers get the more digits
of them are required to agree. A solution to the problems of both tests is therefore to
combine the two tests, using the relative test when the magnitudes of the numbers
are greater than 1 and the absolute test when they are smaller than 1:

if (Abs(x - y) <= epsilon * Max(Abs(x), Abs(y), 1.0f)) ... // Combined comparison

This expression can be expensive to compute if Max() is not available as a machine
instruction. An approximate expression that is cheaper to compute is

if (Abs(x - y) <= epsilon * (Abs(x) + Abs(y) + 1.0f)) ... // Combined comparison

Because the relative tests are more complex than the absolute tolerance test, an
absolute tolerance test is typically preferred whenever applicable.

The value of epsilon is often taken to be some small multiple of the machine
epsilon. By setting epsilon to the square root of the machine epsilon, the numbers
are required to agree to roughly half the number of positions available in the given
machine representation.

Although the use of tolerances is often frowned upon in theoretical computa-
tional geometry papers, in which it is somewhat derogatorily referred to as“epsilon
tweaking” and a “programming trick,” it largely remains the only feasible practical
approach to robustness for floating-point arithmetic in real-time applications. For
collision detection applications, using tolerances works well in practice. With large
enough tolerance values, error buildup can be ignored. However, using tolerances
does assume an active understanding of the problems involved and is far from an
automatic process. A good presentation of tolerances is given in [Knuth97].

It is worth noting that in using tolerances equality is no longer a transitive property.
Thus, with A equaling B and B equaling C,under a tolerance comparison this no longer
implies that A equals C. Without the transitive property, sorting (for example) breaks
down and may give different results based on the order in which elements are given.
When working with tolerances, it is therefore possible for inconsistencies to arise.
Robust code must consider and deal with such inconsistencies.
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11.3.2 Robustness Through Thick Planes

To illustrate the problems that may occur due to most real numbers not being exactly
representable as floating-point numbers, consider computing the intersection point
of two line segments AB and CD, as shown in Figure 11.5. The grid points correspond
to machine-representable numbers. Because the exact intersection point P does not
lie on the grid, it is snapped to some neighboring grid point Q, according to the active
rounding rule. Imagine CD constitutes a 2D world boundary and AB the directed
movement of a point object. Placing the point at position Q effectively moves it
outside the world, likely causing the point to fall out of the world, not detecting any
more collisions on future movements.

In 3D,a similar problem situation occurs when, for example, intersecting a segment
AB against a plane P. Due to floating-point errors, the computed intersection point is
unlikely to lie on either AB or P. Instead, it lies somewhere in the immediate vicinity
of both, as illustrated in Figure 11.6a. Because the intersection point ends up behind
the plane roughly half the time, a point object moving from A to B is again very likely
to end up falling out of the world.

An effective way of dealing with the problem of intersection points not lying on
the plane is to introduce a tolerance, treating the plane as having thickness. Let the
maximum distance a computed intersection point can deviate from P be denoted
by e. Then if the plane is treated as having a radius of r, r > e, the intersection point
— wherever it is — must lie on this thick plane and fall-through is avoided (Figure
11.6b). Determining how large e can be, so that an appropriate r can be chosen, is
not trivial and depends on many application-specific factors. A pragmatic solution is
to determine r empirically by testing intersection points against the thick plane and
increasing r until all intersection points (over the full range of input values) correctly
classify as lying on the thick plane.

Introducing thick planes also helps increase the accuracy of the intersection point
between the segment and the plane. If the segment is nearly perpendicular to the
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Figure 11.5 The intersection point P between two segments AB and CD is rarely exactly
representable using floating-point numbers. It is approximated by snapping to a nearby
machine-representable point Q.
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Figure 11.6 (a) After accounting for errors and rounding to machine-representable numbers,
the computed intersection point of the segment AB and the plane P is unlikely to lie on either
line or plane. Instead, the point could lie in, say, any of the indicated positions. (b) By treating
the plane as having a thickness, defined by a radius r, the point is guaranteed to be on the
plane as long as r > e, where e is the maximum distance by which the intersection point can
be shown to deviate from P.
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Figure 11.7 (a) Let AB be a segment nearly perpendicular to a plane P. When AB is displaced
by a small distance d, the error distance e between the two intersection points is small. (b)
As the segment becomes more parallel to the plane, the error distance e grows larger for the
same displacement d.

plane, a small displacement d in the position of the segment will correspond to
a similar size displacement e of the intersection point (Figure 11.7a). However, as
the segment becomes increasingly parallel to the plane the same displacement of
the segment causes the error in the intersection point to grow disproportionately
(Figure 11.7b). Assuming there is a fixed upper bound for the length of the seg-
ment (which holds for most practical applications), having a thick plane means that
there is also a bound on how parallel to the plane the segment can become before
actually lying in the plane. Because no intersection computation is required once
the segment lies in the plane, the thick plane consequently enforces a limit on the
displacement error for the intersection point.Thick planes allow, for example, the clip-
ping of polygons to a plane to be performed robustly, as discussed in Sections 8.3.3
and 8.3.4.



446 Chapter 11 Numerical Robustness

11.3.3 Robustness Through Sharing of Calculations

To illustrate how failure to share calculations across related computations can cause
robustness problems, consider a commonly suggested method of detecting intersec-
tion between a line (or segment) L and a triangle T. The test begins with computing
the intersection point P between L and the supporting plane ofT. Once P is obtained,
it is tested for containment in T, for example by testing if P lies on the same side of all
triangle edges when considered counterclockwise. (For efficiency, the point contain-
ment step is often performed by projectingT and P to the principal plane whereT has
the largest area. An inexpensive 2D point-triangle test then suffices for determining
containment. This step is ignored here, as it does not affect the robustness problem
discussed.)

Unfortunately, implemented using floating-point arithmetic this test is not robust.
To illustrate the problem, consider the intersection of a line L against two triangles
ABC and ADB (Figure 11.8). π1 and π2 are the supporting planes of ABC and ADB,
respectively. Let L pass infinitesimally to the left of the middle of edge AB. Because
edge AB is shared between the triangles, in real arithmetic L would intersect triangle
ABC and not triangle ADB. However, using the previous intersection test inaccuracies
caused by floating-point arithmetic may have that neither triangle is intersected by
L. To see why, consider first the intersection of L with π1, resulting in an intersection
point P1. However, floating-point errors may cause P1 to lie slightly to the right of
the edge AB and therefore outside triangle ABC. This case is shown (exaggerated)
in Figure 11.9a. Next L is intersected against plane π2, intersecting in some point
P2. Because π1 and π2 are different planes, represented by different plane equations
whose components are subject to floating-point inaccuracies, P1 and P2 are highly
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Figure 11.8 The line L is intersected against triangles ABC and ADB. Because L is passing
through the edge AB common to both triangles, the intersection test is susceptible to inaccu-
racies due to floating-point errors. A poorly implemented test may fail to detect intersection
with both triangles.
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Figure 11.9 Floating-point inaccuracies may have (a) the intersection point P1 between L and
plane π1 lie outside triangle ABC and (b) the intersection point P2 between L and π2 lie outside
triangle ADB. Thus, any test based on first computing the intersection point with the plane of
a triangle and then testing the point for containment in the triangle is inherently nonrobust.

unlikely to be the same point. It is therefore quite possible for P2 to lie to the left of
AB and thus outside triangle ADB (Figure 11.9b). Consequently, the test may fail to
detect intersection against both triangles, even though real arithmetic guarantees an
intersection.

There are two main reasons for the test failing.

1. Information is discarded. Precision is lost as P1 and P2 are computed and expressed
in machine-representable numbers.The discarded information makes the triangle
containment test unreliable.

2. Information is not shared between successive, related tests. P1 and P2 should be the
same point P, but are not, as two subtly different calculations are used for comput-
ing the intersection point. Decisions that should be consistent between the tests
— such as whether P lies to the left or right of AB — therefore will not be.

One robust method of intersecting a line against a triangle is the test presented in
Section 5.3.4, based on computing scalar triple products to determine if L lies inside
all edges of the triangle. Assuming L passes through points P and Q, the sign of the
scalar triple product [PQ PB PA] indicates on which side of edge AB the line L lies.

Floating-point errors can change the sign of the scalar triple product when it is
near zero. However, because the same expression is computed for both triangles
when testing L against AB, the sign test must indicate that L intersects either of
the triangles. In other words, the shared calculation guarantees that L intersects
one of the triangles even though it may not strictly be the same triangle given by
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exact arithmetic. Because the line can no longer pass between the triangles in the
presence of floating-point errors, the test is now robust.

It is important that the shared calculation be performed exactly the same from one
triangle to the next. That is, the edge AB cannot also be treated as the edge BA in
the neighboring triangle. Otherwise, the tested scalar triple products would involve
[PQ PB PA] and [PQ PA PB], which although identical in reals are not identical under
floating-point arithmetic.

For indexed vertices, treating shared edges as the same directed segments is easily
done by ordering the edge vertices on their indices. Nonindexed vertices are ordered
by listing the vertex with the smaller x component (then y, then z component) before
the other vertex (lexicographical ordering).

Only after L has been determined to intersect one of the triangles is the intersection
point P with the plane of that triangle computed. It is important to note that this point
may lie outside the triangle. Any subsequent processing of the point must take this
into account, which is nontrivial in itself. A solution that circumvents both problems
is to forego line and segment tests completely and instead use fat objects for testing.
This approach is discussed next.

11.3.4 Robustness of Fat Objects

As indicated in the previous, tests involving the intersection of lines and segments are
extra sensitive to floating-point issues. Points have similar problems. One solution to
the robustness problems with points, lines, and segments is to avoid them altogether
and instead only rely on tests involving fat objects. For this discussion, an object is
considered fat if it has a radius of at least r over all directions. For points, lines, and
segments their fat counterparts are spheres, (infinite) cylinders, and capsules.

As shown in the previous section, subtle errors may cause a line to pass between
the shared edge of two triangles even though the triangles correctly share the end
vertices of this edge. However, by turning the line into a cylinder or capsule even an
outright gap between the two triangles can be accommodated as long as the capsule
radius r is greater than e/2, where e is the width of the largest gap in the geometry. In
practice, r is much greater than e, dwarfing all errors due to floating-point arithmetic,
making fat tests extremely robust. Figure 11.10 illustrates the difference between
these two types of tests. A drawback with fat tests is that they are generally much
more expensive than their “thin”counterparts, in that they effectively amount to a
distance calculation rather than just an intersection test.

11.4 Interval Arithmetic

One way of tracking the error bounds of floating-point calculations is to perform
the calculations using interval arithmetic (interval analysis) [Moore66]. In interval



11.4 Interval Arithmetic 449

(a)

A

B

L

P = ?

C

D

(b)

e
r

Figure 11.10 (a) As seen in Section 11.3.3, floating-point errors can have line L pass between
triangles ABC and ADB without intersecting either. (b) By testing using fat objects, such as a
capsule, even outright gaps in the geometry can be accommodated as long as the radius r of
the fat object is greater than e/2, where e is the width of the widest gap.

arithmetic, tolerance is built into the computations themselves by specifying each
value as a range [a, b] of possible values, symbolizing some value x such that a ≤ x ≤ b.
Special operators are defined in order to perform arithmetic on these interval values,
producing new interval values as results. Some common operators are defined as
follows:

[a, b] + [c, d] = [a + c, b + d]
[a, b] − [c, d] = [a − d, b − c]
[a, b] ∗ [c, d] = [min(ac, ad, bc, bd), max(ac, ad, bc, bd)]
[a, b]/[c, d] = [a, b] ∗ [1/d, 1/c] for 0 /∈ [c, d]

[a, b]2 =
{[0, max(a2, b2)] if 0 ∈ [a, b]

[min(a2, b2), max(a2, b2)] otherwise

Unlike regular floating-point arithmetic, interval arithmetic provides bounds on
rounding errors, and an interval arithmetic computation essentially amounts to a
mathematical proof that the true value of an expression lies within the computed
bounds. These bounds can then be compared against those of other entities in order
to, for example, say with certainty that two objects are not intersecting if the bounds
are distinct.

The next section presents a few simple examples of interval arithmetic. The section
thereafter explores how interval arithmetic applies to collision detection problems.
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11.4.1 Interval Arithmetic Examples

As an example of an interval arithmetic computation, consider the evaluation of
x(6 − x) for x = [1, 3]:

x(6 − x) = [1, 3]([6, 6] − [1, 3]) = [1, 3][3, 5] = [3, 15].

In this case, the true range of the expression for the given value of x is [5, 9], which is
contained in the interval [3, 15] (as it must be). This example also illustrates the main
weakness with interval arithmetic: the resulting intervals are often much larger than
necessary. In complex nested expressions, this “error explosion” can quickly cause
intervals to become unusable. The problem, known as the dependency problem, is that
each time a variable occurs in an expression it is treated as a new variable, indepen-
dent from earlier occurrences. However, in the earlier example the subexpressions
to the multiplication, x and 6 − x, are both dependent on x. The multiplication has
no knowledge of this fact and thus the computation suffers from an unnecessary
widening of the resulting interval. For this reason, if a variable occurs more than once
in an expression the computed result may not tightly bound the true value range of
the expression.

In many cases, it is possible to avoid, or at least limit, the dependency problem by
rearranging an expression to eliminate dependencies. For example, for x = [3.0, 3.1]
the expression

f (x) = x
/

(x − 1),

evaluates as f ([3.0, 3.1]) = [3.0, 3.1]/[2.0, 2.1] = [1.4, 1.6]. The equivalent expression

f (x) = 1 + 1
/

(x − 1),

in which x only occurs once, evaluates as f ([3.0, 3.1]) = 1 + 1/[2.0, 2.1] = 1 +
[0.476, 0.5] = [1.476, 1.5], which is a tight bound. Similarly, the expressions

g(x, y) = x + y
x − y

and h(x, y) = xy
x + y

can be tightly written as

g(x, y) = 1 − 2
1 − x/y

and h(x, y) = 1
1/x − 1/y

.
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In addition, squaring a number using the special operator x2 is tight, whereas using
x ∗ x is not. Of course, rewriting an expression to remove multiple occurrences of a
variable can introduce other problems, such as susceptibility to cancellation errors
(which is not further addressed here). Overall, it is best to avoid long computation
chains because they tend to exaggerate the dependency problem.

At some computational cost, tighter intervals can be obtained by splitting the
input intervals into subintervals, evaluating the function for all subintervals and then
taking the union of the partial results as the final function result. (The idea of splitting
into subintervals is also used in the interval Newton method, a powerful method for
robustly finding the roots of a function over a given interval [Hansen92].) As an
example of how splitting into subintervals may give tighter bounds, consider again
the evaluation of x(6 − x), now for the two subintervals x = [1, 2] and x = [2, 3]. The
former interval gives

x(6 − x) = [1, 2]([6, 6] − [1, 2]) = [1, 2][4, 5] = [4, 10],

and the latter gives

x(6 − x) = [2, 3]([6, 6] − [2, 3]) = [2, 3][3, 4] = [6, 12].

The union of these two intervals is [4, 12], tighter than the [3, 15] bound obtained
for x = [1, 3].

The computer implementation of interval arithmetic using floating-point arith-
metic is straightforward. Intervals are represented as pairs of values and operations
take pairs as arguments and produce pairs as a result. The only caveat is that it is
important to round the interval bounds of all results outward to maintain the correct
answer within the bounds, in that the interval endpoints may not be machine rep-
resentable. This additional rounding, coupled with the fact that two numbers rather
than one are stored and operated on, makes software-implemented interval arith-
metic operations up to a magnitude slower than corresponding native floating-point
operations. However, interval arithmetic is parallelizable, and therefore amenable to
SIMD optimizations.

The implementation of interval arithmetic operations in IEEE-754 floating-point
arithmetic is covered in [Walster98] and [Hickey01]. Robust rounding of interval
arithmetic operations is discussed in [Abrams98].

11.4.2 Interval Arithmetic in Collision Detection

Interval arithmetic has practical applications in collision detection. For example,
consider the problem of detecting intersection between an implicit surface S and
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anAABB. Let f (x, y, z) = 0 be the implicit function defining the surface. Now evaluate
f using interval arithmetic for the AABB intervals for x, y, and z. Let [r1, r2] =
f ([x1, x2], [y1, y2], [z1, z2]) denote the interval resulting from this evaluation. Because
all points outside S have f (x, y, z) > 0, if r1 > 0, the conclusion is that the AABB and
S cannot possibly be intersecting. If the bound has been tightly computed it is also
possible to conclude that the AABB is intersecting the boundary of S if r1 ≤ 0 ≤ r2,
and lies fully inside S if r2 < 0. More concretely, consider the intersection of B, an
AABB defined by the minimum and maximum points (ax , ay, az) and (bx , by, bz) against
a sphere S given by the center point (cx , cy, cz) and the radius r. The function f (x, y, z)
then becomes

f (x, y, z) = (x − [cx , cx])2 + (y − [cy, cy])2 + (z − [cz , cz])2 − [r, r]2.

Finally, compute [r1, r2] = f ([ax , bx], [ay, by], [az , bz]). Because [ax , bx], [ay, by], and
[az , bz] only occur once, the computed bound will be tight if the n2 terms are imple-
mented optimally (that is, not as n ∗ n ). Thus, B lies outside S if r1 > 0 , intersects the
boundary of S if r1 ≤ 0 ≤ r2, and lies fully inside S if r2 < 0. For additional uses of
interval arithmetic in collision detection, see [Mitchell90], [Duff92], [Snyder93], and
[Redon02].

11.5 Exact and Semi-exact Computation

Although floating-point numbers are convenient to work with, they are quite sus-
ceptible to rounding problems, as has been illustrated. To avoid these problems,
an alternative is to forego floating-point and instead work with exact arithmetic.
Arithmetic is exact if all bits of all values are retained throughout all calculations,
thus effectively avoiding robustness problems and facilitating exact decisions. How-
ever, for arbitrary computations to be exact the arithmetic must be performed with
arbitrary precision. At best, the solution is to use an arbitrary-precision arithmetic
library, but these are too slow for real-time use.

Fortunately, it turns out that arbitrary precision is not necessary. In many
cases, computations are performed only to ultimately partake in the evalua-
tion of Boolean expressions, or predicates. Examples of such predicates include
the ORIENT2D( ), ORIENT3D( ), INCIRCLE2D( ), and INSPHERE( ) determinant
expressions of Section 3.1.6. Because the expression of a predicate is of fixed com-
plexity, it is possible to set a limit on how many bits are required to evaluate the
entire expression exactly. Thus, the involved arithmetic only needs extended (but
nor arbitrary) precision, often no more than 64 or 128 bits of precision. For cer-
tain algorithms, use of exact predicates is all that is needed. For example, convex
hulls can be computed exactly using exact ORIENT2D( ) and ORIENT3D( ) pred-
icates. Evaluating predicates exactly using extended precision arithmetic has been
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well studied in the field of computational geometry and a few reasonably efficient
implementations have been presented, including those of [Priest91], [Fortune93],
and [Shewchuk96a].

However, some applications rely on more than exact predicates. In particular,
collision detection applications typically require that intersection points be computed,
perhaps as a result of the intersection of a line segment and a plane. Representing
such an intersection point generally requires higher precision than that needed for the
endpoints of the segment or the plane equation coefficients. Further computations
with the intersection point will require still higher precision in subsequent intersection
calculations, and so on. To avoid requiring unbounded precision and to make the
computation feasible for a real-time application, it is clear that the intersection point
must be truncated or rounded in some fashion. Once this rounding takes place,
however, the computation is no longer exact!

The first of the following two sections discusses some of the issues involved in
performing exact computations using integers. The next section presents the scenario
in which a segment is intersected against a plane, and discusses how to deal with the
problem of truncating the intersection point to integer coordinates.

11.5.1 Exact Arithmetic Using Integers

As long as overflow does not take place, integer calculations using addition, subtrac-
tion, and multiplication are exact (division must be handled separately, as discussed
later). These three integer operations are also associative, unlike their floating-point
counterparts. Therefore, no special considerations are necessary to ensure, for exam-
ple, that shared edges are always treated as the same directed line segment in
intersection tests.

To avoid overflow, sufficient precision must be present in the integer type to which
the result of an operation is assigned. For addition and subtraction of two n-bit
numbers, representing the result requires n + 1 bits of precision, in general. The
multiplication of two n-bit numbers produces a result of 2n bits. For example, consider
exactly computing the dot product between two 3D vectors on a target CPU for which
the widest integer arithmetic supported is 64-bits. For the dot product result to stay
within 64 bits, the three products inside the dot product cannot exceed 62 bits, or
adding them up could cause an overflow. For the products not to exceed 62 bits, the
product terms cannot exceed 31 bits. Therefore, a 64-bit dot product will at most
support 31-bit vector components as input. If two dot products are added as part of
an expression, an additional bit disappears and the vector components can now at
most be 30 bits wide, without risking overflow. Similar reasoning applies to other
expressions.

Unless explicitly tested for, overflow will go undetected. A straightforward way
of detecting overflow is to cast the operands to a larger integer type, perform the
operation, and compare the result with the result in the lower precision. If they are
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different, overflow occurred. (With some care, single- or double-precision floats could
also be used to test for integer operation overflows.) If the type is already the largest
supported native integer type, this will not work, however. As an illustration of how
overflow can be tested for without going to a larger integer type, consider the addition
of unsigned integers a and b. The overflow of c = a + b can be detected by testing the
input arguments in the manner

bool overflow = (a > ∼b);

unsigned int c = a + b;

or by testing the result (where overflow occurs if the result is smaller than either
argument):

unsigned int c = a + b;

bool overflow = (c < a);

For signed integers a and b, the overflow test becomes a little more complicated. An
early test can be done by comparing the arguments against INT_MAX and INT_MIN
based on sign as

bool overflow = (a > 0 ? (b > INT_MAX - a) : (b < INT_MIN - a));

signed int c = a + b;

or after the addition has taken place by detecting if a and b have the same sign and the
result has opposite sign (however, note that testing after the fact relies on behavior
unspecified by the language standard with respect to overflow):

signed int c = a + b;

bool overflow = ((a ∧ b) >= 0 && (b ∧ c) < 0);

Similar overflow tests can be devised for subtraction and multiplication.
Overflow (and therefore overflow testing) can be avoided by allotting enough

bits to hold all intermediate and the final result of a calculation exactly. This often
requires implementing extended-precision operations. Extended-precision addition
and subtraction can often be efficiently implemented using native support in the CPU
of a carry flag (or similar mechanism). Assuming the widest available integer type is
32 bits, a high-level implementation of unsigned 64-bit addition may be performed
as follows.
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typedef uint32 uint64[2];

void Uadd64(uint64 x, uint64 y, uint64 res)
{

uint32 a = x[1] + y[1]; // Compute sum of higher 32 bits
uint32 b = x[0] + y[0]; // Compute sum of lower 32 bits
if (b < x[0]) a++; // Carry if low sum overflowed
res[0] = b;
res[1] = a;

}

Extended-precision multiplication of two 32-bit values resulting in a 64-bit value
can be performed as follows. Let x and y be the two 32-bit values. Write them as
x = xh216 + xl and y = yh216 + yl. Then the product xy is equivalent to

xy = (xh216 + xl)(yh216 + yl) = xhyh232 + (xhyl + xlyh)216 + xlyl.

The products xhyh, xhyl, xlyh, and xlyl are all 16 × 16 → 32-bit multiplications that
in this scenario are assumed hardware supported. The code for 32 × 32 → 64-bit
multiplication then becomes:

void Umult32to64(uint32 x, uint32 y, uint64 res)
{

uint16 xh = x >> 16, xl = x & 0xffff;
uint16 yh = y >> 16, yl = y & 0xffff;
uint32 a = xh * yh;
uint32 b = xh * yl;
uint32 c = xl * yh;
uint32 d = xl * yl;
d = d + (b << 16);
if (d < (b << 16)) a++;
d = d + (c << 16);
if (d < (c << 16)) a++;
a = a + (b >> 16) + (c >> 16);
res[0] = d;
res[1] = a;

}

Signed operations can be implemented analogously. Algorithms for implementing
extended-precision arithmetic are well described in several sources; for example, in
[Knuth97].
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The need for extended-precision arithmetic can be greatly reduced by postponing
the evaluation of expressions until absolutely needed, and then shifting the calcu-
lations to evaluate them centered on zero. As an example, consider the problem of
determining if a point P lies inside a triangle T by testing if P lies to the left (or right)
of all three triangle edges (see Section 5.3.4). The farther away from the origin P
and T lie the larger the values used in the left-of tests and the greater the chance
of the tests overflowing. Because P only lies in T if P also lies in the AABB of T, the
tests can be postponed (or avoided completely) by first testing P against the AABB
(Figure 11.11a). This early AABB test cannot cause overflows to occur because AABB
tests do not involve any arithmetic operations, only compares.

If P and T pass the AABB test, both P and T are translated into a new coordinate
system centered on the AABB of T (Figure 11.11b). Assuming the triangle is small
with respect to the coordinate space, the coordinate components of T (and therefore
of P, in that it lies inside the AABB of T) are small enough that the left-of tests can be
performed without risk of overflow.

It should be noted that a single-precision floating-point number can represent
integers in the range [−224, 224] accurately. Thus, floating-point arithmetic on integer
values is exact (for addition, subtraction, and multiplication) as long as the input
and output values lie within this range. Similarly, double-precision floating-point
numbers can represent integers in the range [−253, 253] accurately. Doubles therefore
allow the exact multiplication of 26-bit integers and can exactly compute a 3D dot
product involving 25-bit integers.

Whereas additions, subtractions, and multiplications are easy to deal with, divi-
sions remain a problem in working with integer arithmetic. Some approaches to
dealing with division are outlined in the next section. A more involved example is
presented in Section 11.5.3.

P

T

P�

T�

(a) (b)

Figure 11.11 (a) Reducing the amount of precision needed for a point-in-triangle test begins
with testing the point P against the AABB of triangle T. (b) If P passes the test, P and T are
tested for intersection in a new coordinate system centered on the AABB of T.
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11.5.2 Integer Division

When trying to perform exact computations, the presence of integer divisions poses
a serious problem. Consider yet again the problem of intersecting the line segment
S(t) = A + t (B − A), 0 ≤ t ≤ 1, against a plane P given by (n · X) = d. Solving for t
gives

t = (d − n · A)
/

(n · (B − A)) = tnom
/

tdenom.

With integer division rounding the result toward zero, naively determining if S
intersects P by direct evaluation of the expression and then verifying if 0 ≤ t ≤ 1 leads
to failure. For instance, if t evaluates to, say, –0.4 or 1.2 in the reals, then the integer
evaluation gives 0 and 1, respectively, turning nonintersections into intersections.
To correctly (exactly) determine if S intersects P requires eliminating the division.
A division-free test can be obtained by multiplying all terms in the test expression
0 ≤ t ≤ 1 by the denominator tdenom, giving:

{
0 ≤ tnom ≤ tdenom, if tdenom > 0

0 ≤ −tnom ≤ −tdenom, if tdenom < 0

(If tdenom = 0 the segment is parallel to the plane, which may be treated as nonin-
tersection, or as an intersection at t = 0 if and only if tnom = 0. That is, this is the case
when the segment lies in the plane.)

All divisions that ultimately end up in a subexpression of a test can be eliminated
in a similar fashion. For example, using cross-multiplication the test a/b > c/d can
be turned into ad > bc (possibly with a less-than test, based on the signs of the
involved variables). The latter inequality is equivalent to ad − bc > 0, which in turn
is equivalent to computing the sign of the determinant:

∣∣∣∣a c
b d

∣∣∣∣ .

An alternative to explicitly computing the sign of this determinant using extended
precision is to compute the sign using a continued fractions expansion, as suggested in
[Michelucci96]. Michelucci notes that for rational numbers 0 < a < b, 0 < c < d,
because

order
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the terms a/b and c/d compare as follows:

order
(a

b
,

c
d

)
=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
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,
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)
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Accounting for arbitrary values of a, b, c, and d, the ordering test can be
implemented as follows.

// Compare rational numbers a/b and c/d
int Order(int a, int b, int c, int d)
{

// Make c and d be nonnegative
if (c < 0) b = -b, c = -c;
if (d < 0) a = -a, d = -d;
// Handle a and/or b being negative
if (a < 0 && b < 0) {

int olda = a, oldb = b;
a = c; b = d; c = -olda; d = -oldb;

}
if (a < 0) return LESS_THAN;
if (b < 0) return GREATER_THAN;

// Make a <= b, exit if order becomes known
if (a > b) {

if (c < d) return GREATER_THAN;
int olda = a, oldb = b;
a = d; b = c; c = oldb; d = olda;

}
if (c > d) return LESS_THAN;

// Do continued fraction expansion (given that 0<=a<=b, 0<=c<=d)
while (a != 0 && c != 0) {

int m = d / c;
int n = b / a;
if (m != n) {

if (m < n) return LESS_THAN;
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if (m > n) return GREATER_THAN;
}
int olda = a, oldb = b;
a = d % c; b = c; c = oldb % olda; d = olda;

}
if (a == 0) return c == 0 ? EQUAL : LESS_THAN;
return GREATER_THAN;

}

A similar method is presented in [Avnaim95].
After eliminating all divisions present in tests, what remains is dealing with divi-

sions in constructions, such as computing the intersection point between the segment
S and the plane P. Handling these divisions is where the real problem occurs. Because
the intersection point is not exactly representable, in general, it must be rounded or
truncated to integer coordinates. The resulting point is unlikely to lie on the plane.
Instead, it will typically lie either in front of or behind the plane. If S represents
the movement of a particle from position A to position B, rounding the intersection
point to lie behind the plane effectively places the particle outside the world, likely
leading to errant behavior as the particle continues its movement from the rounded
position.

Ensuring that a construction satisfies the criteria imposed by the collision detection
system requires careful consideration and coding. An example is given in the next
section, for the case of segment-plane intersection.

11.5.3 Segment Intersection Using Integer Arithmetic

Yet again the problem of intersecting the line segment S(t) = A+ t (B−A), 0 ≤ t ≤ 1,
against the plane P given by (n · X) = d is revisited. It is assumed S represents the
linear motion of a point object O from position A to position B over a time interval
given by t. O intersects the plane at time t as

t = (d − n · A)
/

(n · (B − A)),

which substituted in S(t) gives the intersection point Q as

Q = A + [(d − n · A)(B − A)]/n · (B − A).

Assume the segment straddles the plane, with A in front of the plane and B behind
it. Because the coordinate components of Q are integers, Q is highly unlikely to lie
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on the plane due to the rounding caused by the integer division. Therefore, Q must
somehow be adjusted to guarantee that it lies on or in front of the plane.There are two
problems to address when performing the adjustment. First, the adjustment must be
large enough to ensure that the new point position lies in front of the plane. Second,
the adjustment must not move Q to cause the segment AQ to intersect some other
geometry.

To address the first problem, the following approach can be used. Assume, without
loss of generality, that A lies in front of plane P. Then, Q must be adjusted to also lie
in front of P to satisfy (n · Q) ≥ d. A simple way of achieving this goal is to round
each coordinate component of Q to maximize n · Q. That is, if nx > 0, Qx is rounded
upward, and if nx < 0, Qx is rounded downward. Specifically, let tnom = (d − n · A)
and tdenom = n · (B − A). The adjusted Qx is then given by

Qx = Ax + (tnom(Bx − Ax) + k)
/

tdenom,

where k = tdenom − 1 to round up and k = −tdenom + 1 to round down. Qy and Qz

are computed analogously. This procedure does not necessarily result in the small-
est adjustment to Q, but for collision detection the actual position of Q is of less
importance than Q lying on the correct side of plane P.

The following integer version of TestSegmentPlane() illustrates how the intersec-
tion point adjustment can be implemented. It is assumed that Point, Vector, and
Plane are defined in terms of the 32-bit integer type int32.

// Test if segment ab intersects plane p. If so, return 1, along with
// an adjusted intersection point q. If not, return 0
int TestSegmentPlane(Point a, Point b, Plane p, Point &q)
{

// Compute t value, t=tnom/tdenom, for directed segment ab intersecting plane p
Vector ab = b - a;
int64 tnom = p.d - Dot(p.n, a);
int64 tdenom = Dot(p.n, ab);
// Exit if segment is parallel to plane
if (tdenom == 0) return 0;

// Ensure denominator is positive so it can be multiplied through throughout
if (tdenom < 0) {

tnom = -tnom;
tdenom = -tdenom;

}

// If t not in [0..1], no intersection
if (tnom < 0 || tnom > tdenom) return 0;
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// Line segment is definitely intersecting plane. Compute vector d to adjust

// the computation of q, biasing the result to lie on the side of point a
Vector d(0,0,0);

int64 k = tdenom – 1;

// If a lies behind plane p, round division other way

if (tdenom > 0) k = -k;

if (p.n.x > 0) d.x = k; else if (p.n.x < 0) d.x = -k;

if (p.n.y > 0) d.y = k; else if (p.n.y < 0) d.y = -k;

if (p.n.z > 0) d.z = k; else if (p.n.z < 0) d.z = -k;

// Compute and return adjusted intersection point
q = a + (tnom * ab + d) / tdenom;
return 1;

}

Assuming the calculations for tnom and tdenom involve 64-bit operations, the input
values must not contain more than 30 bits of precision to avoid overflow. Additionally,
the computation of q must be performed using 64 × 32-bit precision multiplication
and 96/32-bit precision division.

The second problem is that after adjusting Q, Q may inadvertently end up behind
some other plane. A secondary intersection test is therefore required to determine if
segment AQ intersects any world geometry. If so, a new Q is computed, which in turn
may lie behind a third plane, and so on. Determining a Q that lies in front of m planes
— that is, which satisfies (ni · Q) ≥ di, 1 ≤ i ≤ m — is a problem that belongs to
the class of integer linear programming problems (see Section 9.4). These problems are
notoriously difificult to solve. Thus, rather than attempting to solve for Q a pragmatic
solution is simply to iterate, intersecting against one plane at a time and aborting if
no good intersection point is found within n iterations (at which point A is returned
as the intersection point).

As an example of computing the intersection point of a segment AB against
a world consisting of polygons P1 and P2, consider the situation of Figure 11.12.
Initially, AB is found straddling the supporting plane of both P1 and P2. Because
AB passes through the interior of P1 only (and not P2), AB is intersected against
P1. The unadjusted intersection point Q1 lies behind the plane of P1, but through
adjustment (per the previous) the resulting intersection point Q2 lies in front of P1.
Segment AQ2 must now be tested against the world. It is found intersecting P2, result-
ing in the unadjusted intersection point Q3, which adjusted becomes Q4. Segment
AQ4 is not found intersecting anything, and thus Q4 is returned as the intersection
point.

Overall, this integer approach is more complicated than a floating-point approach
using tolerances, explaining the more widespread use of floating-point in collision
detection applications.
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Figure 11.12 Intersecting segment AB against planes P1 and P2 (scale exaggerated).

11.6 Further Suggestions for Improving Robustness

In addition to the strategies covered in this chapter to this point, the following are
some suggestions for further improving the robustness of numerical calculations and
geometrical algorithms.

● Test critical algorithms by implementing a reference algorithm, using a different
(perhaps brute-force) method. Run the two algorithms in parallel. If they do
not agree to some k significant digits, find out why.

● Use defensive programming practices extensively. Add asserts to verify that
computed intersection points actually lie on the (thick) plane or that a
reflected velocity points away from the plane. However, beware (floating-point)
inaccuracies in the assert statement itself!

● Make sure all possible special cases are covered by a routine. For example,
most triangle-triangle intersection tests require special code to handle the two
triangles lying in the same plane. Consider also how the triangle-triangle routine
handles one or both triangles degenerating to a line segment or to a point. Pay
special attention to how boundaries of objects are tested.

● It is possible to test how susceptible a calculation is to accumulated and amplified
rounding errors by running the calculation in all rounding modes offered by the
(IEEE-754) floating-point arithmetic. If the output varies more than is expected,
the computation is unstable and should be reformulated.

● Avoid using several different formulas for computing the same value.
Differences due to accumulated errors will introduce inconsistencies when the
computed values are used as decision variables. (Compare the sharing of the
scalar triple product, described in Section 11.3.3.)
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● When working with floating-point formats, perform operations centered on the
origin to avoid wasting the extra bit of precision offered by the sign bit.The same
applies to signed integers.

11.7 Summary

Many parts of a collision detection system are sensitive to robustness issues. This
chapter has discussed the sources of these issues, focusing on the sources of floating-
point errors. To understand where the floating-point errors are coming from, it is
important to understand how real numbers are represented as floating-point num-
bers. Today, the IEEE-754 floating-point formats are ubiquitous, and they were
presented here.

The chapter further discussed how to perform robust computations using floating-
point arithmetic. Three tactics were suggested. One is to work with tolerances that
are large enough to effectively hide any error buildup. Commonly, tolerances are
seen in the use of thick planes. Another tactic is to ensure sharing of calculations,
ensuring values are not recomputed (in subtly different ways). A third tactic is to work
exclusively with fat objects, allowing errors to be safely ignored.

Interval arithmetic was introduced as a failsafe approach to maintain bounds of
the errors of computations. Last, the option of using exact arithmetic was explored.
The next chapter also deals with robustness, discussing how to remove problematic
features such as cracks and concave geometry from the input geometry before they
cause problems at runtime.
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Chapter 12

Geometrical
Robustness

Just as it is important with numerical robustness, it is important for collision geometry
on which tests are performed to be well formed. If not, the presence of small cracks
between neighboring faces could cause objects to fall through what is intended to be
solid. In fact, several geometrical features may cause problems for collision detection
code, including the following.

● Redundant vertices, edges, and faces

● Degenerate faces, including nonconvex or self-intersecting faces and faces of
zero or near-zero area

● Incorrect orientation of single-sided faces

● Unintended holes, cracks, gaps, and t-junctions between neighboring faces

● Nonplanar faces

In addition, interpenetrating faces may or may not present a problem, depending
on the type of collision approach used. Overlapping faces may sometimes also be
a problem, specifically if they have different surface properties assigned. A large list
of the errors afflicting models in computer-aided design (CAD) is given in [Gu01].
Many of the errors listed also affect geometry for collision detection.

A lot of research is available on the cleanup and repair of geometry. Most of it
is focused on boundary representations of solid models, as used in CAD (see, for
example, [Barequet97] and [Murali97]). Unfortunately, although collision geometry
is sometimes constructed as a solid model it is more frequently modeled as a mesh
or a polygon soup. Unlike CAD geometry, such geometry cannot be expected to be
either connected or manifold. That is, faces can be both disjoint and interpenetrating,
and more than two faces may share an edge. The closed meshes of CAD geometry
are not supposed to have holes, and the cleanup processing usually assumes that all
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holes must be filled in. For an arbitrary mesh, no such a priori knowledge is available,
and cracks must be distinguished from intentional holes.

There are many possible approaches to attempting to clean up arbitrary meshes.
In this chapter, some of the key steps relevant to most approaches are described,
specifically:

1. Welding of vertices

2. Fixing of cracks between neighboring faces

3. Merging co-planar faces into a single face

4. Decomposition into convex (possibly triangular) pieces

Figure 12.1 illustrates how these steps can be used to clean up a polygon soup
model. In addition, this chapter describes methods for computing and holding adja-
cency information. This chapter ends with a discussion of some simple means of
quickly detecting bad input geometry.

Cleaning up arbitrary input geometry can be quite difficult overall. An interesting
account of the practical issues of mesh cleanup is found in [Erikson95].

12.1 Vertex Welding

Frequently, collision geometry suffers from being built from polygons whose vertices
should have been joined but were not. These duplicate representations of a single
vertex cause cracks between polygons. Although often invisible to the eye, these
cracks still cause problems for collision detection systems. For example, they may
cause collision queries, such as ray tests, to pass through what was supposed to be
solid geometry. Additionally, duplicate vertices ruin the possibility of maintaining
adjacency information between neighboring faces. Duplicate vertices also take up
unnecessary space. For example, a triangle mesh with duplicate vertices may require
nearly three times as much memory for storing the vertices as the same mesh without
duplicate vertices.

Fixing the problem involves finding all pairs or sets of vertices “near”each other
and joining them into a single vertex, a process known as vertex welding (also as vertex
shifting or vertex merging). Vertices are considered near when they are within some
preset distance of each other, called the welding tolerance or the welding epsilon. The
space within the welding tolerance of a vertex is the welding neighborhood of the vertex.

Setting an appropriate welding distance is important. If the welding tolerance is
too small, not all vertices that should be welded will be welded. If the distance is
too large, vertices that should not be part of a welding operation may erroneously be
included, causing collapsing of edges or faces of the geometry. Figure 12.2 illustrates
both of these problems. User input is often required to set the welding distance, in
that automatically determining it is a difficult problem.
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1. Original polygon soup model 2. After welding vertices

3. After fixing T-junctions 4. After merging co-planar faces

5. Final model after decomposition
into convex (quadrilateral) pieces

Figure 12.1 The key steps in turning a polygon soup into a well-formed robust mesh: vertex
welding, t-junction removal, merging of co-planar faces, and decomposition into convex
pieces.

A nontrivial problem is choosing the representative point that two or more vertices
become after welding. To illustrate the issues arising, consider a number of vertices
in a line, equidistantly spaced, with each pair of vertices being within the welding
distance (Figure 12.3). Assume a process in which the set of vertices is iterated over
and each vertex is compared against previously encountered vertices for welding. If no
earlier vertex is within the welding distance, the vertex can be kept as is, but if a vertex
is found within the welding distance some possible options include the following.

1. Replacing the current vertex with the previously kept vertex

2. Replacing the previously kept vertex with the current vertex

3. Replacing both vertices with one halfway between them
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(a) (b)

Figure 12.2 The welding tolerance must be set appropriately. (a) Too small, and some vertices
that should be included in the welding operation could be missed. (b) Too large, and vertices
that should not be part of the welding operation could be erroneously included. Arrows
indicate vertices incorrectly handled during the respective welding operations.

Weld to previous vertex:

INPUT:
1 2 3 4 5 6 7 8

tolerance

1 2 3 4 5 6 7 8

Weld previous vertex to current vertex:
1 2 3 4 5 6 7 8

Average previous and current vertex:
1 2 3 4 5 6 7 8

Average all vertices as a set:
1 2 3 4 5 6 7 8

Figure 12.3 Different outcomes from alternative methods for welding a set of points mutually
within the welding tolerance distance.

As shown in Figure 12.3, these alternatives give different results. The first option is
attractive because it limits the vertex drift — the distance between a vertex’s original
and final position — to be the welding epsilon. Option 2 clearly has a worst-case
vertex drift, proportional to n, where n is the number of vertices welded. Even though
it is not illustrated here, option 3 also has a worst-case vertex drift proportional to n
(consider the effects of doubling the welding epsilon given in Figure 12.3). If there
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are no degenerate situations causing excessive vertex drift, averaging can be more
consistent with an intuitive expectation of where the representative point should be.

Sequential processing implies an order dependency. Sequential methods must
also address the issue of two or more previous vertices found within the welding
distance of the current vertex. Should welding be performed with the closest one, or
perhaps with all of them? Additionally, for all three approaches there are degenerate
situations in which, although highly unlikely, two vertices arbitrarily close to each
other may weld to two different positions.

The last issue, along with what to do when there are several previous vertices
within the welding distance, can be avoided by using a simultaneous welding model.
The simultaneous model identifies all sets of vertices such that each vertex of the set
is within the tolerance distance of one or more other vertices of the set. For each
set, all vertices within the set are averaged. This is also illustrated in Figure 12.3.
This approach is more expensive to implement than sequential welding. It too suffers
from degenerate cases (as illustrated), and thus the value of simultaneous welding is
unclear.

A problem that remains is how to locate vertices within the welding distance of
each other. A brute-force approach to vertex welding is simply to test each vertex A
against every other vertex B. Although this method is quite simple to implement, its
O(n2) complexity makes it too slow for large data sets. Fortunately, just about any
space-partitioning data structure could be used to speed up the welding operation
by, in effect, dividing the vertices into small distinct clusters so that only the vertices
of one or a few clusters would have to be tested. In fact, vertex welding can be
seen as a collision detection problem by thinking of the vertices and their welding
neighborhood as small spheres or boxes to be tested for overlap. Thus, any fast
collision method could be used for vertex welding.

A practical approach to the problem is to use the hashed uniform grid of Section
7.1.3. It is efficient, with an expected O(n) complexity, which is optimal. Technically,
its worst-case complexity is O(n2) — when all points fall within the same grid cell,
but no welding takes place — but this worst-case scenario does not occur in practice.
It is also an on-line algorithm, and thus vertices can be welded as they are added,
instead of requiring all vertices to be present from the start.

The welding method employed in the following is a sequential processing of the
vertices, welding the current vertex against previous vertices. The idea is to add ver-
tices one at a time into the hashed grid. A test is then performed against grid cells
that fall within the welding neighborhood of the current vertex V. If one of the cells
contains some vertex W thatV is within the welding distance of, W is returned as the
welded vertex. If not,V is added to the grid cell it maps to, and V itself is returned as
the welded vertex.

There are two key things to note. First, in order to limit the number of cells that
must be tested CELL_SIZE should at least be larger than 2 * WELD_EPSILON. Then
the square welding neighborhood around V can at most overlap four neighboring
grid cells (in 2D, eight cells for the cubic welding neighborhood in 3D). In prac-
tice, CELL_SIZE is usually selected to be a factor or two larger than the welding
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B

A

Figure 12.4 Only the grid cells intersected by the tolerance neighborhood of a vertex (here
shown in gray) must be tested against during vertex welding. For vertex A this results in just
one cell tested. For vertex B, two cells must be examined.

neighborhood. Because only the grid cells overlapped by the tolerance region sur-
roundingV have to be examined, on average only the content of a single cell must be
tested! Figure 12.4 illustrates how the approach works for two sample vertices.

Second, under the hash mapping two or more cell neighborhoods of vertices may
map to the same hash bucket. This does not have any adverse effect on the method,
in that a distance test is performed for all vertices within a tested cell. At worst, this
results in a few extra vertices being tested during the welding test against the content
of that hash bucket. The following is a sample 2D implementation of the hashed grid
solution. First are some necessary constant values.

#define MAX_VERTICES 100000 // max number of vertices that can be welded at once
#define NUM_BUCKETS 128 // number of hash buckets to map grid cells into
#define CELL_SIZE 10.0f // grid cell size; must be at least 2*WELD_EPSILON
#define WELD_EPSILON 0.5f // radius around vertex defining welding neighborhood

// Maps unbounded grid cell coordinates (x, y) into an index
// into a fixed-size array of hash buckets
unsigned int GetGridCellBucket(int x, int y)
{

const unsigned int magic1 = 0x8da6b343; // Large multiplicative constants;
const unsigned int magic2 = 0xd8163841; // here arbitrarily chosen primes
unsigned int index = magic1 * x + magic2 * y;
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// Bring index into [0, NUM_BUCKETS) range
return index % NUM_BUCKETS;

}

The linked lists of vertices, one for each hash bucket, are implemented using three
arrays. first holds the index of the first vertex in the bucket, vertex contains the
vertices themselves, and next contains the index of the next vertex in the bucket.

int first[NUM_BUCKETS]; // start of linked list for each bucket
int next[MAX_VERTICES]; // links each vertex to next in linked list
Point vertex[MAX_VERTICES]; // unique vertices within tolerance
int numVertices; // number of unique vertices currently stored

For a given hash bucket index bucket and a vertex v, LocateVertexInBucket()
returns whether there was a vertex within WELD_EPSILON of v, and if so returns that
vertex in weldVertex.

int LocateVertexInBucket(Point v, unsigned int bucket, Point **weldVertex)
{

// Scan through linked list of vertices at this bucket
for (int index = first[bucket]; index >= 0; index = next[index]) {

// Weld this vertex to existing vertex if within given distance tolerance
if (SqDistPointPoint(vertex[index], v) < WELD_EPSILON * WELD_EPSILON) {

*weldVertex = &vertex[index];
return 1;

}
}

// No vertex found to weld to. Return v itself
*weldVertex = &v;
return 0;

}

When no vertex is found within the welding tolerance distance, v is added to a
given bucket by linking it in at the head of the bucket list.

void AddVertexToBucket(Point v, unsigned int bucket)
{

// Fill next available vertex buffer entry and link it into vertex list
vertex[numVertices] = v;
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next[numVertices] = first[bucket];
first[bucket] = numVertices++;

}

When working with floating-point values, for large coordinates the addition of
a small epsilon leaves the coordinate unchanged (see Chapter 11). In this case, the
code would not correctly test against neighboring cells. Therefore, for the code to be
robust it is important to make sure WELD_EPSILON is large enough for the coordinate
values used. (A pragmatic solution is to add asserts to the code to detect this problem
occuring. Should the assert trigger, the epsilon value is increased until the problem
goes away.) The welding code is implemented by the following routine.

Point *WeldVertex(Point *v)
{

// Make sure epsilon is not too small for the coordinates used!
assert(v->x - WELD_EPSILON != v->x && v->x + WELD_EPSILON != v->x);
assert(v->y - WELD_EPSILON != v->y && v->y + WELD_EPSILON != v->y);

// Compute cell coordinates of bounding box of vertex epsilon neighborhood
int top = int((v->y - WELD_EPSILON) / CELL_SIZE);
int left = int((v->x - WELD_EPSILON) / CELL_SIZE);
int right = int((v->x + WELD_EPSILON) / CELL_SIZE);
int bottom = int((v->y + WELD_EPSILON) / CELL_SIZE);

// To lessen effects of worst-case behavior, track previously tested buckets
unsigned int prevBucket[4]; // 4 in 2D, 8 in 3D
int numPrevBuckets = 0;

// Loop over all overlapped cells and test against their buckets
for (int i = left; i <= right; i++) {

for (int j = top; j <= bottom; j++) {
unsigned int bucket = GetGridCellBucket(i, j);
// If this bucket already tested, don’t test it again
for (int k = 0; k < numPrevBuckets; k++)

if (bucket == prevBucket[k]) goto skipcell;
// Add this bucket to visited list, then test against its contents
prevBucket[numPrevBuckets++] = bucket;
Point *weldVertex;
// Call function to step through linked list of bucket, testing
// if v is within the epsilon of one of the vertices in the bucket
if (LocateVertexInBucket(*v, bucket, &weldVertex)) return weldVertex;
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skipcell: ;
}

}

// Couldn’t locate vertex, so add it to grid, then return vertex itself
int x = int(v->x / CELL_SIZE);
int y = int(v->y / CELL_SIZE);
AddVertexToBucket(*v, GetGridCellBucket(x, y));
return v;

}

The WeldVertex() function can now be called repeatedly for all vertices subject to
welding.

void WeldVertices(Point v[], int n)
{

// Initialize the hash table of linked vertex lists
for (int k = 0; k < NUM_BUCKETS; k++)

first[k] = -1;
numVertices = 0;

// Loop over all vertices, doing something with the welded vertex
for (int i = 0; i < n; i++) {

Point *pVert = WeldVertex(&v[i]);
if (pVert != &v[i])

...report v[i] was welded to pVert...
}

}

After all vertices have been processed, the first numVertices entries of the vertex
array contain all unique vertices. This makes it easy to, for example, output them to
a data file.

fwrite(&numVertices, sizeof(numVertices), 1, stream); // Output number of verts
fwrite(&vertex[0], sizeof(Point), numVertices, stream); // Output verts themselves

Looping over all faces and welding the vertices of these faces automatically
removes any unused vertices, in that only the vertices referenced by a face are being
welded.

A less sophisticated welding method than the one just described is to sort all
vertices (xi, yi, zi) on the absolute component value sum, |xi| + ∣∣yi

∣∣ + |zi|. Given the



474 Chapter 12 Geometrical Robustness

sortedvertices, a vertex Vi isweldedby comparing it against the immediately following
vertices Vj, i < j, for as long as

(∣∣xj
∣∣ + ∣∣yj

∣∣ + ∣∣zj
∣∣) − (|xi| + ∣∣yi

∣∣ + |zi|
) ≤ 3ε,

where ε is the weld epsilon. Although simple to implement, this is an off-line rather
than on-line method, and thus all vertices must be welded in one go. It also has
degenerate behavior when vertices are aligned to a regular grid, as all vertices on the
diagonal lines |xi| + ∣∣yi

∣∣ + |zi| = k (for all k) map to the same sum.
If nontriangulated geometry is welded, it is important to remember that the result-

ing geometry will likely contain nonplanar or nonconvex faces as well as collinear
vertices. Nonconforming faces can be triangulated and made convex in a subsequent
pass using the methods described in Section 12.5.

In general, after a pass of vertex welding no two vertices should be closer to each
other than the distance used as the welding tolerance. This serves as a practical test
for debugging a vertex welding system.

12.2 Computing Adjacency Information

For cleaning up model geometry — including the elimination of cracks and the merg-
ing of co-planar faces — it is important to have adjacency information describing
how the faces, edges, and vertices of the model connect. Such adjacency information
may not be available. Worst case, the data is just a polygon soup of individual faces.
In this case, the adjacency information has to be computed.

A common geometry representation is the face table representation in which a table
of faces (usually triangles, but sometimes quads) indexes into a table of vertices. Figure
12.5 presents a small example of a face table. The face/vertex table representation is
fairly compact and allows any mesh to be represented.

V3
V5

V1 V4

V2 V6

F1 F2

F3

F4

Face

F1

F2

F3

F4

Vertices (ccw)

(V1,V2,V3)

(V2,V4,V3)

(V3,V4,V5)

(V4,V2,V6)

Vertex

V1

V2

V3

V4

V5

V6

Coordinates

(x1,y1,z1)

(x2,y2,z2)

(x3,y3,z3)

(x4,y4,z4)

(x5,y5,z5)

(x6,y6,z6)

Figure 12.5 The face and vertex tables for a simple mesh.
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V3
V5

V1 V4

V2 V6

F1 F2

F3

F4

V2,V3

E2,E7,E8,E1,E4,E5

F1,F2

E1

E2

E3

E4

E5

E6

E7

E8

E9

V3,V2,V4

E3,E7,E4

F1,F4,F3

V2,V6,V5,V3

E7,E9,E6,E4

F4,F3,F2

Figure 12.6 Adjacency information associated with each vertex, edge, and face facilitates
instantaneous access to their adjacent vertices, edges, and faces.

Although it is possible to work directly on this basic representation, doing so would
not be very efficient.To efficiently clean up the mesh geometry, removing degeneracies
and other things that could cause problems for collision detection code, additional
adjacency information must be computed.

Having full adjacency information allows retrieval of all adjacent vertices, edges,
and faces of a given vertex, edge, or face in constant O(1) time. Full adjacency
information for some features of the mesh from the earlier example is provided in
Figure 12.6.

However, storing a full set of adjacency information for every feature of a mesh
is prohibitive in terms of memory requirements. A good compromise between fast
adjacency queries and minimal storage is to store only some adjacency information,
enough to allow other needed adjacency information to be derived in a fixed amount
of time.

Several data structures, primarily for manifold solid models, have been suggested
for storing partial adjacency information. The winged-edge [Baumgart75], half-edge
[Mäntylä88], and winged-triangle [Paoluzzi89] data structures are examples of such
representations (Figure 12.7).

The winged-edge and half-edge data structures are“edge-based.”In the winged-
edge representation, references to the vertices of the edge, the two faces connected
to the edge, and the next and previous edges for both connected faces are stored
for each edge. In the half-edge representation, each edge is treated as consisting of
two half-edges: directed edges between the same two vertices, pointing in opposite
directions. Each half-edge holds references to its“twin”half-edge, the face the half-
edge is part of, the next half-edge of that face in counterclockwise order, and the vertex
the half-edge originates from. In both schemes, vertices and faces have references to
an incident (half-)edge.
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(a)

E11
E12

E22E21

F1

F2

V1

E

V2

F

E

HT

V
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H

T2

V1

V2

V3

T1

T3

T

(b) (c)

Figure 12.7 Data associated with (a) the winged-edge E, (b) the half-edge H, and (c) the
winged-triangle T.

The winged-triangle data structure is “face-based.” Each triangle references the
vertices defining the triangle, as well as the three triangles sharing its edges.Vertices
have a reference to an incident triangle. Edges are not explicitly stored in the winged-
triangle representation. The definitions of these three data structures are as follows.

// Basic representation of an edge in the winged-edge representation
struct WingedEdge {

Vertex *v1, *v2; // The two vertices of the represented edge (E)
Face *f1, f2; // The two faces connected to the edge
Edge *e11, *e12, *e21, *e22; // The next edges CW and CCW for each face

};

// Basic representation of a half-edge in the half-edge representation
struct HalfEdge {

HalfEdge *ht; // The matching “twin” half-edge of the opposing face
HalfEdge *hn; // The next half-edge counter clockwise
Face *f; // The face connected to this half-edge
Vertex *v; // The vertex constituting the origin of this half-edge

};

// Basic representation of a triangle in the winged-triangle representation
struct WingedTriangle {

Vertex *v1, *v2, *v3; // The 3 vertices defining this triangle
WingedTriangle *t1, *t2, *t3; // The 3 triangles this triangle connects to

// Fields specifying to which edge (0-2) of these triangles the connection
// is made are not strictly required, but they improve performance and can
// be stored “for free” inside the triangle pointers
int edge1:2, edge2:2, edge3:2;

};
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Another popular representation is the quad-edge data structure. See [Guibas85] for
details.

Data structures designed for nonmanifold geometry have also been suggested,
such as the radial-edge [Weiler88] and star-edge [Karasick89] representations. How-
ever, because nonmanifold geometry may have any number of faces connected
to an edge such data structures are more complicated than those for manifold
geometry.

To fill in an adjacency structure when the original data is given as face and vertex
tables, adjacency information must first be derived from the face and vertex tables. A
naive approach is to compare each face against every other face and write adjacency
information when two faces are found to share vertices. However, with an O(n2) time
complexity this approach can handle only moderate-size meshes. The following two
sections show how adjacency information can be computed in O(n) time, which is
asymptotically optimal for the problem. The immediately following section describes
how to build a table for finding all faces incident to a given vertex. Section 12.2.2
shows how to compute an edge table, for looking up all faces sharing a given edge.The
same principles used in both sections can be applied to any similar table computation,
such as looking up all edges incident to a given vertex.

12.2.1 Computing a Vertex-to-Face Table

When a face/vertex table is given as input, the vertices of a given face can be imme-
diately located. However, locating the faces a given vertex is part of would require
an O(n) pass over all faces. To make this operation equally fast, a reverse table can
be computed: a table that for each vertex allows the immediate location of all faces
incident to the vertex. To simplify the presentation, it is here assumed that all faces
are triangles. The basic approach, however, is easily adapted to deal with arbitrary
faces. Given as input is a number of triangles, numTris, contained in a face table (an
array of type Triangle).

int numTris; // The number of triangles
Triangle *tri; // Pointer to face table array containing all the triangles

The Triangle structure is defined as:

struct Triangle {
int vertexIndex[3]; // Indices into vertex table array

};

Because each vertex might be part of a large number of triangles, the reverse vertex
table must maintain a dynamic, growable data structure associated with each vertex.
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Here, a linked list of indices into the triangle array is maintained for each vertex in
the data set. The element in the linked list is defined as such.

//Linked-list element to keep track of all triangles a vertex is part of
struct TriList {

int triIndex; // Index to some triangle the vertex is part of
TriList *pNext; // Pointer to the next triangle in the linked list

};

The maximum number of vertices, MAX_VERTICES, is at most three times the number
of triangles. An array, triListHead, of many list-element pointers is allocated to hold
the pointer to the head of each list. A second array, triListEntry, of equally many
elements is reserved as a pool to allocate a list element from each time a triangle is
associated with a given vertex list.

// If all vertices are unique, there are at most 3 * MAX_TRIANGLES vertices
const int MAX_VERTICES = 3 * MAX_TRIANGLES;

TriList *triListHead[MAX_VERTICES]; // The head of the list maintained for each vertex
TriList triListEntry[MAX_VERTICES]; // Entries of the linked list

Given these structures, the main code can now loop over all triangles and insert
an index to the triangle into the linked list for each vertex of the triangle.

// Reset the list of triangles associated with each vertex
for (int i = 0; i < MAX_VERTICES; i++) triListHead[i] = NULL;
// Reset the triangle list entry counter
int cnt = 0;
// Loop over all triangles and all three of their vertices
for (int i = 0; i < numTris; i++) {

for (int j = 0; j < 3; j++) {
// Get the vertex index number
int vi = tri[i].vertexIndex[j];
// Fill in a new triangle entry for this vertex
triListEntry[cnt].triIndex = i;
// Link new entry first in list and bump triangle entry counter
triListEntry[cnt].pNext = triListHead[vi];
triListHead[vi] = &triListEntry[cnt++];

}
}
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All triangles sharing a vertex specified by the index i can now be accessed as in
the following code.

for (TriList *pEntry = triListHead[i]; pEntry; pEntry = pEntry->pNext) {
/* do something with triangle tri[pEntry->triIndex] here */

}

A reverse vertex table of this type is often practical to have. One possible use is for
determining the neighboring triangles of a triangle T by computing the union of the
lists associated with the three vertices of T. However, for this particular application a
more efficient approach is to compute a table that directly associates with an edge the
faces connected to the edge. Then, given a triangle the neighboring triangles could
be immediately located by looking up the connected faces through the edge table.
The next section illustrates how to compute this type of table.

12.2.2 Computing an Edge-to-Face Table

As before, the input is assumed to be a face table indexing into a vertex table. This
time, the problem is to compute a table that associates an edge with the faces con-
nected to the edge. Again, to simplify the presentation the faces are assumed to
be triangles. Another simplifying assumption made here is that the input mesh is a
(bounded) manifold. Thus, no edge will be connected to more than two triangles.
Both assumptions can be lifted without much further work.

Because triangles, and faces in general, are given with their vertices in a consistent
ordering (conventionally counterclockwise when viewed face-on), an edge from some
vertex A to another vertex B that is part of two triangles will occur both as (A, B) for
one triangle and (B, A) for the other triangle. To view both (A, B) and (B, A) as the
same edge, it is necessary to enforce an ordering of A and B. Because the vertices
are indices, the representative edge can simply be chosen to be the one that lists the
vertex with the smaller index value first; that is, the edge (min(A, B), max(B, A)).

In a case in which vertices are given as a triplet of coordinates instead of an index,
the vertices can still be consistently ordered by ordering the one with the smallest
x, then y, then z component first. This is the lexicographic ordering of the vertices as
implemented by the following code.

// Compare vertices lexicographically and return index (0 or 1) corresponding
// to which vertex is smaller. If equal, consider v0 as the smaller vertex
int SmallerVertex(Vertex v0, Vertex v1)
{

if (v0.x != v1.x) return v1.x > v0.x;
if (v0.y != v1.y) return v1.y > v0.y;
return v1.z > v0.z;

}
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Because edges are represented as a pair of vertex indices and this pair must be
used to index into a table, an open hash table (see Chapter 6) is employed instead
of a straight array. The hash key is computed from the two vertex indices. With
each key is associated a data block, containing the two vertex indices and the two
triangle edges the edge is connected to. This data block is realized by the following
structure.

struct EdgeEntry {
int vertexIndex[2]; // The two vertices this edge connects to
int triangleIndex[2]; // The two triangles this edge connects to
int edgeNumber[2]; // Which edge of that triangle this triangle connects to
EdgeEntry *pNext; // Pointer to the next edge in the current hash bucket

};

Assuming all edges are unique, the maximum number of edges, MAX_EDGES, is
at most three times the number of triangles. The array edgeListHead is defined to
contain that many list-element pointers, corresponding to the pointers to the head
of each edge list. The hash key indexes into this array of list pointers. Again a second
array, edgeListEntry, of equally many elements is allocated as a pool, this time from
which to grab a list element each time a triangle is associated with a given edge list.

// If all edges are unique, there are at most 3 * MAX_TRIANGLES edges
const int MAX_EDGES = 3 * MAX_TRIANGLES;

// Hash table over edges, with a linked list for each hash bucket
EdgeEntry *edgeListHead[MAX_EDGES];
EdgeEntry edgeListEntry[MAX_EDGES]; // Entries of the linked list

To build the edge table, the main code loops over all triangles and all edges of
each triangle. If the edge does not already exist in the linked list of the computed
hash bucket, a new edge entry is linked into the bucket, specifying the triangle
from which the edge was taken, and the two endpoint vertices of the edge. If
the edge already exists in the hash bucket list, it has already been seen once and
thus the second triangle entry can be filled in with the index of the current trian-
gle. Here, it is assumed the function ComputeHashKey() implements the function
computing a hash key value that maps into the edgeListHead array. The main code
follows.

// Reset the hash table
for (int i = 0; i < MAX_EDGES; i++) {
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edgeListHead[i] = NULL;
}
// Reset the edge list entry counter
int cnt = 0;
// Loop over all triangles and their three edges
for (int i = 0; i < numTris; i++) {

for (int j = 2, k = 0; k < 2; j = k, k++) {
// Get the vertex indices
int vj = tri[i].vertexIndex[j];
int vk = tri[i].vertexIndex[k];
// Treat edges (vj, vk) and (vk, vj) as equal by
// flipping the indices so vj <= vk (if necessary)
if (vj > vk) Swap(vj, vk);
// Form a hash key from the pair (vj, vk) in range 0 <= x < MAX_EDGES
int hashKey = ComputeHashKey(vj, vk);
// Check linked list to see if edge already present
for (EdgeEntry *pEdge = edgeListHead[hashKey]; ; pEdge = Edge->pNext) {

// Edge is not in the list of this hash bucket; create new edge entry
if (pEdge == NULL) {

// Create new edge entry for this bucket
edgeListEntry[cnt].vertexIndex[0] = vj;
edgeListEntry[cnt].vertexIndex[1] = vk;
edgeListEntry[cnt].triangleIndex[0] = i;
edgeListEntry[cnt].edgeNumber[0] = j;
// Link new entry first in list and bump edge entry counter
edgeListEntry[cnt].pNext = edgeListHead[hashKey];
edgeListHead[hashKey] = &edgeListEntry[cnt++];
break;

}
// Edge is in this bucket, fill in the second edge
if (pEdge->vertexIndex[0] == vj && pEdge->vertexIndex[1] == vk) {

pEdge->triangleIndex[1] = i;
pEdge->edgeNumber[1] = j;
break;

}
}

}
}

This code can easily be merged with the code given in Section 12.2.1 so that in
addition to having the vertex table have each vertex index all of its incident faces
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each vertex can reference one (or all) of its incident edges. This addition would allow
all adjacency information to be accessed in O(1) time using any feature (vertex, edge,
or face) as the indexing element.

12.2.3 Testing Connectedness

As an example of what can be accomplished using adjacency information, consider the
problem of determining whether all faces in the face table are connected through an
edge to another face. If the faces are not all connected, the number of connected com-
ponents and a face of each component should be output. The example is presented
for triangles only.

To be able to know which connected component a triangle is part of, a label
field is added to each triangle data structure for holding the component number.
Initially triangles are labeled as not being part of any component. Then, all triangles
are looped over and for each unmarked triangle encountered the running component
number is increased by one, the triangle is tagged with this component number and
all neighboring triangles of the triangle are recursively visited and marked with the
same component number.

If all components are connected, the recursive procedure will end up visiting and
marking all triangles with the initial component number. When returning to the outer
loop, no unmarked faces will be found and the procedure will exit, saying there is
only one component. If there are multiple components, the recursive routine will
fail to visit some faces, which are eventually encountered by the outer loop, which
in turn increments the component count before recursively visiting the faces of the
next connected component, and so on. The following piece of code implements this
procedure.

// Unlabel all triangles
for (i = 0; i < numTris; i++)

tri[i].label = 0;
// Loop over all triangles, identifying and marking all components
int componentNumber = 0;
for (i = 0; i < numTris; i++) {

// Skip triangles already labeled
if (tri[i].label != 0) continue;
// Mark this triangle with the current component number
tri[i].label = ++componentNumber;
printf("Component %d starts at triangle %d\n", componentNumber, i);
// Recursively visit all neighboring triangles and mark them with the same number
MarkAllNeighbors(i, componentNumber);

}
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After this code has executed, componentNumber contains the number of com-
ponents in the mesh. The code relies on a recursive subroutine, which visits all
neighboring triangles of a given face.

void MarkAllNeighbors(int triIndex, int componentNumber)
{

int neighborIndex;
// Visit neighboring triangles of all three edges (if present)
for (int i = 0; i < 3; i++) {

neighborIndex = GetTriangleNeighbor(triIndex, i);
// If there is a neighboring triangle not already marked...
if (neighborIndex >= 0 && tri[neighborIndex].label != componentNumber) {

// ...mark it, and visit it recursively
tri[neighborIndex].label = componentNumber;
MarkAllNeighbors(neighborIndex, componentNumber);

}
}

}

The recursive procedure in turn relies on a subroutine, which given a triangle index
and an edge number queries the edge table for the other triangle sharing that edge,
returning the index of said triangle (or –1 if no such triangle).

int GetTriangleNeighbor(int triIndex, int edgeNum)
{

// Get vertex indices for the edge and compute corresponding hash key
int vi = tri[triIndex].vertexIndex[edgeNum];
int vj = tri[triIndex].vertexIndex[(edgeNum + 1) % 3];
if (vi > vj) Swap(vi, vj);
int hashKey = ComputeHashKey(vi, vj);
// Search hash bucket list for a matching edge
for (EdgeEntry *pEdge = edgeListHead[hashKey]; pEdge != NULL; pEdge = pEdge->pNext) {

// ...
if (pEdge->vertexIndex[0] == vi && pEdge->vertexIndex[1] == vj) {

// Get index of the OTHER triangle of this edge
int whichEdgeTri = (pEdge->triangleIndex[0] == triIndex);
return pEdge->triangleIndex[whichEdgeTri];

}
}
// The input edge was a boundary edge, not connected to any other triangle
return -1;

}



484 Chapter 12 Geometrical Robustness

Here, the function MarkAllNeighbors() is given recursively, for brevity. In practice,
the function should be written to use an explicit stack because the program stack is
unlikely to cope with a recursive routine working on a mesh of several thousand
faces (see Chapter 6 for a description on how to turn recursion into the use of an
explicit stack). An explicit stack would also better facilitate writing the code so as
to not unnecessarily visit the face the code just came from. Additionally, an explicit
stack also provides more options for controlling what and how much data is being
stacked.

12.3 Holes, Cracks, Gaps, and T-junctions

A hole in a mesh is signified by a set of vertices, connected by a closed chain of edges in
which no faces have been defined to connect all of these vertices and edges. Unlike
intentional holes, which tend to be large, unintentional holes are usually narrow
slits between two or more faces that were supposed to be connected (Figure 12.8).
Unintentional holes are often referred to as cracks or seams.

The term crack is also used to refer to narrow wedge-like slots between two partially
connected geometries. Narrow voids between two completely unconnected geome-
tries will be referred to as gaps. Cracks can be found and addressed through local
inspection; gaps can be detected only through global means.

Many cracks of a mesh are caused by duplicated vertices.These cracks are effectively
resolved by welding the vertices of the mesh. Left are the cracks consisting of vertices
that lie on the interior of some opposing edge of the edge-chain forming the crack.
Situations in which an endpoint of one edge lying on the interior of another edge —
the vertex usually displaced off the line by some small amount — are referred to as
a t-junctions or t-joints (so named because the two edges often meet in the form of
a letter T ). The endpoint is called the t-vertex. In other words, a t-vertex is a vertex
belonging to one or more polygons, falling on an edge of a polygon to which it does
not belong. A t-junction may be formed either as part of a crack or a gap, depending
on what the surrounding geometry looks like. Figure 12.9 illustrates all three problem
situations: a (nonhole) crack, a gap, and a t-junction.

(a) (b)

Figure 12.8 (a) A mesh with an intentional hole. (b) A mesh with an unintentional hole — a
crack (exaggerated).
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(a) (b) (c)

t-junction

crack gap

t-vertex

Figure 12.9 (a) A (nonhole) crack. (b) A gap. (c) A t-junction (and its corresponding t-vertex).

Several methods can be employed for detecting the presence of t-junctions. A
straightforward approach is to loop over all vertices of the mesh and for each vertex
test its connected edges, pairwise, for (near) collinearity. If two collinear edges are
found, the edges are part of a crack.The crack can be resolved by merging the endpoint
of one edge onto the other edge. Because vertices may be visited in any order, for
this approach to correctly resolve cracks that involve an arbitrary number of vertices
it is important that the endpoint vertices of the two merged edges be recursively
revisited after the merge to locate all vertices on the edge-chain of the crack. If the
mesh under repair is known to be 2-manifold, it is possible to limit the process
to examining only those edges that have exactly one face connected to them. This
method is simple to implement and it deals with all cracks correctly. However, it does
not address gaps, in that gaps by definition cannot be found by a local examination
of the geometry.

Resolving gaps correctly requires a more sophisticated, global method. Given an
edge, this method must be able to find all mesh vertices lying on or nearly on the
edge. Alternatively, given a vertex the method must be able to locate all edges the
vertex is near. A practical solution is to insert all mesh edges into a hierarchical
structure like an hgrid or a loose octree, which can then be queried for each vertex
of the mesh.

As crack- or gap-induced t-junctions are found, they must be resolved. There are
three main approaches to resolving t-junctions (illustrated in Figure 12.10).

● Vertex collapse.The t-vertex is displaced along the edge opposing it, toward either
endpoint of the edge, and collapsed with that endpoint.

● Edge cracking. A more general solution is to split the edge opposing the t-vertex
in half and connect the two new endpoints to the t-vertex. This increases the
vertex count of all faces connected to the opposing edge by one.



486 Chapter 12 Geometrical Robustness

(a) (b) (c)

Figure 12.10 Three alternative methods for resolving a t-junction. (a) Collapsing the t-vertex
with a neighboring vertex on the opposing edge. (b) Cracking the opposing edge in two,
connecting the two new edge endpoints to the t-vertex. (c) Snapping the vertex onto the
opposing edge and inserting it, by edge cracking, into the edge.

● Vertex snapping. Similar to edge cracking, this approach first snaps the t-vertex
to lie on the opposing edge, after which the edge is cracked as in the previous
alternative.

Vertex collapsing is not applicable in all situations, but when it is it is often preferable
because it reduces the vertex count by one. It also effectively removes one edge from
one of the faces connected to the t-vertex and the vertex into which the t-vertex is
collapsed. When this face is a triangle, it becomes degenerate and can be removed.
Note that all three approaches can create nonplanar or nonconvex faces. Subsequent
triangulation of the involved faces may therefore be required.

When working with nonmanifold geometry, gaps may also appear as one face sits
slightly above another face; for example, a small face upright in the middle of a large
horizontal face (as shown in Figure 12.11). To resolve this, the second larger face must
be split up to incorporate the edge of the first face. This face cracking can be handled
by the same hierarchical data structure used for edge cracking if mesh faces instead
of mesh edges are inserted into the data structure.

For some intersection queries, such as ray-versus-mesh tests, interpenetrating
surfaces do not pose a problem to the queries. If this is the case, the face cracking
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(a) (b)

Figure 12.11 (a) A face meeting another face edge-on, forming a gap. (b) The gap resolved
by face cracking.

does not have to be performed when the vertices of the edge lie in the negative
halfspace of the supporting plane of the other face.

12.4 Merging Co-planar Faces

Edge and face cracking may introduce a fair number of extra faces to the collision.
Because collision detection speed decreases as the number of faces increases, it is
worthwhile incorporating an optimization step into the generation of robust collision
geometry to help reduce the number of faces.

Many methods have been suggested for model simplification. Thorough reviews
of the field are given in [Luebke02] and [Puppo97]. For collision detection, it is
very important to preserve both shape and volume to prevent the collision geometry
from“shrinking”inside the visual representation, allowing objects to interpenetrate
visually even though they may not actually be touching in a collision sense. Out
of the huge library of simplification methods, one approach particularly suitable for
collision detection geometry is that of merging (near) co-planar faces. Face merg-
ing also helps to remove sliver-like and other degenerate faces, which are usually a
source of robustness problems (see Chapter 11).

In addition to two faces being co-planar up to some given tolerance, some other
criteria generally must be fulfilled for two faces to be mergeable. Specifically, the faces
must:

● both be either double or single sided, and face in the same general direction
when single sided,

● have the same associated surface properties (footstep sounds, friction attributes,
or similar attributes), and

● share one or more boundary edges.
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In this text, when two or more faces are said to be co-planar it is assumed that the
faces are mergeable under these criteria.

Because the result of preprocessing is likely a triangle or quad mesh, one alternative
is to merge two or more co-planar faces as long as the resulting face is a triangle or
a quad. This straightforward approach is simple to implement. However, for it to
produce a near-optimal result large clusters of faces would have to be considered for
simultaneous merging. For example, for the spiral-like mesh given in Figure 12.12 no
combination of faces other than all nine faces together form a convex face. Thus, a
combinatorial number of face combinations would have to be tested for merging in
the worst case, which is impractical.

A more involved method, but which promises much better results, is to merge all
co-planar neighboring faces into a single (concave) polygon in a first pass. In a sub-
sequent second pass, these polygons are then triangulated or otherwise decomposed
into the type of convex pieces desired for the end result.

If adjacency information is available, it is straightforward to merge neighboring
co-planar faces simply by visiting neighboring faces through the provided adjacency
links. For example, given an edge-face table the merging process is linear in the
number of edges, proceeding by looping over the edges and merging the faces con-
nected to the edge if co-planar. If no adjacency information is available, instead of
first computing adjacency information and then proceeding as described previously
an alternative option is to find nearly co-planar faces through a scheme similar to
environment cube mapping [Akenine-Möller02].

Figure 12.12 If two (or more) faces are only considered for merging when the resulting face
is convex, no merging can be done for this spiral-like mesh. If concave faces are allowed
during merging, this mesh can be merged into a single (quadrilateral) face.



12.4 Merging Co-planar Faces 489

(a)

c

n

(b)

c1
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c2

Figure 12.13 (a) The normal n hits cell c (dashed) on the top face of the cube inscribed in
the unit sphere. (b) The perturbed normal n ± e hits cells c1 and c2. The contents of these
cells must be tested for co-planarity with the polygon having the normal n.

Each polygon normal can be seen as describing a position of the surface of the
unit sphere. Let a cube be inscribed in the unit sphere, each cube face divided into a
number of cells of a fixed uniform size. Each polygon normal will intersect some cube
face cell (Figure 12.13a). Let polygons be associated with the face cell their normals
intersect.

Near co-planar polygons will now largely map to the same cell, allowing them to
be further processed after their co-planarity has been verified. However, due to the
arbitrary discretization into cells, two plane normals arbitrarily close may still end up
in different cells. A simple solution to this problem is to test all eight neighboring
face cells of the cell the polygon normal intersected. Some care must be taken near
the cube edges to make sure the correct cells are visited.

To cut down on the number of neighboring cells to test, the polygon normal n can
be perturbed slightly in the plane of the intersected face, giving a rectangular region
in the face, describing the area for which normals would be considered coplanar to
n. All cells overlapped by the rectangular region would then be tested, similar to
before (Figure 12.13b). Typically, the number of cells overlapped by this region would
be smaller than eight. Again, care must be taken to visit the correct cells when the
rectangular region extends over a cube edge.

The presented method has an expected complexity of O(n). An alternative but
less efficient O(n log n) tree-based sorting method is given in [Salesin92]. Alterna-
tive solutions to the problem of merging (near) co-planar faces are presented in
[Hinker93] and [Kalvin96].

12.4.1 Testing Co-planarity of Two Polygons

One approach to testing if two polygons are co-planar is to compute the angle
between their plane normals. If the angle is less than some given tolerance, the
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polygons are considered co-planar and can be merged. This method works for many
applications, such as general model simplification [Hinker93]. However, for collision
detection purposes this approach is fundamentally flawed. Consider two polygons,
A1 and B1, at a fixed angle θ to each other, requiring a plane thickness of d1 of
a representative plane for all vertices to be included in the plane, as illustrated in
Figure 12.14. Let the polygons be scaled up in size, giving A2 and B2. Even though θ

remains constant, the required thickness d2 of the new representative plane increases
without bound as the polygons are scaled up in size.

Clearly, the angle between the polygon normals is only a relative measurement of
the co-planarity of the polygons. For an absolute error measurement, the thickness
of the representative plane must be considered. A better solution to testing two
polygons for co-planarity is therefore to perform the merging of the two polygons,
conceptually, and see if the resulting polygon is considered planar by a polygon
planarity test (presented in the next section). This approach directly extends to the
merging of an arbitrary number of polygons.

To use a relative measurement of co-planarity for controlling merging of polygons
for use with a collision detection system, the vertices of the merged polygons must be
snapped to the representative plane of the merged polygon.This bounds the deviation
of the polygon vertices from the plane, allowing the distance error to remain less than
the tolerance value used to enforce thickness of the polygon for robust intersection
tests.

However, with welded vertices snapping the vertices of one or more polygons to a
representative plane inevitably introduces nonplanarity errors in faces sharing vertices
with these polygons.Trying to address this would likely cause a ripple effect involving
all vertices of the object. A reasonable solution is to let a subsequent triangulation
pass take care of triangulating any faces that have been made more nonplanar than
the given tolerance allows. Unfortunately, nothing guarantees that there are not more
faces created during this triangulation than are removed through the initial merging
process!

B1A1 d1

B2A2 d2

Figure 12.14 Testing the angle between the normals of the planes of two polygons is a
relative measurement of their co-planarity, unaffected by scaling up the polygons. Testing
the thickness required for the best-fit plane to contain all polygon vertices is an absolute
measurement of the co-planarity of the polygons.
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Figure 12.15 The upper illustration shows how an absolute merging tolerance smaller than
the plane thickness tolerance (in gray) avoids cracks from appearing between neighboring
faces. The lower illustration shows how a crack may appear when the merging tolerance
exceeds the plane thickness tolerance.

Worse, if vertices are unwelded and are allowed to move during merging cracks can
appear at the edges between neighboring faces unless the absolute merging tolerance
is kept smaller than the plane thickness tolerance. Figure 12.15 illustrates how a crack
may appear between a face and a merged face when the merging tolerance exceeds
the plane thickness tolerance. To avoid tolerance issues that would cause robustness
problems and to guarantee the reduction of faces due to merging, it is important
to use an absolute error measurement for merging geometry for use with collision
detection.

12.4.2 Testing Polygon Planarity

A polygon is defined by a set of vertices in the plane. Testing the polygon for planarity
then involves making sure all defining vertices lie in a plane. This can be done by
computing a plane equation for the supporting plane of the polygon and then testing
all vertices to make sure they are within some tolerance of the plane. The plane
equation for the supporting plane is obtained through computing a polygon normal
and selecting a reference point on the polygon.

This sounds simple enough, but there is a hidden subtlety: how to compute the
polygon normal n = (nx , ny, nz). A first approach to computing the polygon nor-
mal might involve computing the cross product of two coincident polygon edges.
However, this is not robust because the edges may be (near) collinear, causing the
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cross product result to be the zero vector (and making the computation suffer large
cancellation errors well before becoming zero).

Even if the angle between the edges is large, there is still a problem. Assume all
vertices lie on a plane, except for the vertex V shared by the two edges. Let V deviate
from the plane by some distance d. If the polygon is scaled up in the plane, V will
remain at a distance d from the plane and the absolute planarity of the polygon
should not be affected. However, because the cross product of those two edges was
chosen as the representative plane normal, all vertices but the three coincident with
the two edges will move arbitrarily far from the chosen plane as the polygon is
scaled up.

It seems clear that all vertices should somehow be involved in the normal com-
putation. One common approach is to compute the normal ni at each vertex Vi

(as the cross product of the edges incident at the vertex) and then average the
normals:

n = 1
n

∑
0≤i<n

ni, where ni = (Vi+1 − Vi) × (Vi−1 − Vi).

It is here assumed that Vn = V0 and V−1 = Vn−1. Because the magnitude of n is
unimportant, the normals can be summed rather than averaged.

Although this works well for convex polygons, it is unfortunately flawed for non-
convex polygons. Normals computed at concave vertices will point in the opposite
direction of those computed at convex vertices. For example, consider the class of
star-shaped polygons shown in Figure 12.16. The normals at the even-numbered
vertices point out of the page, whereas the normals of the odd-numbered vertices
point into the page.

K = 1 K = 4

V0 = (1, 1, 1)
V1 = (6, 6 – K, 1)
V2 = (11, 1, 1)
V3 = (6 + K, 6, 1)
V4 = (11, 11, 1)
V5 = (6, 6 + K, 1)
V6 = (1, 11, 1)
V7 = (6 – K, 6, 1)

Figure 12.16 A class of star-shaped polygons, parameterized by K, 0 < K < 5.
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When normals of opposing direction are summed, the result may point in either
direction, depending on the relative magnitudes of the inputs. Specifically, in this case
the following (unnormalized) normals are obtained for a few different values of K:

K n

1 (0, 0, −124)

2 (0, 0, −56)

3 (0, 0, 4)

4 (0, 0, 56)

As the table indicates, the normal changes direction between K = 2 and K = 3.
In fact, at about K = 2. 928932 the normal becomes the zero vector and the method
fails catastrophically!

It turns out that a much better and robust approach to computing normals is one
commonly known as Newell’s method [Tampieri92]. Newell’s method uses the fact
that the components of a polygon normal are proportional to the signed areas of
the projections of the polygon onto the yz, xz, and xy planes. n can therefore be
computed as:

nx =
∑

0≤i<n

(Vi,y − Vi+1,y)(Vi,z + Vi+1,z)

ny =
∑

0≤i<n

(Vi,z − Vi+1,z)(Vi,x + Vi+1,x)

nz =
∑

0≤i<n

(Vi,x − Vi+1,x)(Vi,y + Vi+1,y)

The terms being summed correspond to twice the signed area of the trapezoids
formed, in each principal plane, by the current polygon edge and its projection onto
the corresponding axis. The first term is the width of the trapezoid; the second term
is twice its height. By rearranging terms, it can be seen that Newell’s method is
equivalent to computing the normal through the sum:

n =
∑

0≤i<n

mi, where mi = Vi × Vi+1.
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For the star-shaped polygon used earlier, Newell’s method consistently produces
the expected normal (pointing out of the page):

K n

1 (0, 0, 40)

2 (0, 0, 80)

3 (0, 0, 120)

4 (0, 0, 160)

The following code illustrates how Newell’s method can be implemented to com-
pute a robust representative plane for a polygon. Here, the polygon centroid — that
is, the average of all vertices — is used as the representative point on the plane when
computing the plane equation.

// Given n-gon specified by points v[], compute a good representative plane p
void NewellPlane(int n, Point v[], Plane *p)
{

// Compute normal as being proportional to projected areas of polygon onto the yz,
// xz, and xy planes. Also compute centroid as representative point on the plane
Vector centroid(0.0f, 0.0f, 0.0f), normal(0.0f, 0.0f, 0.0f);
for (int i = n - 1, j = 0; j < n; i = j, j++) {

normal.x += (v[i].y - v[j].y) * (v[i].z + v[j].z); // projection on yz
normal.y += (v[i].z - v[j].z) * (v[i].x + v[j].x); // projection on xz
normal.z += (v[i].x - v[j].x) * (v[i].y + v[j].y); // projection on xy
centroid += v[j];

}
// Normalize normal and fill in the plane equation fields
p->n = Normalize(normal);
p->d = Dot(centroid, p->n) / n; // “centroid / n” is the true centroid point

}

Newell’s method can be seen as computing a “best-fit”plane, using all vertices.
Yet another alternative approach is to fit a plane to the polygon vertices using the
method of least-squares fit (see [Eberly01] for details).

Computing plane equations using Newell’s method is clearly more expensive than
just taking the cross product of two coincident edges. Storing plane equations with
the polygons is one option, but this is unattractive memory-wise. A compromise is
still computing normals and plane equations at runtime using a cross product, but
after having made sure the polygon is output so that the first three stored vertices of
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the polygon give the best representative result. It is also possible to simplify Newell’s
method for specific primitives. For example, given a quadrilateral ABCD the normal
obtained by Newell’s method can be reduced to that of computing the cross product
of the two diagonals AC and DB because

2(AC × DB) = (AB × AD) + (BC × BA) + (CD × CB) + (DA × DC).

The right-hand side of the expression corresponds to the summing of the cross
product normals at each vertex. Interestingly, it is thus actually cheaper to compute
a robust normal for a quadrilateral than it is to do the same for a triangle!

After having computed a good representative plane for a polygon, it is finally
possible to test the planarity of the polygon by putting each of its vertices, in turn,
through the computed plane equation to see by how much each vertex deviates from
the plane. If they are all within a preset tolerance distance from the plane, the polygon
is considered planar. An implementation of this test follows.

// Test if n-gon specified by vertices v[] is planar
int IsPlanar(int n, Point v[])
{

// Compute a representative plane for the polygon
Plane p;
NewellPlane(n, v, &p);
// Test each vertex to see if it is farther from plane than allowed max distance
for (int i = 0; i < n; i++) {

float dist = Dot(p.n, v[i]) - p.d;
if (Abs(dist) > PLANARITY_EPSILON) return 0;

}
// All points passed distance test, so polygon is considered planar
return 1;

}

In [Sunday02], the author addresses how to reduce the number of arithmetic
operations needed to compute Newell normals and polygon areas.

12.5 Triangulation and Convex Partitioning

Although it would be possible to perform collision detection directly against the
merged faces, tests involving convex faces only are often simpler, faster, and more
robust. It therefore makes sense to decompose nonconvex faces into two or more
convex pieces, a process known as convex partitioning. One alternative is simply to



496 Chapter 12 Geometrical Robustness

triangulate nonconvex faces: decomposing them into a set of triangles. All faces can
be triangulated, often in many different ways. Another alternative is to partition the
faces into as few convex pieces as possible, thus reducing the number of faces to be
tested.

The following sections describe two methods: one for triangulation of nonconvex
faces and one for decomposition of nonconvex faces into a small number of convex
pieces. Last, the problem of decomposing nonconvex polyhedra into convex pieces
is discussed.

12.5.1 Triangulation by Ear Cutting

Various algorithms have been invented for the triangulation of polygons, ranging from
slow but easy-to-implement algorithms to algorithms that although theoretically
optimal are so complicated they are unimplementable in practice! One popular and
quite straightforward triangulation algorithm proceeds by a process known as ear
cutting (or ear clipping).

The triangle formed by a polygon vertex Vi and its immediate predecessor and
successor vertices Vi−1 and Vi+1 is said to be an ear if the diagonal between Vi−1 and
Vi+1 is contained in its entirety in the polygon. The vertex Vi is said to be the ear tip.
The ear is commonly referred to by the ear tip vertex alone. It can be shown that every
simple nontriangle polygon has at least two nonoverlapping ears [Meisters75]. Thus,
all such polygons can be triangulated by the repeated identification and removal (or
cutting) of ears. It follows that a triangulation of a simple polygon with n vertices
consists of exactly n−2 triangles. Figure 12.17 shows a simple polygon with two ears
and one possible triangulation of the polygon.

For a simple polygon an equivalent test for three consecutive vertices Vi−1, Vi, and
Vi+1 forming an ear E is to make sure Vi is convex and that no other polygon vertex
lies inside E. Vi is convex if E has the same winding as the polygon itself. Specifically,
for a counterclockwise polygon Vi is convex if E is counterclockwise.

Now consider the process of triangulation by repeated ear cutting. Initially, a
polygon will have some number n of ears, n ≥ 2. As an ear is cut, n may decrease,
increase, or stay the same. The change in number of ears depends on the ear tip-ness
of the vertices Vi−1 and Vi+1 after the cutting. In other words, the change of ear-ness
only happens locally to the vertices where the ear is cut.

A polygon can therefore be triangulated by looping counterclockwise (say) around
the polygon boundary, visiting the vertices sequentially one after one, testing them
for ear-ness. As ears are encountered, they are cut. To make sure both vertices where
an ear is cut are revisited, the vertex previous to the (removed) ear tip vertex is set as
the next vertex to visit after a cut.

Figure 12.18 illustrates the first steps of a triangulation using this method. Starting
at V0, vertex V5 is found to be inside the ear triangle during ear verification, and thus
V0 is not an ear. The algorithm therefore proceeds to the next vertex V1. V1 is also
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(a) (b)

Figure 12.17 (a) A simple polygon that only has two ears (ears shown in gray). (b) One
possible triangulation of the polygon.
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Figure 12.18 The first steps of triangulation by ear cutting. (a) Identifying V2 as an ear. (b)
Identifying V3 as an ear after cutting V2. (c) Identifying V4 as an ear after cutting V3.

not an ear because V1 is not convex, in that the triangle (V0, V1, V2) is clockwise. The
algorithm proceeds to V2. Because V2 is convex and no polygon vertices lie in the
triangle (V1, V2, V3), V2 is an ear and is clipped. Now a step back is taken, to revisit
V1 because its ear-ness status might have changed. However, V1 is still concave, and
thus the algorithm proceeds to its successor vertex, which is now V3. It is found to
be an ear and is cut, and thus the algorithm again revisits V1.Yet again V1 is concave.
Next is vertex V4, which is an ear. V1 is now revisited once more, this time found to
be an ear. After V1 is cut, what remains is a triangle and the algorithm stops.

Testing if a vertex is an ear may require testing all other vertices for containment
in the ear, and is therefore O(n). The outer loop may end up performing up to the
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order of 2n such tests. The overall complexity of the algorithm thus becomes O(n2).
The following code fragment implements this triangulation algorithm.

// Triangulate the CCW n-gon specified by the vertices v[]
void Triangulate(Point v[], int n)
{

// Set up previous and next links to effectively form a double-linked vertex list
int prev[MAX_VERTICES], next[MAX_VERTICES];
for (int i = 0; i < n; i++) {

prev[i] = i – 1;
next[i] = i + 1;

}
prev[0] = n – 1;
next[n – 1] = 0;

// Start at vertex 0
int i = 0;
// Keep removing vertices until just a triangle left
while (n > 3) {

// Test if current vertex, v[i], is an ear
int isEar = 1;
// An ear must be convex (here counterclockwise)
if (TriangleIsCCW(v[prev[i]], v[i], v[next[i]])) {

// Loop over all vertices not part of the tentative ear
int k = next[next[i]];
do {

// If vertex k is inside the ear triangle, then this is not an ear
if (TestPointTriangle(v[k], v[prev[i]], v[i], v[next[i]])) {

isEar = 0;
break;

}
k = next[k];

} while (k != prev[i]);
} else {

// The ‘ear’ triangle is clockwise so v[i] is not an ear
isEar = 0;

}

// If current vertex v[i] is an ear, delete it and visit the previous vertex
if (isEar) {

// Triangle (v[i], v[prev[i]], v[next[i]]) is an ear
...output triangle here...
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// ‘Delete’ vertex v[i] by redirecting next and previous links
// of neighboring verts past it. Decrement vertex count
next[prev[i]] = next[i];
prev[next[i]] = prev[i];
n--;
// Visit the previous vertex next
i = prev[i];

} else {
// Current vertex is not an ear; visit the next vertex
i = next[i];

}
}

}

In some cases it is desirable to support polygons with holes. One way of handling
such polygons is described next.

12.5.1.1 Triangulating Polygons with Holes

To be able to triangulate polygons with holes, a reasonable representation must first
be established. A common representation is as a counterclockwise outer polygon
boundary plus one or more clockwise inner hole boundaries. The drawing on the left
in Figure 12.19 illustrates a polygon with one hole.

Figure 12.19 Handling holes by cutting a zero-width “channel” from the outer (CCW)
boundary to the (CW) hole boundary. (The endpoint vertices of the channel coincide, but
are shown slightly separated to better illustrate the channel formation.)



500 Chapter 12 Geometrical Robustness

To be able to triangulate the polygon, the outer and inner boundaries must be
merged into a single continuous chain of edges. This can be done by cutting a zero-
width“channel”from the outer boundary to each inner boundary. Cutting this channel
consists of breaking both the inner and outer boundary loops at a vertex each and
then connecting the two vertices with two coincident edges in opposite directions
such that the outer boundary and the hole boundary form a single counterclockwise
continuous polygon boundary. Figure 12.19 shows how a hole is effectively resolved
by this procedure. Multiple holes are handled by repeating the cutting procedure for
each hole.

Sometimes the boundaries are given with arbitrary orientation and it is not known
which boundary is the outer boundary and which are the hole boundaries. In these
cases, the outer boundary can be assumed to be the one defining the polygon with
the largest area and the remaining boundaries correspond to the holes. Once the
outer boundary has been determined, a counterclockwise ordering for it, and clock-
wise ordering for the holes, is easily enforced by reversing the vertex order, if
necessary.

Several triangulation programs are publicly available on the Internet. The perhaps
best, most robust, program is due to Jonathan Shewchuk. Its implementation is
discussed in [Shewchuk96b]. A good discussion of robust triangulation is also given
in [Held01].

12.5.2 Convex Decomposition of Polygons

As shown in Chapter 5, an intersection test between a ray and a quadrilateral is no
more expensive than against a triangle. Allowing collision geometry to consist not
just of triangles but quadrilaterals or even arbitrary convex polygons can therefore
provide a potential speedup at the cost of some extra complexity maintaining poly-
gons of different order.

Although triangulation of a simple polygon is quite straightforward, its decomposi-
tion into a set of convex polygons is more complicated, much more so for an algorithm
for computing an optimal decomposition. In fact, in order to achieve a decomposi-
tion into the smallest number of convex pieces additional vertices — Steiner points —
may have to be introduced. Figure 12.20 shows two polygons that when partitioned
using diagonals alone result in at best five and three convex pieces, but which can
decompose into four and two pieces, respectively, by introducing Steiner points.

An algorithm that performs a minimal convex decomposition of a simple polygon
(without the use of Steiner points) is presented in [Keil02]. The time and space
complexity of this algorithm is O(n+ r2 min(r2, n)) = O(n3), where n is the number of
vertices of which r are concave vertices. An implementation by the authors is available
on the Internet. Pseudocode is also given in [Schneider02].

A simpler algorithm for convex decomposition is due to Hertel and Mehlhorn
[Hertel83]. Starting with a triangulation of the simple polygon, the Hertel–Mehlhorn
algorithm considers each diagonal one at a time. If the diagonal can be removed
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(a) (b) (c)

Figure 12.20 (a) Original polygons. (b) Optimum convex decomposition without the use of
additional vertices, known as Steiner points. (c) Optimum convex decomposition using Steiner
points.

without creating a concave vertex, it is removed. If not, processing proceeds with
the next diagonal until all diagonals have been examined, making the complex-
ity O(n). The triangulation dominates the process, and the overall complexity is
therefore O(n2). An example of convex decomposition using the Hertel–Mehlhorn
algorithm is shown in Figure 12.21. In pseudocode, the Hertel–Mehlhorn algorithm
becomes:

Mesh HertelMehlhorn(Polygon p)
{

// Produce a triangulated mesh from the original polygon
Mesh m = TriangulatePolygon(p);
// Loop over all diagonals of the triangulated polygon
int numDiagonals = GetNumberOfDiagonals(m);
for (int i = 0; i < numDiagonals; i++) {

// Test if the i-th diagonal can be removed without creating
// a concave vertex; if so, remove the diagonal from the mesh
if (DiagonalCanBeRemoved(m, i))

RemoveDiagonal(m, i);
}



502 Chapter 12 Geometrical Robustness

A D

B

C

Figure 12.21 The Hertel–Mehlhorn algorithm turns a polygon triangulation into a convex
decomposition by deletion of as many diagonals as possible.

// The mesh is now a convex decomposition of the polygon. Return it
return m;

}

Instead of having a separate second pass in which diagonals are deleted, this
deletion can be incorporated into the actual triangulation process. As an ear is clipped,
it is tested against the previously cut polygon. If merging the cut triangle with the
previous polygon would form a convex polygon, the merge is performed. Otherwise,
the previously cut polygon is output, and the just cut ear is kept as the new “previous
polygon.”The test itself can be performed in constant time by testing the convexity
of the vertices where the triangle would attach to the previous polygon.

It can be shown that any convex partitioning that does not contain unnecessary
edges will have at most four times the minimum number of convex pieces. Typically,
for real-world cases the Hertel–Mehlhorn algorithm produces partitions not far from
optimal.

It is possible to change the triangulation algorithm slightly to generate even bet-
ter partitions, in general. The improvement consists of making the algorithm prefer
creating diagonals that connect to at least one concave vertex to those that connect
two convex vertices. For example, in Figure 12.21 replacing the diagonal between the
convex vertices A and B with one from C to D would result in a convex decomposition
into three instead of four pieces, which here is the optimum.

12.5.3 Convex Decomposition of Polyhedra

Just as intersection tests with convex polygons are faster than tests with arbitrary
polygons, intersection tests on polyhedra are much more efficient if the polyhedra are
convex. Nonconvex polyhedra are therefore best broken into convex pieces, allowing
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the efficient algorithms of Chapter 9 to be used for collision detection. Overall, the
decomposition of a polyhedron into convex pieces is a difficult problem. It is not made
easier by the fact that some objects do not decompose well, or at all. For example, the
inside of a bowl is concave everywhere; it can therefore not be broken into convex
pieces (or, for a polygonal bowl, other than in the trivial sense of one piece per face).
A torus is another example of a shape problematic to decompose.

A first idea for decomposition is to apply something similar to triangulation to the
polyhedra. The equivalent of triangulation for polyhedra is tetrahedralization: the par-
titioning of a polyhedron into tetrahedra. Although all polygons can be triangulated,
it turns out not all polyhedra are tetrahedralizable. Perhaps the most well-known
example of a nontetrahedralizable polyhedron is Schönhardt’s polyhedron, discovered
as early as 1928. It is constructed from a triangular prism by twisting one of the tri-
angles relative to the other so that each of the three rectangular faces of the prism
“folds” into two triangles with a concave edge between them (Figure 12.22). When
any four vertices of this polyhedron are considered, two of them must lie on opposite
sides on one of these concave edges. Because no four vertices form a tetrahedron,
tetrahedralization is therefore impossible.

However, the Schönhardt polyhedron is tetrahedralizable with the addition of a
point internal to the polyhedron, a Steiner point. Some polyhedra of n vertices may,
in fact, require on the order of O(n2) Steiner points to allow a tetrahedralization
(one example is known as Chazelle’s polyhedron). It has been shown that decid-
ing whether a polyhedron is tetrahedralizable without the addition of Steiner points
belongs to the class of NP-complete problems. In practical terms, this means that
attempting to use a 3D equivalent to the Hertel–Mehlhorn algorithm for decompos-
ing a polyhedron into convex pieces is not feasible. It should be noted that convex
polyhedra are always tetrahedralizable. Finding a minimal tetrahedralization of a
convex polyhedron is an NP-hard problem, however.

Figure 12.22 The Schönhardt polyhedron is obtained by twisting one of the triangles of a
triangular prism relative to the other, creating three diagonal concave edges when the vertical
sides of the prism are triangulated.
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Figure 12.23 A good heuristic is to resolve two or more concave edges with a single cut.
Here the cutting plane π passes through the concave edges A and B, leaving just one concave
edge C (going into the drawing).

A more feasible approach to convex decomposition is to recursively split the poly-
hedron in two with a cutting plane through one or more concave edges. In that such
a split reduces the number of concave edges by one, the procedure will eventually
terminate, returning a set of convex pieces (which lack concave edges).

If the goal is to produce as few convex pieces as possible, a good rule is to attempt
to resolve as many concave edges as possible with the same cut.This means that fewer
cuts are needed, generally resulting in fewer pieces overall. Figure 12.23 illustrates a
cut resolving two concave edges.

Where only one concave edge can be resolved, one degree of freedom remains
to determine the cutting plane fully: the angle of rotation about the concave edge.
In these cases, two reasonable options are to either find some other (convex) edge
with which to form a cutting plane or to select the cutting plane to be the supporting
plane of one of the faces incident to the concave edge. Both alternatives are illus-
trated in Figure 12.24. The former option is not always available because there may
not be an edge that forms a plane with the concave edge. It also requires search for the
second edge.The latter option requires no search and can always be performed. How-
ever, cutting planes that are aligned or nearly aligned with polygon faces are sources
of robustness problems, similar to the line-plane intersection problem described in
Section 11.3.2.

Splitting a nonconvex polyhedron by a plane can result in many pieces, not just
two. The decomposition procedure is recursively called with each piece. To limit the
number of pieces generated, not the entire of the polyhedron should be split to the
cutting plane. Consider Figure 12.25, which illustrates the problem. Here, the cutting
plane has been selected to cut off the part labeled A from the rest of the polyhedron.
However, if the cut is applied globally across the polyhedron part B will also be
cut off.
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Figure 12.24 Two alternatives to resolving a single concave edge A. (a) Cutting to the plane
through A and some other edge B. (b) Cutting to the supporting plane of one of its neighboring
faces F.

BA

F

Figure 12.25 Cutting (here to the supporting plane π of face F, neighboring the selected
concave edge) with the intent of cutting off part A can have the unintended global effect of
also cutting off part B.

The polygons straddling the cutting plane form two disjoint “contours”: one local
to the A part, one local to the B part. By limiting the cutting to occur at the contour
having connectivity to the original concave edge, the correct behavior is obtained
(which here is cutting off part A only). After the cut, the geometry both in front and
behind the planes will have open holes (in the shape of the contours) that must be
filled in. These holes are closed by creating a polygon in the shape of the contour and
connecting it to the rest of the geometry.
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Figure 12.26 (a) The edge AB is convex, as n · (D − A) < 0. (b) The edge AB is concave, as
n · (D − A) > 0.

To determine if an edge is concave, the following approach can be used. Let F1 and
F2 be the two faces meeting at an edge E. Then, the edge E is concave if some vertex
of F2 not on E lies in front of the plane through F1. Specifically, for the two triangles
ABC and ADB given in Figure 12.26 the edge AB is concave if n · (D − A) > 0, where
n = (B − A) × (C − A).

An algorithm for convex decomposition is given in [Belov02]. Cutting is dis-
cussed in [Yong00] and [Ribelles01]. The latter paper also covers hole filling. Convex
decomposition using BSP trees is discussed in [Joshi03].

12.5.4 Dealing with “Nondecomposable” Concave Geometry

As mentioned at the start of the previous section, not all concave geometry can be
feasibly decomposed into convex pieces. Consider a hemispherical bowl, modeled
with polygons. Because the inside of the bowl is concave everywhere, decomposing
the bowl into convex pieces would require cutting apart all faces of the inside the
bowl. One solution, then, is to treat the bowl geometry as a polygon soup and collide
against its boundary geometry as a collection of individual faces. This allows almost
any of the collision methods described to this point to be applied to the problem.
Unfortunately, a drawback of this solution is that volume information is lost. This
means it is no longer possible to (easily) detect if an object is positioned fully inside
the bowl geometry itself.

Another solution is to model the bowl as a CSG object. For example, a simple
CSG representation of a bowl, D, is the intersection of an AABB A and the difference
between two spheres B and C, D = A ∩ (B − C), as illustrated in Figure 12.27.

The collision status of an object M with the bowl can then be determined by the
logical code expression

bool collides = PartiallyInside(A,M) && PartiallyInside(B,M) && PartiallyOutside(C,M);

where PartiallyInside(X,Y) is true if some part of Y lies inside X and Partially
Outside(X,Y) is true if some part of Y lies outside X. The PartiallyInside()
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Figure 12.27 A hemispherical bowl modeled as a CSG object in terms of the intersection
between the AABB A and the difference between the spheres B and C.

predicate is, of course, just a normal intersection test, as discussed in detail in
Chapter 5. PartiallyOutside() is a new type of collision predicate not discussed
earlier. However, its implementation is generally straightforward. For example, for
the particular test needed here a sufficient condition for a line segment, triangle,
polygon, or polyhedron to test as partially outside a sphere is if one or more vertices
of the tested object lie outside the sphere.

12.6 Consistency Testing Using Euler’s Formula

Badly formed geometry can also be detected through tests of the topology of the
geometry. First, to set the stage two solid bodies are deemed topologically equivalent,
or homeomorphic, to each other if their surface boundaries can be deformed into each
other without cutting or gluing in trying to match them up. Polyhedra homeomorphic
to a sphere are called simple polyhedra. A tetrahedron and a cube are both examples
of simple polyhedra, as are all convex polyhedra.

The mathematical relationship between the number of vertices (V ), faces (F ), and
edges (E ) of a simple polyhedron is succinctly stated in Euler’s formula:

V + F − E = 2.

For example, the polyhedron in Figure 12.28a satisfies the formula because V = 9,
F = 9, and E = 16 give V + F − E = 9 + 9 − 16 = 2.

When a polyhedron has one or more holes in it, it is no longer simple but belongs
to the class of nonsimple polyhedra. The number of holes is referred to as the genus of
the polyhedron. Any polyhedron of zero genus (no holes) is topologically equivalent
to a sphere, of genus one to a torus, of genus two to a solid figure eight, and so on.
Another way of looking at it is that all polyhedra are topologically equivalent to a
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Figure 12.28 (a) A simple polyhedron. (b) A nonsimple polyhedron (of genus one).

sphere with zero or more handles, with the number of handles determined by the
genus. An extended version of Euler’s formula, which holds for polyhedra of any
genus (G), is the Euler–Poincaré formula:

V + F − E = 2 (1 − G) .

For the nonsimple polyhedron in Figure 12.28b, V = 16, F = 16, E = 32, and G =
1. It therefore satisfies the Euler–Poincaré formula. For the Euler–Poincaré formula to
apply, all polyhedral faces must be bounded by a single loop of connected vertices;
that is, be homeomorphic to disks. The faces cannot be rings or otherwise have holes
in them. In addition, both formulas only apply to manifold geometry, and thus it is
assumed that each edge is shared by exactly two faces, that each edge is connected
to exactly two vertices, and that at least three edges join at each vertex.

Because the flattening of a polyhedron into the plane does not change the number
of vertices, faces, or edges, Euler’s formula also applies to planar graphs in general,
and polygon meshes in particular. Note, however, that when flattening, for example,
a cube into the plane one face of the cube corresponds to the unbounded surface
outside the flattened figure. Therefore, when working with planar graphs either the
unbounded face must be included in the face count or the formula has to be adjusted
to account for one less face.

Several useful expressions can be derived from Euler’s formula. Consider first a
closed all-triangle mesh. For such a mesh, the relationship E = 3F/2 holds because
there are three edges per face, but an edge is also part of two faces. For an arbitrary
closed mesh, each face is bounded by at least three edges that all are part of two
faces and the expression thus becomes E ≥ 3F/2. Solving Euler’s formula for E and F,
respectively, and substituting in this expression gives that F ≤ 2V −4 and E ≤ 3V −6
for arbitrary closed meshes. If the closed mesh consists solely of triangles, the number
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Table 12.1 Relationships between the number of edges, vertices, and faces of a closed mesh
derived from Euler’s formula.

For a closed (manifold) mesh the number of edges (E )
consisting of a number of … and vertices (V ) and faces relate as …

triangles (T ) 2E = 3T, T = 2V − 4, E = 3V − 6
quads (Q) 2E = 4Q, Q = V − 2, E = 2V − 4
triangles (T ) and quads (Q) 2E = 3T + 4Q, T = 2V − 2Q − 4
arbitrary convex faces (F ) 2E ≥ 3F, F ≤ 2V − 4, E ≤ 3V − 6

of edges relate to the number of triangles (T) as 2E = 3T and the corresponding
formulas become T = 2V − 4 and E = 3V − 6. If the mesh instead consists of a
number of quads only, edges relate to the number of quads (Q) as 2E = 4Q and the
formulas become Q = V − 2 and E = 2V − 4. For a closed mesh that may consist
of both triangles and quads, 2E = 3T + 4Q, and therefore T = 2V − 2Q − 4. These
relationships between the number of edges, vertices, and faces are summarized in
Table 12.1.

Euler’s formula, and the formulas derived from it, can all be used to help check if
a mesh is well formed. It is important to note that these formulas can only serve as
necessary but not sufficient validity conditions in that a malformed mesh could by
chance meet the restrictions of the formulas. The formulas should therefore be used
in conjunction with other constraint checks for full validity checking.

As an example of how the formulas can be used in validity checking, consider
the two cubes in Figure 12.29. Both cubes have been somewhat inefficiently modeled
using nine vertices.The cube in Figure 12.29a is correctly modeled, with six quads and
two triangles.The cube in Figure 12.29b, however, has been incorrectly modeled, with
a t-junction on the top face (the resulting crack shown in gray). This cube consists of
five quads and three triangles.

If the edge counts are known, 15 for the left cube and 16 for the right, Euler’s
formula gives 9 + (6 + 2) − 15 = 2 for the left cube and 9 + (5 + 3) − 16 = 1 for
the right cube. Thus, the left cube satisfies the formula, whereas the right one does
not. However, in many cases the representation used does not directly give the edge
counts, only the face and vertex counts. In this case, because the cubes consist of
triangles and quads only the number of edges can be computed using the formula
E = (3T +4Q)/2 derived earlier. For the left cube, this gives 15 edges, and for the right
cube 14.5 edges. Because the number of edges must be integral, again something is
wrong with the right cube. Consequently, whether edge counts are available or not,
in both cases the conclusion must be that the right cube cannot have been correctly
modeled.

Another way of detecting the problem is to note that for a closed manifold triangle
mesh the number of triangles must be even, as T = 2V −4 is always an even number.



510 Chapter 12 Geometrical Robustness
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Figure 12.29 The number of edges in a closed manifold mesh consisting of triangles and
quads only is E = (3T + 4Q)/2. For the cube on the left, consisting of two triangles and six
quads, this gives 15 edges. The cube on the right consists of three triangles and five quads,
for which the formula gives 14.5 edges. Because this is not an integral number, the cube on
the right cannot be correctly formed (and indeed, there is a t-junction on the top face).

The number of triangles in a closed manifold mesh consisting of triangles and quads
must also be even, in that T = 2V − 2Q − 4 is always an even number as well.

12.7 Summary

It is important for collision detection systems to be given well-formed geometry as
their input. If they are not, the presence of duplicated vertices, nonplanar polygons,
t-junctions, and similar sources of robustness problems can easily cause severe failures
such as objects falling through seemingly solid geometry.

This chapter presented solutions enabling taking an unstructured collection of
polygons — a polygon soup — as input, and turning it into a well-formed mesh.
The tools required for this cleanup process are generic and applicable to many other
situations.

Discussed was how to weld duplicate vertices. The chapter also described how
to compute adjacency information for vertices, edges, and faces, allowing the repair
of cracks and t-junctions between neighboring faces. It discussed how to merge co-
planar faces into a single face, and how to test for planarity and co-planarity in the
first place. Because most collision systems work best with convex inputs methods
for decomposing concave objects and faces into convex (or triangular) pieces were
discussed. Suggestions were also given for how to deal with “nondecomposable”
concave objects, such as the inside of a bowl, which is concave everywhere. Last,
Euler’s formula was presented as an inexpensive way to test the validity of closed
meshes.
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Optimization

It is widely acknowledged that the most important optimizations to be made are
high-level algorithmic changes. However, selecting the most appropriate algorithms
for a task is but one thing. Algorithms rely on good underlying data structures whose
efficiencies, in turn, are dependent on the target machine architecture. To complete
the coverage of efficient data structures and algorithms, this chapter deals with a
number of remaining issues related to tuning for target architectures, vital to making
a production-quality collision detection system.

Recently, program efficiency could be effectively measured by counting the num-
ber of arithmetic operations performed and multiplying these by the execution time
of each operator. Nonalgorithmic code optimizations therefore tended to focus on
reducing the number of instructions executed or replacing instructions with equiva-
lent but faster instructions. Although these optimizations still have some value, today
two entirely different types of optimizations clearly stand out from the rest: memory
optimization and optimizations utilizing parallelism.

Over the last several generations of CPUs, processor speeds have increased faster
than memory access times have decreased. It is expected that this trend will continue.
As such, if processes are not already, the likelihood of their becoming memory access
bound is increasing at a rapid pace.

To help reduce this problem, CPU manufacturers are incorporating one or more
levels of fast cache memory to sit between main memory and the CPU. These effec-
tively implement a memory hierarchy in which higher but slower levels are only
accessed if data cannot be found in the faster but smaller lower levels.

The introduction of cache memory greatly improves the situation, but alone does
not serve to fully bridge the speed gap; it is still important that performance-sensitive
code be written specifically to take advantage of this memory hierarchy. Because
compilers have no or limited knowledge of the memory hierarchy, it is up to pro-
grammers to take advantage of it by explicitly implementing memory optimizations.
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These memory optimizations can be divided into two categories: hardware caching
and software caching.

Hardware caching is handled through data and instruction caches built into the
CPU. Such caching happens automatically, but changes to how code and data are laid
out in memory have a drastic effect on its efficiency. Optimizing at this level involves
having a thorough understanding of how the CPU caches work and adapting code
and data structures accordingly.

Software caching takes place at the user level and must be explicitly implemented
and managed in the application, taking into account domain-specific knowledge.
Software caching can be used, for example, to restructure data at runtime to make
the data more spatially coherent or to uncompress data on demand.

A second important optimization is that of utilizing parallelism for both code and
data. Today, many CPUs provide SIMD instructions that operate on several data
streams in parallel. Most CPUs are also superscalar and can fetch and issue multiple
instructions in a single cycle, assuming no interdependencies between instructions.
Code written specifically to take advantage of parallelism can be made to run many
times faster than code in which parallelism is not exploited.

Starting from the basics of CPU cache architecture, this chapter provides a thor-
ough introduction to memory optimization. It explains how to improve low-level
caching through code and data changes and how prefetching and preloading of data
can further improve performance. Practical examples of cache-optimized data struc-
tures are given, and the notion of software caching as an optimization is explored.
The concept of aliasing is introduced and it is explained how aliasing can cause major
performance bottlenecks in performance-sensitive code. Several ways of reducing
aliasing are discussed in detail. The chapter also discusses how taking advantage of
SIMD parallelism can improve the performance of collision code, in particular that of
low-level primitive tests. Last, the (potentially) detrimental effects of branch instruc-
tions on modern CPU instruction pipelines are covered at the end of the chapter,
with suggestions for resolving the problem.

Before proceeding, it is important to stress that optimization should not be per-
formed indiscriminately. Prior to implementing the optimizations described herein,
alternative algorithm approaches should be explored. In general, a change of algo-
rithm can provide much more improvement than fine-tuning. Do not try to intuit
where optimization is needed; always use a code profiler to guide the optimization.
Only when bottlenecks have been identified and appropriate algorithms and data
structures have been selected should fine-tuning be performed. Because the sug-
gested optimizations might not be relevant to a particular architecture, it also makes
sense to measure the efficiency of an optimization through profiling.

Unless routines are written in assembly code, when implementing memory opti-
mizations it is important to have an intuitive feel for what assembly code is generated
for a given piece of high-level code. A compiler might handle memory accesses in a
way that will invalidate fine-tuned optimizations. Subtle changes in the high-level
code can also cause drastic changes in the assembly code. Make it a habit to study
the assembly code at regular intervals.
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13.1 CPU Caches

Today’s CPUs are much faster at executing instructions than both instructions and
data can be fetched from main memory. To work around the latencies in accessing
main memory, small high-speed memories, caches, executing at virtually the same
speed as the CPU are introduced. These caches contain copies of parts of main mem-
ory and sit between the CPU and main memory. There is typically an instruction cache
for holding instructions and a data cache for holding data.

Whenever the CPU needs to fetch the next instruction or the data required for
the currently executing instruction, it first looks to see if the data at the requested
memory location is in the corresponding cache. If so, the data is directly fetched from
the cache. If not, a cache miss results and the CPU must go to main memory, fetch
the data, and store it in the cache. The latter alternative can be on the order of 50 to
500 times slower than the first one! Worst case, no other data is available for the
CPU to work on while it is waiting for data to be fetched, causing the CPU to stall or
come to a full halt. The CPU may also stall if instructions are executed that refer to
values that have still to load. If data cannot be guaranteed to reside in cache, com-
putations should be scheduled to occur as late as possible with respect to when data
was read.

Each cache is broken into a number of sections of typically 32 or 64 bytes, called
cache lines. Data transfer between main memory and cache is performed in section
units. The cost associated with reading data from memory should therefore not be
measured in the number of bytes read but in the number of cache lines accessed.

Main memory is usually mapped to the cache memory using a direct-mapped
strategy. Direct mapping means that for a cache of M KB the bytes of each con-
secutive M KB area of main memory map one-to-one with cache memory. Two bytes
M KB apart would consequently map to the same position in cache memory. To dis-
tinguish data in a cache line, each cache line also contains a tag identifier, specifying
from which address in main memory the contained data originated.

Because two memory areas M KB apart map to the same cache lines, touching the
memory areas alternatingly would cause the cache lines to be constantly flushed and
reloaded. To lessen the impact of this problem, known as cache line thrashing, caches
are often made set associative (multiway associative). For an n-way associative cache
memory, each logical cache line corresponds to n physical cache lines, all of which
are checked (by means of the tag identifier) to see if they hold the data requested.
If not, the cache line with the oldest content is flushed and reused. In an n-way set
associative cache, n different areas of memory M KB apart can be touched at the same
time without causing cache thrashing. Commonly caches are designed to be 2-, 4-,
or 8-way associative. Figure 13.1 illustrates the mapping of a 2-way set associative
cache.

Many, if not most, CPUs have more than one level of cache between the CPU and
main memory.The caches discussed to this point — level-1 caches, or L1 caches — are
about as fast as the CPU itself. Because of cost, however, they are just a few kilobytes
each (in the range of about 8 to 32 KB at the time this text is written), and thus cache
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Figure 13.1 Illustrating how main memory is mapped into a 2-way associative cache.

misses are frequent. A level-2 cache, when present, sits between the level-1 cache
and main memory. When an L1 cache miss occurs, the L2 cache is checked, and only
if it too results in a miss is main memory accessed.

The L2 cache is not as fast as the L1 cache but is quite a bit faster than main memory.
Because the L2 cache is cheaper to manufacture than an L1 cache, its capacity is
larger, usually about 128 KB to 1 MB but potentially higher. A smaller number of
CPUs include a third level of cache memory in their memory hierarchy.

Optimizing for cache utilization means staying on cache as much as possible and
minimizing the number of cache line misses. Cache misses, whether code or data
related, can be categorized into the following three types [Hill89].

● Capacity misses. These are caused by there not being enough space in the cache
to hold all active data at the same time. They can be avoided by use of data
compression, rearranging data to be less spread out, and by hot/cold removal
of infrequently accessed data (as discussed in Section 13.3.1, on structure
optimization).

● Conflict misses. These correspond to the cache thrashing caused by the number
of accessed memory blocks mapping to the same cache line being greater than
the associativity of the cache. Conflict misses can be avoided by compressing or
rearranging data to not map to the same cache lines.

● Compulsory misses. These correspond to the unavoidable misses that take place
when a block of memory is read for the first time. They can be minimized
through increased cache line utilization by putting simultaneously accessed data
together on the same cache line and by using less data or making it smaller.

Additional information on the organization of caches and memory hierarchies
can be found in most introductory books on computer architecture, such as
[Hennessy02].
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13.2 Instruction Cache Optimizations

Optimizing the utilization of a cache has two key parts. The first is reducing the size
of the data it holds. The second is increasing data locality so that data accessed at the
same time is stored together. When writing assembly code, the programmer has direct
control over both parameters. However, when using high-level languages such as C
and C++ the programmer is somewhat at the mercy of the compiler to produce tight
machine code. Still,a number of things can be done to help the compiler produce more
code-cache-efficient code. For example, the following suggestions can help reduce
code size.

● Be careful with inlining of code. Inlining tends to bloat code. Try to inline only
those functions that are small enough that the inlined code would be as small
as the code generated to call the function. Only functions meant to be inlined
should be defined in .h files. In addition, beware aliasing issues, as discussed in
Section 13.6.

● Break loops up into cache-size chunks. When the body of a loop is too large to fit
in the instruction cache, break the code into several smaller loops. For example,

for (i = 0; i < N; i++) {
...A...;
...B...;
...C...;

}

where A, B, and C correspond to large chunks of (independent) code, can instead
be written as

for (i = 0; i < N; i++)
...A...;

for (i = 0; i < N; i++)
...B...;

for (i = 0; i < N; i++)
...C...;

where A, B, and C each fit in cache. The latter code allows A, B, and C to remain in
cache during the execution of the three smaller loops, rather than forcing each
other out of cache, as in the former code. Keeping the code in cache outweighs
the small cost added by the additional loop overhead. For loop bodies that do
not quite fit into the instruction cache, an opposite strategy can be employed.
Now try to reduce the code size to make the code fit in cache. Merge similar
loops using loop fusion; explicitly apply common-subexpression elimination to
repeated terms, rather than relying on the compiler being able to do so; and
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substitute simpler, more easily implemented, algorithms (of similar efficiency)
over more complicated ones.

● Do not unroll loops unnecessarily. Only unroll short innermost loops and only to
the point where there is enough code in the loop body to fill any stalls due to
instruction latencies, but not further.

● Compile for size, not speed. Rather than compiling at the highest optimization
setting, try compiling with a compiler option that attempts to minimize code
size (such as -Os provided by the gcc compiler) and see what effect it has.

● Avoid creeping featurism. Keep the functionality of a routine as simple as possible.
If a function handles several cases, but only one occurs at a time, provide multiple
functions, one for each case.

● Use assembly language where beneficial to do so. For a few time-critical applica-
tions, writing assembly code can be a good option. Contrary to popular opinion,
good low-level programmers can frequently write better assembly code than a
compiler can generate.

Although it might conflict with common software engineering practices, an effec-
tive way of improving locality is to adopt a more monolithic approach to code writing.
Writing all code in a single function might be overkill, but writing larger functions
helps. It also helps bringing functions closer to frequent call sites, to fit within the
same cache page as the caller. Functions can be brought closer by manually moving
them from one file to another to be defined just before or after the function they
are called in. On some systems, functions can be moved automatically during link-
ing by defining multiple code segments, corresponding to contiguous areas of code
space. Compiler extensions then allow functions to be explicitly tagged with the code
segment they should be placed in (for example, the gcc compiler provides this func-
tionality through the __attribute__ ((section ("xxx"))) extension). If a function
is commonly used in several places, it can be worthwhile providing multiple copies
of the function, associating one with each call site. Some code profilers can aid in this
reorganization by providing a suggested function ordering.

Within functions, large if statements disrupt locality when either branch of the
statement is skipped. In some cases, the two branch paths can be merged into one,
reducing code size and therefore improving locality. As an example, consider the
following code, part of a large function.

if (m > n) {
for (int i = a; i < b; i++)

c[i] = (big expression involving i) * d[i] + (second big expression
involving i);

} else {
for (int i = e; i < f; i++)
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g[i] = (big expression involving i) * h[i] + (second big expression
involving i);

}

Extracting the two big expressions as separate functions may not necessarily be
a good approach, as calling separate functions from within the large function could
cause cache thrashing. A better approach is to rewrite the code as:

if (m > n) {
lo = a; hi = b; out = c; in = d;

} else {
lo = e; hi = f; out = g; in = h;

}
for (int i = lo; i < hi; i++)

out[i] = (big expression involving i) * in[i] + (second big expression involving i);

This change effectively cuts the code size in half.
Many architectures provide one or more cache control instructions that can also

help improve instruction cache use. Specifically, they can be used to instruct the
CPU to fetch one or more cache lines worth of code into the instruction cache.
By issuing cache instruction calls to the address of a function well in advance,
the function can be in cache when it is called. However, in practice it can be dif-
ficult to put these instructions to effective use. Careful profiling can help gauge
what improvements are made. To utilize the instruction cache effectively, it is quite
important to study the machine code generated by the compiler to see how effi-
cient it is, and to gain a sense of how changes in the high-level code can affect the
generated code.

13.3 Data Cache Optimizations

The utilization of a data cache is also improved by reducing the size and increas-
ing both the spatial and temporal locality of the data processed. Although size
reduction can be seen as a form of compression, it rarely involves using a tra-
ditional coding method such as, say, Huffman, Lempel–Ziv, or arithmetic coding
[Sayood00]. These are great when working with larger sets of data from high-latency
sources such as secondary storage devices or network connections. When work-
ing with just a few bytes of data at a time from main and cached memory, the
decompression time for these methods costs more than the savings. Instead, size
reduction involves reassessing the stored data to see if it really has to be stored
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in the first place, that it is not being stored redundantly, and whether it can be
stored using a smaller data type. Simple run-length encoding schemes may also be
effective.

Data locality can be improved by redesigning algorithms and data structures to
allow data to be accessed in a more predictable, often linear or partially linear, fashion.
Improving data locality may also involve a process often referred to as blocking:
breaking large data into smaller chunks that each fit into cache.

At a lower level, the idea is to touch as few cache lines as possible, and therefore
to arrange data such that all or most words on touched cache lines are being used
at the same time. An example would be the separation of collision detection data
from rendering data to avoid having RGB colors, texture coordinates, and other data
irrelevant to collision detection reduce data locality by being interleaved with ver-
tices and other relevant data. The following subsections discuss these issues in more
detail.

13.3.1 Structure Optimizations

A starting point for improving data cache use is to look at how structures and classes
can be optimized in this respect. Three options present themselves.

● Decrease the overall size of the structure. By not using more bits than necessary
to represent member fields, more data fit into a cache line and the number of
memory fetches required to access structure fields is reduced.

● Reorder fields within the structure. Fields within a structure are usually grouped
conceptually, but should really be grouped on access patterns so that those
typically accessed together are stored together.

● Split structures into hot and cold parts. Often a few structure fields are being
accessed much more frequently than the other fields. By moving the infre-
quently accessed fields (the cold part) into a separate structure, cache coherency
increases among the frequently accessed ones (the hot part), in particular
when the structure is part of an array or some similar conglomerate data
structure.

Alignment requirements on many platforms enforce compilers to pad structures
so that any N-byte fields are N-byte aligned (for example, 32-bit integers aligned
to memory addresses evenly divisible by four). The structures are padded to align
their size to be a multiple of their largest N-byte field, wasting even more memory.
Sorting the member variables by decreasing size reduces the memory waste due
to padding. To aid in detecting space waste, some compilers can provide warnings
whenever a class or structure is padded (in gcc, for example, through the -Wpadded
option).
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Platforms based on the MIPS architecture, for instance, have the alignment
restrictions mentioned above. On them, given the following structure definitions

struct X { struct Y { struct Z {
int8 a; int8 a, pad_a[7]; int64 b;
int64 b; int64 b; int64 e;
int8 c; int8 c, pad_c[1]; float f;
int16 d; int16 d, pad_d[2]; int16 d;
int64 e; int64 e; int8 a;
float f; float f,pad_f[1]; int8 c;

}; }; };

most compilers will have sizeof(X) == 40, sizeof(Y) == 40, and sizeof(Z) == 24
(assuming 4-byte floats). The padding added to structure X (as indicated by struc-
ture Y) constitutes 40% of its memory requirements, compared to the identical, but
size-sorted, Z structure. Other ways of decreasing the size of a structure include the
following.

● Do not store data that can be easily computed from already stored values. For example,
if the three vertices of a triangle have already been fetched from memory, it may
actually be more efficient to derive a normal or a plane equation directly from the
vertices instead of potentially incurring additional cache line fetches by reading
additional data from the triangle’s data structure.

● Use smaller integers where possible. Instead of always using the default-size inte-
gers (frequently of 32 bits or more), consider whether the data will fit in just 16
or perhaps even 8 bits. For example, if the player health is given as an integral
percentage in the range 0 to 100, store it as an 8-bit byte and not a 32-bit integer.

● Use bit fields instead of Booleans. Instead of declaring flags as bool variables, pack
all flags together as bits in a bit field. The size of a bool is machine dependent,
but is at least a byte and can be as much as the size of a long integer. Storing
flags as bits will therefore reduce the memory required for them by at least a
factor of 8 and often up to a factor of 32 or more.

● Use offsets instead of pointers to index data structures. Whereas pointers are always
a fixed size of usually 4 (or more) bytes, the size of an offset can be changed
depending on how many items must be indexed. For example, a 2-byte offset
can index an array of 216 objects (or even more if the offset is taken relative to
the current object). Few situations require indexing of that many objects.

With data cache misses being very expensive, more elaborate schemes to compress
and uncompress data can also prove worthwhile. Some data compression examples
are given in Sections 13.3.2 and 13.4.
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It is important to point out that some of these suggestions might have extra CPU
costs associated with them in certain architectures. For example, extra instructions
might be required to operate on a smaller integer or on a bit of a bit field. With more
instructions to execute, the pressure on the instruction cache would increase for the
benefit of the data cache. As such, it is always a good idea to profile the code — ideally
both before and after any changes — to see what improvements can be made.

Field reordering can be difficult to do properly. In a few cases, it is clear that certain
fields should be stored within the same cache line, such as when the fields are always
accessed together. For example, the fields of position, velocity, and acceleration are
frequently accessed simultaneously and could benefit from being stored together. In
most cases, however, it is far from trivial to determine what is the best field arrange-
ment. Ideally, a compiler should take profile data from a previous run to perform the
reordering automatically on a subsequent compile, but language standards may not
allow field reordering and few (if any) compilers currently support such optimization.
One way of getting a better idea of how to best reorder the fields is to access all struc-
ture fields indirectly through accessor functions. It is then possible to (temporarily)
instrument these functions so as to measure which fields are frequently accessed and
which are accessed together, whereupon you can then manually reorder the fields
based on the access statistics. Note that adding padding in some cases improves per-
formance by making two frequently accessed and neighboring fields fall within one
cache line instead of across two.

The concept of hot/cold splitting of structures entails splitting the structure into two
different parts: one containing the frequently accessed fields (the hot part) and the
other the infrequently accessed fields (the cold part). These pieces are allocated and
stored separately, and a link pointer to the corresponding cold part is embedded in
each hot part (Figure 13.2). Although infrequently accessed fields now require a level
of indirection to be accessed, thus incurring an extra cost, the main (hot) structure
can now become smaller and the data cache is used more efficiently. Depending on
how the structures are being accessed, the link pointer might not be necessary and,
for instance, a single index could be used to access both an array of hot parts and
another array of cold parts.

As a simple example of structure splitting, in which no link pointer is required, con-
sider the following code for searching through an array of structures and incrementing
the count field of the element that has the largest value value field.

struct S {
int32 value;
int32 count;
...

} elem[1000];

// Find the index of the element with largest value
int index = 0;
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Figure 13.2 Given an array of three structure instances (with frequently accessed “hot” fields
in light gray), hot/cold splitting rearranges the data so that cold fields are stored separately
and the array structure only contains hot fields (plus a link to where the cold fields are located).

for (int i = 0; i < 1000; i++)
if (elem[i].value > elem[index].value) index = i;

// Increment the count field of that element
elem[index].count++;

If this search is the predominant operation on this array of structures, it would
make sense to split the structure S into a hot part (S1) and a cold part (S2) and rewrite
the code as follows:

// Hot fields of S
struct S1 {

int32 value;
} elem1[1000];

// Cold fields of S
struct S2 {

int32 count;
...

} elem2[1000];

// Find the index of the element with largest value
int index = 0;
for (int i = 0; i < 1000; i++)

if (elem1[i].value > elem1[index].value) index = i;
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// Increment the count field of that element
elem2[index].count++;

All value fields are now consecutive in memory instead of being interleaved by
the count field and all other fields that may be part of the original S structure. The
search to find the largest value field could therefore be sped up by a factor of 2 (or
more, if additional cold fields are present in addition to the count field).

Compilers and linkers can also use principles similar to hot/cold splitting for
reordering of code, so that functions and parts of functions that are not frequently
called are moved, reducing instruction cache thrashing due to reduced caller–callee
cache conflicts. One such optimization is based on the concept of cache line coloring
and involves arranging code (or data) such that frequently accessed items map to dif-
ferent cache lines (each of a distinct hypothetical color) [Hashemi97]. Unfortunately,
very few compilers currently implement cache line coloring. Although the process
can be applied by hand, it is a laborious procedure that has to be redone when-
ever the code is changed. Cache-conscious placement of data is also discussed in
[Chilimbi99a]. Splitting and field reordering is discussed in [Chilimbi99b].

13.3.2 Quantized and Compressed Vertex Data

In addition to the data structures themselves, for collision detection code it is also
important to consider how vertices are represented because they constitute a large
part of the data. Although the x, y, and z values of vertices are frequently stored as
three floats, it is often possible to quantize them to, for example, three 16-bit integer
values. This quantization effectively snaps the vertices to a grid, so care must be taken
so as not to cause quads and other larger collision primitives to become nonplanar.

In some cases it might even be possible to quantize a vertex further. For example,
for smaller worlds a vertex could be encoded as a 32-bit integer with, say, 11 bits
reserved for each of x and y, and 10 bits for z (Figure 13.3).

By expressing vertices in terms of a displacement from a previous vertex, even
less space might be required to represent a vertex. One alternative is to compute the
AABB of the vertices, use its center as a fixed origin, and compute the displacement of
vertices from this point. At the cost of representing one extra point (the origin itself)
at full precision, the other vertices can be expressed in fewer bits, on average.

For example, consider the five spatially coherent, but otherwise random,
16-bit integer vertices A = (30086, 15857, 9385), B = (30189, 15969, 9285),

31 0

x

11 bits

y

11 bits

z

10 bits

Figure 13.3 Vertex quantized to a 32-bit integer with 11 bits of X and Y and 10 bits of Z.
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C = (30192, 15771, 9030), D = (29971, 15764, 9498), and E = (30304, 15888, 9133).
These could be represented as (−52, −9, 121), (51, 103, 21), (54, −95, −234),
(−167, −102, 234), and (166, 22, −131) with a common 16-bit offset of
(30138, 15866, 9264). Here, the quantized vertices could be stored using (signed)
9-bit values, a considerable saving over the original format.

Even more space can be saved by allowing the origin to float from one vertex
to the next. That is, the displacement is computed from the previous vertex, thus
effectively implementing a delta compression scheme. Such a scheme works best
when the vertices represent an indexed mesh so that their order can be shuffled to
facilitate a better compression ratio. Rearranging the vertices A through E in the order
D, A, B, E, C gives the first vertex as (29971, 15764, 9498) and the following vertices
as (115, 93, −113), (103, 112, −100), (115, −81, −122), and (−112, −117, −73). The
vertex components can now be represented using (signed) 8-bit values.

Spatial partitioning methods can be combined with storing the data in the leaves
in a quantized format because the range of the data in a leaf will generally only span
a small part of the entire world. Quantization of localized data saves memory yet
allows a full range of coordinate values. If the leaves are cached after decompression,
the extra cost associated with decompression is generally counteracted by amortiza-
tion. Having leaf contents stored relative to an origin corresponding to the spatial
position of the parent node can help increase robustness because computations are
now performed near that origin, maintaining more precision in the calculations.

13.3.3 Prefetching and Preloading

Because stalls caused by load accesses to uncached memory cause severe slowdowns,
most modern CPUs provide mechanisms for helping avoid these stalls. One such
mechanism is the prefetch instruction, which allows the programmer to direct the
CPU to load a given cache line into cache while the CPU continues to execute as
normal. By issuing a prefetch instruction in advance, the data so loaded will be in
cache by the time the program needs it, allowing the CPU to execute at full speed
without stalling. The risk is that if the prefetch instruction is issued too early then
by the time the CPU is ready for the data it might have been flushed from cache.
Conversely, if it is issued too late then there is little benefit to the prefetch. Ideally,
the prefetch instruction should be issued early enough to account for the memory
latency of a load, but not more.

For linear structures, prefetch instructions are both effective and easy to use. For
example, a simple processing loop such as

// Loop through and process all 4n elements
for (int i = 0; i < 4 * n; i++)

Process(elem[i]);
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can be rewritten to use prefetching, with the help of a little code unrolling. Assuming
a cache line fits four consecutive elem values, a better structure of the loop might be:

const int kLookAhead = 4; // Experiment to find which fixed distance works best
Prefetch(&elem[0]); // Prefetch first four elements
for (int i = 0; i < 4 * n; i += 4) { // Unrolled. Process and step 4 elements at a time

Prefetch(&elem[i + kLookAhead]); // Prefetch cache line a few elements ahead
Process(elem[i + 0]); // Process the elements that have already
Process(elem[i + 1]); // been fetched into memory on the
Process(elem[i + 2]); // previous iteration
Process(elem[i + 3]);

}

If the Process() function takes at least a quarter of the time of a memory stall, the
next cache line of elem values should be in memory on the next iteration. (If it is faster
than so, it might be better to prefetch data two cache lines ahead.)

For nonlinear structures prefetching becomes trickier. The most straightforward
approach is to greedily prefetch all possible branches and hope for the best. For
example, the preorder traversal of a binary tree could be greedily prefetched as in the
following code.

void PreorderTraversal(Node *pNode)
{

Prefetch(pNode->left); // Greedily prefetch left traversal path
Process(pNode); // Process the current node
Prefetch(pNode->right); // Greedily prefetch right traversal path
PreorderTraversal(pNode->left); // Recursively visit left subtree
PreorderTraversal(pNode->right); // then recursively visit right subtree

}

Greedy prefetching is simple to implement, but it is not very efficient. It is not
unlikely that the prefetched areas have been flushed out of cache by the processing
function before the code has returned to visit that part of the tree. Prefetching can be
more effective when used together with linearization (described in Section 13.5).

Another CPU architecture mechanism for addressing the high latency of memory
fetches is the use of nonblocking loads. Nonblocking loads allow the CPU to continue
executing instructions after a cache miss, only stalling if the register that memory
is being loaded into is accessed before the data is ready. Unless more than one
outstanding load is allowed by the hardware, the CPU would also stall if another
load is issued while the first one is pending, thus causing a second cache miss.
While a load is outstanding, hit-under-miss execution of loads is usually allowed. That
is, a subsequent load referring to data already in cache does not cause the CPU
to stall.
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On a CPU with nonblocking hit-under-miss loads, the earlier loop would be better
written in an interleaved fashion to have processing go on while the next cache line
is being fetched.

Elem a = elem[0]; // Load the cache line of the first four array elements
for (int i = 0; i < 4 * n; i += 4) {

Elem e = elem[i + 4]; // Cache miss. Fetches next cache line using nonblocking load
Elem b = elem[i + 1]; // These following three values are in cache and...
Elem c = elem[i + 2]; // ...are loaded as hit-under-miss; no stalls
Elem d = elem[i + 3];
Process(a); // Process the data from the cache line that...
Process(b); // ...was fetched in the previous iteration
Process(c);
Process(d);
a = e; // e now in cache, and so is b, c, and d of next iteration

}

This particular code fetches one element beyond the end of the elem array, although
the element is not actually processed. When reading data beyond the end of the array
is a problem, the data access can be avoided by unrolling the last loop iteration and
handling that iteration separately.

13.4 Cache-aware Data Structures and Algorithms

It is wise to design with best cache utilization in mind. Algorithms and data structures
so designed, targeted for a given platform configuration, are referred to as cache aware
or cache conscious.

To illustrate how cache awareness influences the code design, the following
subsections include code examples of the ideas presented. First is a compact and
cache-efficient representation for k-d trees. After that a compact representation of
an AABB tree is presented, showing how quantization can be used to reduce storage
requirements.

For code that must perform well across several different architectures, an alter-
native to constructing multiple cache-aware versions is to implement cache oblivious
code. Such code promises to be reasonably cache efficient on any traditional cache
setup. Cache obliviousness is discussed in Section 13.4.3.

13.4.1 A Compact Static k-d Tree

A node in a k-d tree must hold a type specifying whether the node is an inter-
nal node or a leaf node. If the node is internal, it must also contain two more
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values: one specifying the axis the split was along and the other the coordinate value
of the splitting point along that axis. If instead the node is a leaf node, it must contain
a pointer or an index into an array of the data contained in the leaf. For ease of use,
the splitting value is assumed to be given as a single-precision float.

At this point, a key insight is that changing the low-order bit(s) of the 23-bit
floating-point mantissa will only ever so slightly change the value of the number. For
the splitting plane of a k-d tree, this slight movement would be completely insignif-
icant. Thus, without any ill effects the two low-order bits of the mantissa can be
appropriated to store some other data. Specifically, the two low bits can be used to
indicate the type of the node, with binary values 00, 01, and 10 specifying the x, y, or z
axis, respectively, as the splitting axis for an internal k-d tree node.The binary value 11
is used to indicate that the k-d tree node is a leaf node. When the node is a leaf node,
the remaining 30 bits contain an index referring to the actual leaf contents stored
elsewhere. Taking these ideas into account, a k-d tree node can be expressed as:

union KDNode {
float splitVal_type; // nonleaf, type 00 = x, 01 = y, 10 = z-split
int32 leafIndex_type; // leaf, type 11

};

By having the type bits be the low two bits of the float, it is possible to directly use
splitVal_type as a float without stripping off the type bits. As argued, leaving them
intact simply moves the splitting plane by a minuscule and insignificant amount.
Overall, a k-d tree node can therefore be efficiently represented as a 32-bit value.

Assuming a cache line width of 64 bytes, a single cache line can hold a complete
four-level k-d tree of 15 nodes output in breadth-first order (thus the children for a
node at a 0-based index n can directly be located at positions 2n + 1 and 2n + 2). See
Figure 13.4 for an illustration of the overall format.

A complete tree could now be stored by cutting the tree every four levels deep and
outputting the resulting subtrees of 15 nodes in breadth-first order. Given a pointer,
pNode, to a KDNode, pointers to the children can quickly be determined without further
memory accesses.

// Align tree root to start of cache line (64-byte aligned)
void ComputeChildPointers(KDNode *pRoot, KDNode *pNode, KDNode **pLeft, KDNode **pRight)
{

int32 nodeAddress = (int32)pNode;
int32 nodeIndex = (nodeAddress & 0x3f) >> 2; // node index within cache line (0-14)
int32 leftAddress, rightAddress;
if (nodeIndex < 7) {

// Three out of four, children are at 2n+1 and 2n+2 within current cache line
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Figure 13.4 An efficient representation of a k-d tree. A 64-byte cache line holds a four-level
k-d tree, with 15 nodes in the first 60 bytes. The last 4 bytes of the cache line indicate which
eight child subtree pairs exist and where they can be located.

leftAddress = nodeAddress + (nodeAddress & 0x3f) + 4;
rightAddress = leftAddress + 4;

} else {
// The children are roots of subtrees at some other cache lines
int32 rootAddress = (int32)pRoot;
int32 cacheLineFromStart = (nodeAddress - rootAddress) >> 6;
int32 leftCacheLine = 16 * cacheLineFromStart + 1;
int32 bitIndex = nodeIndex - 7; // (0-7)
leftAddress = rootAddress + leftCacheLine * 64 + bitIndex * 2 * 64;
rightAddress = leftAddress + 64; // at next consecutive cache line

}
*pLeft = (KDNode *)leftAddress;
*pRight = (KDNode *)rightAddress;

}

A single root-leaf traversal of a tree of depth d would now only read d/4 cache lines
compared to the worst-case d cache lines of, for example, a preorder traversal order
output.

Even with just 4 bytes per node, storing a complete tree is still very expensive.
Instead of requiring each subtree to have 16 children for the full depth of the tree,
ideally only those subtrees actually present should be stored.
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The remaining last 4 bytes on the cache line can be used to facilitate a com-
pact representation of linkage to other subtrees. Let the first 3 bytes form an index
into the array of existing subtrees, specifying where the first child subtree starts. Then
let the 8 bits of the last byte specify which of the eight pairs of children are present,
in that a subtree node at the fourth level will either have two or no children. To find
the actual offset from the 3-byte index, at which point a given pair of child subtrees
can be located, the bits corresponding to the preceding trees can then be added and
multiplied by 128, the size of two cache lines. The following code illustrates how to
compute pointers to the left and right subtrees of a k-d tree node using the described
representation.

// Align tree root to start of cache line (64-byte aligned)
void ComputeChildPointers(KDNode *pRoot, KDNode *pNode, KDNode **pLeft, KDNode **pRight)
{

int32 nodeAddress = (int32)pNode;
int32 nodeIndex = (nodeAddress & 0x3f) >> 2; // node index within cache line (0-14)
int32 leftAddress, rightAddress;
if (nodeIndex < 7) {

// Three out of four children are at 2n+1 and 2n+2 within current cache line
leftAddress = nodeAddress + (nodeAddress & 0x3f) + 4;
rightAddress = leftAddress + 4;

} else {
// The children are roots of subtrees at some other cache lines
int32 rootAddress = (int32)pRoot;
int32 bitIndex = nodeIndex - 7; // (0-7)
// Last word on cache line specifies linking of subtrees
int32 linkWord = *((int32 *)(nodeAddress | 0x3c));
assert(linkWord & (1 << bitIndex)); // must be set
int32 offset = PopCount8(linkWord & ((1 << bitIndex) - 1));
leftAddress = rootAddress + ((linkWord >> 8) + offset * 2) * 64;
rightAddress = leftAddress + 64; // at next consecutive cache line

}
*pLeft = (KDNode *)leftAddress;
*pRight = (KDNode *)rightAddress;

}

The function PopCount8() computes the number of bits set in a byte. It can be
implemented as a repeated parallel process in which first all odd bits are masked out
and added to the even bits to form partial sums (of consecutive pairs of odd and even
bit values) in each pair of two bits. These partial sums can then be masked and added
in the same fashion until the final result is obtained.
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inline int32 PopCount8(int32 n)
{

n = n - ((n & 0xaa) >> 1); // Form partial sums of two bits each
n = (n & 0x33) + ((n >> 2) & 0x33); // Form partial sums of four bits each
return (n + (n >> 4)) & 0x0f; // Add four-bit sums together and mask result

}

Alternatively, PopCount8() can be implemented using a small (4- or 8-bit-wide)
lookup table. The cost for computing the address of the children increases somewhat
under this method compared to storing a full complete tree, but it still compares
favorably to the cost of the incurred cache misses of most other schemes.

With appropriate changes, the same overall design principle applies to other cache
line widths. For example, with a 32-byte cache line the nodes would have to be
reduced to contain a three-level tree instead of the four-level tree presented here.

The k-d tree structure presented here was first presented in [Ericson03]. A similar
approach to efficiently representing k-d trees is presented in [Szécsi03].

13.4.2 A Compact AABB Tree

AABB trees can be expressed in a compact format with the help of a simple observa-
tion: because the six sides of a parent AABB will all come from either or both children
AABBs, at most six additional faces are required to be able to reconstruct the two child
AABBs from the bounds of the parent AABB.That is, the minimum x value of the par-
ent AABB must be either the minimum x value of the left child AABB or the minimum
x value of the right child AABB. Additionally, 6 bits are needed to specify which child
inherits a given side from the parent and which child gets its side determined by one
of the six additional faces given.

Instead of expressing the new face values as floats, the memory requirements can
be reduced further by quantizing them to a byte each, defining them in terms of a ratio
of the parent sides [Gomez01]. The following code illustrates the node layout and
how the children AABBs are reconstructed from the parent AABB and a compressed
AABB node.

// Uncompressed AABB
struct AABB {

float & operator [](int n) { return ((float *)this)[n]; }
Point min; // The minimum point defining the AABB
Point max; // The maximum point defining the AABB

};
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// Compressed AABB node
struct PackedAABBNode {

uint8 flags; // Bits determining if new extent belong to left or right child
uint8 newExtent[6]; // New extents, quantized within the parent volume
... // Potential links to children nodes

};

void ComputeChildAABBs(AABB &parent, PackedAABBNode &node, AABB *left, AABB *right)
{

for (int i = 0; i < 6; i++) {
int xyz = i & 3;
// Compute the actual side value from the quantized newExtent[] value
float min = parent.min[xyz], max = parent.max[xyz];
float val = min + (max - min) * (float)node.newExtent[i] / 255.0f;
// Test bits to see which child gets parent side value and which gets new value
if (node.flags & (1 << i)) {

(*left)[i] = parent[i]; // Left child gets parent’s bound
(*right)[i] = val; // ...right child gets computed bound

} else {
(*left)[i] = val; // Left child gets computed bound
(*right)[i] = parent[i]; // ...right child gets parent’s bound

}

}
}

The two remaining bits of the flag field can, for example, be used to indicate
whether the node is a leaf or an internal node. In the presentation in [Gomez01],
pointers to children nodes are given as two 16-bit indices, bringing the total node size
to 11 bytes. For a static tree, one or both pointers could be omitted, making the node
size even smaller. It is very important that extent values be rounded correctly upon
packing, so that the quantized child AABB volumes are conservative and encompass
the original child volumes.

13.4.3 Cache Obliviousness

An alternative to cache-aware algorithms and data structures is the class of cache-
oblivious algorithms and data structures [Frigo99]. Rather than optimized for a given
architecture, these are designed so as to perform well on arbitrary targets with different
cache setups. They are conjectured to be no worse than a factor O(log n) slower than
cache-aware methods [Prokop99].
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Figure 13.5 The van Emde Boas layout for a complete binary tree of height four. Numbers
designate node position in a linearized array representation.

The idea behind cache-oblivious algorithms and data structures is to optimize for
an ideal cache model with a cache line size L and a memory size Z, where both L
and Z are unknown. Because L and Z can take on any value, the algorithm or data
structure is optimized for all cache levels within the memory hierarchy and therefore
also for widely differing CPU setups.

Several cache-oblivious algorithms, for example, the funnelsort algorithm, are
presented in [Prokop99]. Prokop also outlines how a binary tree can be output in a
cache-oblivious way, also referred to as the van Emde Boas layout [StøltingBrodal01].
Relevant not only to collision detection structures but to games in general, this inter-
esting tree layout is recursively defined. Given a tree T of height h, the tree is split
halfway across its height so T0 represents the tree of all nodes in T with height less
than �h/2�. T1 through Tk represent the subtrees of T rooted in the leaf nodes of T0,
ordered left to right. The van Emde Boas representation of T is then the van Emde
Boas layout of T0 followed by the van Emde Boas layouts of T1 through Tk. Figure 13.5
illustrates the procedure for a binary tree of height four.

Although cache-aware methods are likely to perform better than cache-oblivious
ones in practice, cache-oblivious algorithms and data structures are especially inter-
esting in situations in which code is expected to run well on several different
platforms.

13.5 Software Caching

For further improvements to the utilization of the low-level CPU data cache, it is use-
ful to implement custom software caches in applications. In this context, an especially
important concept is the idea of relying on caching for data linearization. Here, lin-
earization means the rearrangement of concurrently accessed but dispersed data into
contiguous blocks to improve performance by increasing spatial locality. By perform-
ing on-demand linearization and caching the result, it is possible to bring together
data at runtime that cannot practically be stored together otherwise. An example
would be the cached linearization of all leaves of a tree structure overlapped by a
coarse query volume to speed up subsequent queries within the initial volume.
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Software caching also works well with keeping collision data compressed. For
example, the leaves of a tree can be stored in a compressed format in the main
data structure. A software cache can now be established for the leaf nodes such that
whenever a leaf is visited it is checked whether a cached node exists for the leaf. If
it does not, the compressed data is uncompressed and cached with the leaf id as the
key. This particular application is outlined in more detail in the following section.

Memory can also be saved in a different sense using software caching. Normally, to
avoid runtime computations a lot of data is stored that could be computed at runtime
from other data already present. Redundant data might include the AABB bounds of
the content of a tree leaf node or face normals stored alongside the collision faces.
Using software caching, these items could be omitted from the stored data and, for
example, face normals could instead be computed on the fly from the vertex data and
stored during the caching step. This type of caching could also be used to remem-
ber certain expensive calculations, such as freezing any required transformations of
collision primitives.

Thanks to the spatial and temporal coherence exhibited by most collision queries,
the cost of decompressing or rederiving data and then caching it becomes amortized
over a number of queries, making the per-query overhead of caching largely negli-
gible. Because only those leaves at which queries are taking place are being cached,
spatial coherence implies that only a small number of cache entries is needed.

Another benefit of using software caching is that it allows the data format used in
the cache to serve as a unified format all code can work against. New data structures
can now be added to the system by providing a means to cache its data into the
unified format. A unified format allows the low-level primitive tests to be written
just once, better facilitating heavy optimization without risking having data format
changes invalidating the code.

Depending on how high-level cache systems are implemented, it might be useful
to provide the user with the option to enable or disable the software cache on a call-
by-call basis, so that time is not spent on caching for a query the user knows would
not benefit from it. Another potentially useful design option is to consider having
the cache exist in “soft”memory. That is, the cache exists in the unused part of the
memory manager heap and parts of the cache are invalidated when that memory is
reclaimed through an allocation from the memory manager. Usually software caches
are implemented through hashing into an array of fixed-size elements. For more detail
on hashing see [Knuth98]. The usefulness of software caching in a game context is
discussed in [Sauer01].

13.5.1 Cached Linearization Example

Software caching can help linearize data structures by following any indices and
removing all indirection by retrieving and caching all referenced data into a consec-
utive area of memory. The increased level of data locality improves the CPU data
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t0Leaves: t1 t2 t0 t1 t7 t8 t1 t4 t5 t7 ...

v0Triangles: v2 v3 v0 v4 v5 v1 v2 v4 ...

...Vertices: (x0,y0,z0) (x1,y1,z1) (x2,y2,z2) (x3,y3,z3) (x4,y4,z4)

Figure 13.6 A tree structure stored in a compact format, with a lot of indirection, starting
with indices from the leaves to the triangles contained in the leaves.

cache hit rate drastically and therefore also overall performance. Linearized data is
also easier to prefetch or preload (as described in Section 13.3.3).

To illustrate data structure linearization through software caching, consider a tree-
type data structure in which the leaf nodes contain a number of triangles. To reduce
space, the leaf triangles have been stored as 16-bit indices into an array of the actual
triangles. The triangles have in turn each been stored as three 16-bit indices into
an array of vertices. The data format is illustrated in Figure 13.6, and through the
following code.

// Array of all vertices, to avoid repeating vertices between triangles
Point vertex[NUM_VERTICES];

// Array of all triangles, to avoid repeating triangles between leaves
struct IndexedTriangle {

int16 i0, i1, i2;
} triangle[NUM_TRIANGLES];

// Variable-size leaf node structure, containing indices into triangle array
struct Leaf {

int16 numTris; // number of triangles in leaf node
int16 tri[1]; // first element of variable-size array, with one or more triangles

};
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To remove the indirection inherent in this leaf structure, leaves can be cached into
a leaf node structure that contains all information as a consecutive block of data.

// Explicitly declared triangle, no indirection
struct Triangle {

Point p0, p1, p2;
};

#define NUM_LEAFCACHE_ENTRIES (128-1) // 2∧N-1 for fast hash key masking w/ ‘&’

// Cached leaf node, no indirection
struct CachedLeaf {

Leaf *pLeaf; // hash key corresponding to leaf id
int16 numTris; // number of triangles in leaf node
Triangle triangle[MAX_TRIANGLES_PER_LEAF]; // the cached triangles

} leafCache[NUM_LEAFCACHE_ENTRIES];

Figure 13.7 illustrates how the leaves of the previous tree structure are associated
with a cache entry containing the linearized data, allowing triangles to be processed
without any indirection at all.

The code that processes a leaf node can now be written to see if the node is already
in cache, cache it if it is not, and then operate on the cached leaf node data.

// Compute direct-mapped hash table index from pLeaf pointer (given as input)
int32 hashIndex = ((int32)pLeaf >> 2) & NUM_LEAFCACHE_ENTRIES;

...

Cached linearized leaf:
(x0,y0,z0) (x2,y2,z2) (x3,y3,z3) (x0,y0,z0) (x4,y4,z4)

Figure 13.7 The same structure as in Figure 13.6, now linearized through a caching scheme
so that vertices can be directly accessed with no indirection.
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// If leaf not in cache at this address, cache it
CachedLeaf *pCachedLeaf = &leafCache[hashIndex];
if (pCachedLeaf->pLeaf != pLeaf) {

// Set cache key to be pLeaf pointer
pCachedLeaf->pLeaf = pLeaf;
// Fetch all triangles and store in cached leaf (linearized)
int numTris = pLeaf->numTris;
pCachedLeaf->numTris = numTris;
for (int i = 0; i < numTris; i++) {

Triangle *pCachedTri = &pCachedLeaf->triangle[i];
IndexedTriangle *pTri = &triangle[pLeaf->tri[i]];
pCachedTri->p0 = vertex[pTri->i0];
pCachedTri->p1 = vertex[pTri->i1];
pCachedTri->p2 = vertex[pTri->i2];

}
}

// Leaf now in cache so use cached leaf node data for processing leaf node
int numTris = pCachedLeaf->numTris;
for (int i = 0; i < numTris; i++) {

Triangle *pCachedTri = &pCachedLeaf->triangle[i];
DoSomethingWithTriangle(pCachedTri->p0, pCachedTri->p1, pCachedTri->p2);

}
...

For a 64-byte cache line, the original uncached code might in the worst case touch
10 cache lines for a single triangle: two cache lines for the leaf structure, two for the
indexed triangle structure, and two for each of the vertices. Even if each individual
piece of data has been padded to align to a cache line, the worst case is still upward
of five cache line accesses. With the leaf in cache, the cached code would touch at
most two cache lines per triangle and often just one cache line.

13.5.2 Amortized Predictive Linearization Caching

The linearization concept can also be used in more advanced caching schemes. As
an example, consider a static tree hierarchy representing the world geometry. Let
a collision query be issued for, say, a spherical volume surrounding the immediate
neighborhood of a player character. By caching all polygon data within this volume
into a linearized format, as long as the player remains within the sphere only the
cached data has to be tested and the main hierarchy does not have to be traversed or
tested against.
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Figure 13.8 (a) Sphere with center C and radius r for which all contained geometry is cached.
A smaller sphere with the same center and a radius of d is also maintained. (b) When the player
leaves the smaller sphere at some point P, the amortized caching of all geometry contained
in the sphere centered at P with radius r begins. This caching must be guaranteed complete
within the time it takes to travel the distance r − d to ensure that the new set of geometry
can be made current when the outer sphere of the initial sphere pair is exited by the player.

To reduce the cost of linearizing the collision primitives within the sphere into the
cache, this computation can be amortized. When the player has moved some distance
away from the origin of the currently cached spherical volume, a new caching query is
initiated from the current player position and completed by computing it in parts over
a few frames (Figure 13.8). When the second set of cached data is fully computed,
whichever set corresponding to the sphere whose center the player is closest to is
made the current collision set, and the other set is cleared and recomputed in the
same manner when the player again has moved some specific distance away from
the new sphere origin.

This approach is best for applications in which the player character travels with
moderate speed. It might not be suitable if instant teleportation from one location to
another is possible.

13.6 Aliasing

In both C and C++ it is not uncommon to have two pointers pointing to the same
location in memory. When two pointers point to the same memory location they are
said to alias each other. For example, in following code the pointers p1 and p2 are
both aliases to the memory of the integer variable n:

int n;
int *p1 = &n; // *p1 references the location of n
int *p2 = &n; // *p2 also references the location of n
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Aliasing presents quite a problem for C/C++ compilers. When compilers are unable
to deduce that two pointers cannot alias each other, they must conservatively assume
aliasing is present. This assumption can impede certain optimizations, leaving code
with unnecessary load and store instructions that bloat both code and slots in function
stack frames, thus indirectly impacting on code and data cache efficiency. These loads
and stores also hinder instruction reordering and loop unrolling, causing instruction
stalling.

In contrast, a language such as FORTRAN 77 specifies that no two identifiers
will be considered as aliasing each other unless they are declared as such in an
EQUIVALENCE declaration. It therefore does not suffer from this aliasing problem at
all. To illustrate the problem, consider the following code for transforming a point by
a 3 × 3 matrix.

void TransformPoint(Point *pOut, Matrix &m, Point &in)
{

pOut->x = m[0][0] * in.x + m[0][1] * in.y + m[0][2] * in.z;
pOut->y = m[1][0] * in.x + m[1][1] * in.y + m[1][2] * in.z;
pOut->z = m[2][0] * in.x + m[2][1] * in.y + m[2][2] * in.z;

}

The compiler has no higher-level knowledge of the intended function of the code.
It therefore does not know that the programmer must have intended for pOut and in
not to alias each other (or the code would not correctly be implementing a transfor-
mation, in that pOut is written to before in is fully used). As such, the compiler must
assume pOut and in might reference the same structure.

Faced with the previous code, most compilers generate code that loads in.x, in.y,
and in.z three times each, for a total of nine times. A really clever compiler using
type-based alias analysis (as discussed later) would know that pOut->x could only
alias in.x and pOut->y only in.y, and therefore only have to perform two reloads,
for a total of five loads. Ideally though, the fields of in should be loaded once each.

In general, unless the compiler can prove that aliasing is not possible, it must
assume it is present. Unfortunately, proving that aliasing is not taking place is difficult.
For the compiler to assume aliasing is present when in fact it is not is bad. It causes
variables to be fetched from memory when they are already present in a register, or
stored to memory when holding the value in a register would have sufficed. Worse,
failure to remove an unnecessary store can have a cascading effect. It may make it
seem like other aliasing is present, thereby stopping the compiler from removing
unnecessary memory accesses, which in turn can stop it from removing other ones,
and so on.

It should be pointed out that declaring the input variables as const is not a solution
to the aliasing problem. For example, declaring m as const Matrix &m just says that
the memory area occupied by m is constant with respect to accesses through m, not
that the memory area is constant in general. Thus, the memory area could still be
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written to through pOut. Overall, const declarations promise almost nothing and do
little to help the compiler optimize code. Instead, their primary use is to help detect
programming errors.

That said, for the code given earlier, one way of solving the problem is to rewrite
the code to read:

void TransformPoint(Point *pOut, Matrix &m, Point &in)
{

float tmpx, tmpy, tmpz;
tmpx = m[0][0] * in.x + m[0][1] * in.y + m[0][2] * in.z;
tmpy = m[1][0] * in.x + m[1][1] * in.y + m[1][2] * in.z;
tmpz = m[2][0] * in.x + m[2][1] * in.y + m[2][2] * in.z;
pOut->x = tmpx; pOut->y = tmpy; pOut->z = tmpz;

}

Inputs are now used before memory is written to, and the same variable can be
given as both input and output arguments without causing aliasing problems. Good
compilers should now be able to optimize the code properly. Some architectures
benefit more from ensuring that inputs are consumed before output is generated. In
particular, RISC-like architectures with enough general-purpose registers to hold all
the inputs usually benefit.

Whenever possible it is good practice to help the compiler in this way (using local
variables to hold global variables, referenced values, and temporary results), thereby
explicitly helping the compiler recognize that no aliasing is present. Unfortunately, it
is not always easy to perform this rewrite manually. For example, with the higher level
of data encapsulation and abstraction provided by the class and template concepts
of C++, code is often broken up into smaller generic subunits, with the intent of
hiding internal structure and operations. Thus, something as simple as making a
local variable copy of a buffer pointer during a data structure traversal, or moving
invariant expressions out of a loop, cannot always be made without exposing the data
structure or by unfolding template instantiations.

The problem of higher levels of abstraction having a negative impact on optimiza-
tion, especially with respect to aliasing, is known as the abstraction penalty problem.
Further information is provided in [Stepanov], [Robison96a], and [Robison96b].
Some of the C++ abstraction penalty performance issues, especially relating to over-
head in vector and matrix expressions, can be successfully addressed by the expression
template technique as pioneered by [Veldhuizen95], albeit at a high development cost.

13.6.1 Type-based Alias Analysis

Some modern C/C++ compilers use type-based alias analysis to help address the prob-
lem of aliasing. The compiler uses the fact that the language standard states that only
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two objects of the same compatible type may alias each other and that each area of
memory can only be associated with one type during its lifetime.

For example, under the standard rules floats and integers are not compatible types.
To allow block moves and similar operations to be performed, signed and unsigned
chars are compatible with all types. Thanks to these compatibility rules, more sophis-
ticated compilers enhanced with type-based alias analysis can deduce that there is
no aliasing between v[i] and *n in the code

void Foo(float *v, int *n)
{

for (int i = 0; i < *n; i++)
v[i] += 1.0f;

}

and optimize it as if it was written as:

void Foo(float *v, int *n)
{

int t = *n;
for (int i = 0; i < t; i++)

v[i] += 1.0f;
}

The difference is small, but important. In the former code, without type-based
alias analysis the value of *n would have to be fetched from memory as many times
as the loop iterates. In the second version, the value of *n has been moved out of
the loop and is therefore fetched only once. It is important to note that according
to the C/C++ language standards it is illegal to write code similar to the following
type-punning operation.

uint32 i;
float f;
i = *((int32 *)&f); // Illegal way of getting the integer representation of the float f

This operation is treating the memory holding f as having two different types.
A compiler that applies type-based alias analysis on this code is therefore free to
generate code that does not behave as intended. Because compilers have built-in
knowledge about the deliberate aliasing of unions, many compilers allow access
through a union to be a legal way to perform the following operation:

union {
uint32 i;
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float f;
} u;
u.f = f;
uint32 i = u.i;

However, to guarantee compliance with the language standard and thus gener-
ation of correct code, the float would have to be accessed by a char array, with the
uint32 assembled from its elements.

13.6.2 Restricted Pointers

The 1999 ANSI/ISO C standard defines a new qualifier keyword, restrict, which
allows programmers to at least partly help compilers resolve some of the aliasing
issues in a program. As a result, the compilers are able to more aggressively optimize
the code. Some C++ compilers also provide the restrict keyword as a language
extension. Declaring a pointer (or reference) with the restrict qualifier is basically a
promise to the compiler that for the scope of the pointer the target of the pointer will
only be accessed through that pointer (and pointers copied from it). Using restricted
pointers and references, the earlier transformation code can be written to read:

void TransformPoint(Point * restrict pOut, Matrix & restrict m, Point & restrict in)
{

pOut->x = m[0][0] * in.x + m[0][1] * in.y + m[0][2] * in.z;
pOut->y = m[1][0] * in.x + m[1][1] * in.y + m[1][2] * in.z;
pOut->z = m[2][0] * in.x + m[2][1] * in.y + m[2][2] * in.z;

}

A good compiler should now be able to produce optimal code for the function as
it now knows that writing to pOut cannot possibly affect any of the inputs. Before
relying on the use of restricted pointers, it is a good idea to verify that the target
compiler is in fact using it as a hint to improve optimization, as even ignoring the
keyword conforms to the language standard. As another example of the benefits of
using restricted pointers, consider computing the product of two complex numbers,
(a+bi)(c+di) = (ac−bd)+ (ad+bc)i, as naively implemented by the following code.

void ComplexMult(float *a, float *b, float *c)
{

a[0] = b[0]*c[0] - b[1]*c[1]; // real part in a[0] (b[0] and c[0])
a[1] = b[0]*c[1] + b[1]*c[0]; // imaginary part in a[1] (b[1] and c[1])

}



13.6 Aliasing 541

Because this code could be called as in either one of the three calls

float f[3];
ComplexMult(&f[0], &f[0], &f[0]); // a[0] aliases b[0], c[0]; a[1] aliases b[1], c[1]
ComplexMult(&f[1], &f[0], &f[0]); // a[0] aliases b[1], c[1]
ComplexMult(&f[0], &f[1], &f[1]); // a[1] aliases b[0], c[0]

it is clear that a[0] and a[1] might alias any of b[0], b[1], c[0], and c[1]. The
assignment to a[0] therefore means that all four input values must be fetched again
in the second code line.To better illustrate the issue, the following compiler-generated
code (here compiled with a version of gcc producing MIPS assembly code) shows that
this is indeed the case.

ComplexMult(float *, float *, float *)
lwc1 f3,0x0000(a2) ; f3 = c[0]
lwc1 f2,0x0004(a2) ; f2 = c[1]
lwc1 f1,0x0000(a1) ; f1 = b[0]
lwc1 f0,0x0004(a1) ; f0 = b[1]
mul.s f1,f1,f3 ; f1 = f1 * f3
mul.s f0,f0,f2 ; f0 = f0 * f2
sub.s f1,f1,f0 ; f1 = f1 – f0
swc1 f1,0x0000(a0) ; a[0] = f1
lwc1 f2,0x0004(a1) ; f2 = b[1] (reloaded)
lwc1 f3,0x0000(a2) ; f3 = c[0] (reloaded)
lwc1 f0,0x0000(a1) ; f0 = b[0] (reloaded)
lwc1 f1,0x0004(a2) ; f1 = c[1] (reloaded)
mul.s f2,f2,f3 ; f2 = f2 * f3
mul.s f0,f0,f1 ; f0 = f0 * f1
add.s f0,f0,f2 ; f0 = f0 + f2
jr ra
swc1 f0,0x0004(a0) ; a[1] = f0

However, by restrict-qualifying a (and to help the compiler with its alias analysis,
also b and c; see the next section for the explanation), the compiler is effectively
informed that neither b nor c can be aliased by a.

void ComplexMult(float * restrict a, float * restrict b, float * restrict c)
{

a[0] = b[0]*c[0] - b[1]*c[1]; // real part
a[1] = b[0]*c[1] + b[1]*c[0]; // imaginary part

}
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The four input values should now only have to be fetched once each. Examining
the compiler output for the function confirms this.

ComplexMult(float *, float *, float *)
lwc1 f2,0x0004(a1) ; f2 = b[1]
lwc1 f0,0x0004(a2) ; f0 = c[1]
lwc1 f1,0x0000(a1) ; f1 = b[0]
mul.s f4,f2,f0 ; f4 = f2 * f0
lwc1 f3,0x0000(a2) ; f3 = c[0]
mul.s f0,f1,f0 ; f0 = f1 * f0
mul.s f2,f2,f3 ; f2 = f2 * f3
mul.s f1,f1,f3 ; f1 = f1 * f3
add.s f0,f0,f2 ; f0 = f0 + f2
sub.s f1,f1,f4 ; f1 = f1 – f4
swc1 f0,0x0004(a0) ; a[1] = f0
jr ra
swc1 f1,0x0000(a0) ; a[0] = f1

Furthermore, this code shows how the compiler is now free to rearrange the code,
interleaving the instructions for the two calculations. Because instruction results are
not always immediately available due to instruction latencies, instruction reordering
helps reduce latency stalls between dependent instructions.

13.6.3 Avoiding Aliasing

Because aliasing can negatively affect the performance of a program, it is worthwhile
considering what code and code style changes can be made to reduce aliasing in a
program. Some good guidelines follow.

● Cache global variables and formal pointer and reference function arguments in local
variables. In C++, even class members benefit from caching into local variables
because they are subject to aliasing through the this pointer. From an opti-
mization standpoint, class members behave much as global variables (but with
a restricted scope) and should be treated as such.

● Do not take the address of local variables (with &) unless necessary. If their address
is never taken, no pointers can point to them and aliasing of them is therefore
impossible.

● Avoid passing small values by pointer or reference if they can be passed by value.
Small values here refer to those that comfortably fit in a machine register. In
some cases it might even be preferable to pass certain structures by value (usually
smaller ones, of just one or a few fields).
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● Declare pointers and references as restrict. In theory it is sufficient to restrict
output pointers only. In practice, because pointers can be freely assigned to
other pointers through complex expressions sometimes the compiler might not
be able to track the pointer and must consider it lost. In these cases the compiler
has to conservatively assume that two pointers may alias the same target unless
both are qualified with restrict. Thus, restrict-qualifying all pointers simplifies
the alias analysis and is likely to give the best result. It is, however, important
to do so only if there really is no aliasing possible or the compiled code will not
work correctly.

● Declare variables as close to actual use as possible (that is, as late as possible). With
less code between declaration point and use, there is less code between to
cause aliasing issues and for the compiler aliasing analysis to fail on. Define
new temporary variables locally instead of reusing earlier temporary variables
that happen to be in scope.

● Inline small functions, especially if they take arguments by reference.

● Wherever possible, manually extract common subexpressions from if statements and
loops (including the loop condition part). The compiler might not be able to do so,
due to hidden aliasing.

● Minimize the abstraction penalty by not over-abstracting and overly generalizing
code.

Very little easily digestable information is available on the issues of aliasing, the
abstraction penalty problem, restricted pointers, and similar topics. Two notable
exceptions are [Robison99] and [Mitchell00].

13.7 Parallelism Through SIMD Optimizations

Today virtually all CPUs have multiple processing units. Commonly a CPU contains
both an arithmetical logical unit (ALU), which performs integer operations, and a
floating-point unit (FPU), which performs floating-point arithmetic. These units tend
to operate in parallel so that theALU can execute integer instructions at the same time
the FPU is executing floating-point instructions. Some CPUs are n-way superscalar,
meaning that they have n parallel execution units (generally ALUs) and can start
processing of up to n instructions on each cycle.

Additionally, many current microprocessor architectures offer some type of SIMD
extensions (single instruction, multiple data) to their basic instruction set. These SIMD
instructions are defined on wide registers — holding 4, 8, or even 16 scalar integer
or floating-point values — performing a single operation on these values in parallel.
As such, the use of SIMD instructions promises a potential 4-fold (or 8- or 16-fold)
performance increase for code that can take advantage of this instruction set.
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Currently available SIMD extensions include SSE and SSE2 from Intel, 3DNow!
fromAMD,andAltiVec from Motorola and IBM. Sony’s PlayStation 2 takes parallelism
to a new level by offering both multimedia extensions on its MIPS CPU core (featuring
two ALUs and one FPU) and two separate vector co-processors running parallel to
the main CPU, both with parallel instruction streams. Overall, the PlayStation 2 is
capable of executing up to seven different instructions at the same time! New game
consoles like the PlayStation 3 and the Xbox 2 will offer even more parallelism. The
following will focus on the use of SIMD instructions, which can be used to optimize
sequential code in two different ways.

● Instruction-level parallelism. Existing algorithms can be optimized by identifying
similar operations and computing these in parallel. For example, the multipli-
cations in a dot product could be computed in parallel using a single SIMD
multiplication. Because there are serial aspects to most computations, some
parts of a process cannot be optimized using instruction-level parallelism, such
as the summation of the partial products within the dot product.

● Data-level parallelism. SIMD can also be used to operate on completely differ-
ent data in parallel. For example, a typical use could be to compute four dot
products in parallel. Data-level parallelism is the natural operating use of SIMD
instructions, as the SIMD name implies.

An example of a successful application of SIMD optimization is the acceleration
of ray intersections in an interactive ray-tracing application, by testing four rays in
parallel against a triangle using SIMD instructions [Wald01]. To feed the test, four
rays (arranged in a 2 × 2 cluster) are simultaneously traversed through a k-d tree.
The traversal decision is also made in parallel using SIMD instructions. A subtree is
visited if at least one ray intersects its defining volume. Although some overhead is
caused by this traversal decision, because the 2 × 2 cluster of rays is highly coherent
little extra work is performed in reality. However, this query clustering is not as
applicable to collision detection in general, in which a group of ray queries tend
to span a much wider field. For the SIMD triangle test, a 3.5 to 3.7 time speedup
compared to the non-SIMD C code was reported. The clustered traversal of four rays
in parallel provided an additional speedup of about 2.

Compilers in general remain rather underdeveloped in their support of SIMD
instructions. The support largely consists of providing intrinsic functions (built-in
functions corresponding more or less one-to-one to the assembly instructions).
Effective use of SIMD instructions still largely relies on hand coding in assembly
language.

To illustrate how effective the use of SIMD instructions can be in collision detection
tests, the next three sections outline possible implementations of four simultaneous
sphere-sphere, sphere-AABB, and AABB-AABB tests. It is here assumed the SIMD
architecture can hold four (floating-point) values in the same register and operate
on them simultaneously in a single instruction. SIMD intersection tests for ray-box
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and ray-triangle are not given here, but outlines can be found in [Knittel00] and
[Bonnedal02], respectively.

Note that data-level parallelism can be utilized even on machines lacking SIMD
extensions. The PopCount8() function in Section 13.4.1 is an example of how to
implement data parallelism within a normal register variable.

13.7.1 Four Spheres Versus Four Spheres SIMD Test

Given eight spheres Si, 1 ≤ i ≤ 8, each defined by a 4-tuple (xi, yi, zi, ri) — where
(xi, yi, zi) is the sphere center and ri its radius — the four sphere-sphere tests

(xi − xj)2 + (yi − yj)2 + (zi − zj)2 ≤ (ri + rj)2

with 1 ≤ i ≤ 4, j = i + 4, can be performed in parallel using SIMD instruction as
follows. First let these eight SIMD registers be defined, where the notation is such
that the register symbolically called PX contains the four values x1, x2, x3, and x4, and
similarly for the remaining seven registers:

PX = x1 | x2 | x3 | x4 QX = x5 | x6 | x7 | x8
PY = y1 | y2 | y3 | y4 QY = y5 | y6 | y7 | y8
PZ = z1 | z2 | z3 | z4 QZ = z5 | z6 | z7 | z8
PR = r1 | r2 | r3 | r4 QR = r5 | r6 | r7 | r8

The four sphere-sphere tests can then be performed in parallel by the following
SIMD assembly pseudocode.

SUB T1,PX,QX ; T1 = PX - QX
SUB T2,PY,QY ; T2 = PY - QY
SUB T3,PZ,QZ ; T3 = PZ - QZ (T1-3 is difference between sphere centers)
ADD T4,PR,QR ; T4 = PR + QR (T4 is sum of radii)
MUL T1,T1,T1 ; T1 = T1 * T1
MUL T2,T2,T2 ; T2 = T2 * T2
MUL T3,T3,T3 ; T3 = T3 * T3 (T1-3 is squared distance between sphere centers)
MUL R2,T4,T4 ; R2 = T4 * T4 (R2 is square of sum of radii)
ADD T1,T1,T2 ; T1 = T1 + T2
SUB T2,R2,T3 ; T2 = R2 - T3
LEQ Result,T1,T2 ; Result = T1 <= T2

The resulting code is just 11 instructions. With an instruction throughput/latency of
1/4 cycles, the final result is obtained in 16/19 cycles, making the effective throughput
of the code just four cycles for one sphere-sphere test.
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13.7.2 Four Spheres Versus Four AABBs SIMD Test

A sphere-AABB test can be implemented in a similar manner. As before, let the four
spheres be given by the 4-tuples (xi, yi, zi, ri). Let the four AABBs be given by the
opposing minimum and maximum corners (min[i]x, min[i]y, min[i]z) and (max[i]x,
max[i]y, max[i]z). By first defining the symbolic SIMD registers

MINX = min1x | min2x | min3x | min4x SX = x1 | x2 | x3 | x4
MINY = min1y | min2y | min3y | min4y SY = y1 | y2 | y3 | y4
MINZ = min1z | min2z | min3z | min4z SZ = z1 | z2 | z3 | z4
MAXX = max1x | max2x | max3x | max4x SR = r1 | r2 | r3 | r4
MAXY = max1y | max2y | max3y | max4y
MAXZ = max1z | max2z | max3z | max4z

the test is then implemented by the following pseudocode:

MAX TX,SX,MINX ; TX = Max(SX,MINX) Find point T = (TX, TY, TZ) on/in AABB, closest
MAX TY,SY,MINY ; TY = Max(SY,MINY) to sphere center S. Computed by clamping sphere
MAX TZ,SZ,MINZ ; TZ = Max(SZ,MINZ) center to AABB extents.
MIN TX,TX,MAXX ; TX = Min(TX,MAXX)
MIN TY,TY,MAXY ; TY = Min(TY,MAXY)
MIN TZ,TZ,MAXZ ; TZ = Min(TZ,MAXZ)
SUB DX,SX,TX ; DX = SX - TX D = S - T is vector between S and clamped center T
SUB DY,SY,TY ; DY = SY - TY
SUB DZ,SZ,TZ ; DZ = SZ - TZ
MUL R2,SR,SR ; R2 = SR * SR Finally compute Result = Dot(D, D) <= SR∧2,
MUL DX,DX,DX ; DX = DX * DX where SR is sphere radius. (To reduce the latency
MUL DY,DY,DY ; DY = DY * DY of having two sequential additions in the dot
MUL DZ,DZ,DZ ; DZ = DZ * DZ product, move DZ∧2 term over to right-hand side
ADD T1,DX,DY ; T1 = DX + DY of comparison and subtract it off SR∧2 instead.)
SUB T2,R2,DZ ; T2 = R2 - DZ
LEQ Result,T1,T2 ; Result = T1 <= T2

This code is 16 instructions long and an instruction throughput/latency of 1/4 cycles
gives the final result in 23/26 cycles.

13.7.3 Four AABBs Versus Four AABBs SIMD Test

For performing four AABB-AABB tests in parallel, let eight AABBs be
given by opposing minimum and maximum corners (min[i]x, min[i]y, min[i]z)
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and (max[i]x, max[i]y, max[i]z), for 1 ≤ i ≤ 8. Defining the symbolic SIMD
registers

MIN1X = min1x | min2x | min3x | min4x MIN2X = min5x | min6x | min7x | min8x
MIN1Y = min1y | min2y | min3y | min4y MIN2Y = min5y | min6y | min7y | min8y
MIN1Z = min1z | min2z | min3z | min4z MIN2Z = min5z | min6z | min7z | min8z
MAX1X = max1x | max2x | max3x | max4x MAX2X = max5x | max6x | max7x | max8x
MAX1Y = max1y | max2y | max3y | max4y MAX2Y = max5y | max6y | max7y | max8y
MAX1Z = max1z | max2z | max3z | max4z MAX2Z = max5z | max6z | max7z | max8z

allows the tests to be performed by the following pseudocode.

MAX AX,MIN1X,MIN2X ; AX = Max(MIN1X,MIN2X) Compute the intersection volume of the
MIN BX,MAX1X,MAX2X ; BX = Min(MAX1X,MAX2X) two bounding boxes by taking the maximum
MAX AY,MIN1Y,MIN2Y ; AY = Max(MIN1Y,MIN2Y) value of the minimum extents and the
MIN BY,MAX1Y,MAX2Y ; BY = Min(MAX1Y,MAX2Y) minimum value of the maximum extents.
MAX AZ,MIN1Z,MIN2Z ; AZ = Max(MIN1Z,MIN2Z)
MIN BZ,MAX1Z,MAX2Z ; BZ = Min(MAX1Z,MAX2Z)
LEQ T1,AX,BX ; T1 = AX <= BX If the intersection volume is valid (if
LEQ T2,AY,BY ; T2 = AY <= BY the two AABBs are overlapping) the
LEQ T3,AZ,BZ ; T3 = AZ <= BZ resulting minimum extents must be smaller
AND T4,T1,T2 ; T4 = T1 && T2 than the resulting maximum extents.
AND Result,T3,T4 ; Result = T3 && T4

This code is 11 instructions long and an instruction throughput/latency of 1/4 cycles
gives the final result in 16/19 cycles.

13.8 Branching

Branching can be a performance issue for modern CPUs. An instruction, when exe-
cuted by the CPU, is not executed all at once, but rather in several stages. The reason
is parallelism. To see why, consider an abstract architecture with four stages.

1. Fetch. During this stage, the instruction is fetched from memory.

2. Decode. At this point, the bits of the instruction are examined and control is routed
to the place of actual execution of the instruction.

3. Execute. The actual operation specified by the instruction is performed.

4. Store. The result of the instruction is committed to a register or to memory.
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Figure 13.9 Nonpipelined instruction execution (top). Pipelined instruction execution
(bottom).

Each stage takes one clock cycle to execute, and thus one instruction completes
execution in four clock cycles. If the next instruction is started first when the previous
instruction is completed, an instruction would be executed every four clock cycles.
However, by having stages of execution instruction processing can be pipelined to
have their execution overlapping. Effectively, pipelining means a new instruction is
now started on every clock cycle. Figure 13.9 illustrates nonpipelined and pipelined
execution of a number of instructions (I1 through I8). In the same time it takes the
nonpipelined processor to execute one instruction, the pipelined processor executes
four instructions.

Clearly, by breaking the instruction processing into more, smaller and faster, stages
the pipelined processor will process even more instructions at a faster rate. Because
of the speed increases pipelining allows, some CPUs of current PCs have pipelines
consisting of upward of 20 stages.

Branches, however, pose a problem for pipelined CPU architectures. As illustrated
in Figure 13.10, because the instruction (I2) following a branch (I1) is not necessar-
ily the branch target execution of successive instructions must be stopped until the
branch has been fully executed and the branch target (I3) is known. Halting execu-
tion until the branch instruction has completed causes“bubbles”of inactivity in the
pipeline. As a result, pipeline throughput decreases.

To keep the pipeline going, CPUs speculatively assume a branch target (based
on previous branching history at the particular branch, tracked through a branch-
specific cache) and hope the branch will behave as expected. If the guess is right,
everything is fine. However, if the guess is wrong the pipeline is flushed (throwing
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Figure 13.10 Illustrating the pipeline stalls caused by cancelling the execution of instruction
I2 when the branch instruction I1 is encountered.

out all speculative work) and restarted. For a pipeline with 20 stages, it will take about
20 instructions before all stages of the pipeline are filled and the pipeline is working
at full capacity again.

Avoiding pipeline flushes can greatly improve performance in the worst case. The
best solution is to rewrite code so as to avoid branches in the first place. Improvements
can also be had by rearranging code (if statements and other conditionals, in
particular) so that control flow becomes more predictable.

Rewriting code to avoid branches often involves using various bit-shifting“tricks”
to compute and operate on Boolean values. It can also involve coercing a compiler to
emit special predicated CPU instructions that are or are not executed depending on
the status of previously computed control flags. Most modern CPUs have predicated
instructions in their instruction sets. Use of predicated instructions differs from com-
piler to compiler, and thus examining the generated code is necessary to understand
under what circumstances they are emitted.

A full treatment of the topic of branch elimination is outside the scope of this book.
To provide one example of how branches can be eliminated, consider the following
routine for testing if a value is one of the first five prime numbers.

uint32 SmallPrime(uint32 x)
{

if ((x == 2) || (x == 3) || (x == 5) || (x == 7) || (x == 11))
return 1;

return 0;
}

For this code, most compilers will generate code containing about five branches.
For example, Microsoft Visual C for the PC compiles the function to the following
assembly code.

00401150 mov eax,dword ptr [esp+4] ; fetch x
00401154 cmp eax,2 ; if (x == 2) goto RETURN_1
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00401157 je 00401170
00401159 cmp eax,3 ; if (x == 3) goto RETURN_1
0040115C je 00401170
0040115E cmp eax,5 ; if (x == 5) goto RETURN_1
00401161 je 00401170
00401163 cmp eax,7 ; if (x == 7) goto RETURN_1
00401166 je 00401170
00401168 cmp eax,11 ; if (x == 11) goto RETURN_1
0040116B je 00401170
0040116D xor eax,eax ; return 0
0040116F ret
00401170 mov eax,1 ; RETURN_1: return 1
00401175 ret

With almost every other instruction for a branch, this code is not pipeline friendly.
The branches can be removed by replacing the shortcut OR operations (||) with
bitwise OR operations (|) However, the resulting compiled code becomes quite long,
and thus bitwise ORs do not constitute an ideal solution. A better solution is a small
bitwise lookup table held in a constant. By setting bits 2, 3, 5, 7, and 11 of this
constant, the bit corresponding to x holds the correct return result. When coded in
C/C++, the only complication is that the bit-shift operators are undefined for right-
hand operands larger than the number of bits in the left-hand operand. Taking this
problem into account gives the following branch-optimized code.

uint32 SmallPrime(uint32 x)
{

const uint32 PRIME_BITS = (1 << 2) | (1 << 3) | (1 << 5) | (1 << 7) | (1 << 11);
uint32 mask = (x < 32);
return (PRIME_BITS >> x) & mask;

}

The new function compiles to the following.

00401180 mov ecx,dword ptr [esp+4] ; fetch x
00401184 mov edx,8Ach ; PRIME_BITS = ...
00401189 cmp ecx,32 ; x < 32
0040118C sbb eax,eax
0040118E shr edx,cl ; edx = PRIME_BITS >> “x”
00401190 neg eax ; eax = mask
00401192 and eax,edx
00401194 ret ; return (PRIME_BITS >> x) & mask
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Not only is this code shorter than the original routine, it is also much more pipeline
friendly, having no branches. Most branches in time-critical code can be removed
through various approaches, such as the one presented here.

13.9 Summary

A majority of the chapters in this book have talked about the efficient implementation
of data structures and algorithms as they apply to collision detection (as well as many
other fields). However, beyond data structures and algorithms large performance
increases can be had by directly targeting and tuning for the hardware architecture
of the platform for which the collision system is intended. Another way of putting it
is that constant factors matter! This chapter has focused on two major performance
considerations for modern architectures: memory optimization and optimizations
utilizing parallelism.

Because CPUs are so much faster at processing data (and code) than data can
be delivered to the CPU from main memory, small but fast cache memory units sit
between the CPU and memory to help deliver frequently used data to the CPU.
Properly utilizing these caches is important because there can be one to three mag-
nitudes difference in speed between data being in cache versus not being in cache.
Several ways of optimizing for both code and data cache were discussed, from re-
arranging code and data through using cache-aware data structures and algorithms.
It was also discussed how the presence of aliasing in C and C++ code is one of the
major contributors to inhibited optimizations, leaving unnecessary memory accesses
in the compiled code. What can be done to reduce the presence of aliasing was also
explored.

The discussion of optimizations utilizing parallelism focused on SIMD exten-
sions. Most CPUs today feature SIMD extensions, whereby instructions can operate
on 4, 8, or even 16 data items in parallel. Leveraging these instructions for, say,
primitive-primitive intersection tests can result in close to 4-, 8-, or 16-fold increases
in performance for such tests.

The third and last performance consideration discussed here was branching. With
some CPU pipelines being over 20 stages long, mispredicted branches become very
expensive. Performance-critical code should avoid branches in inner loops, which
can be accomplished through various bit tricks.
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Index

A

AABBEnclosingAABBs(), 267
AABBs. See Axis-aligned bounding

boxes
Abstraction penalty problem, 538
Adaptive grids, 307
Addition

matrix, 25
vector, 37

AddObjectToHGrid(), 303
AddVertexToBucket(), 471–472
Adjacency information, computing, 474–484
Adjoint matrix, 32
Affine hull (AH), 58
Aliasing, 536–543
Andrew’s algorithm, 65–66
Angle

between two planes, 55
between two vectors, 39–40
dihedral, 55
interior, 57

Application domain representation, 7, 8–13
Area, signed, 27, 33, 43, 50, 152, 185
Areal coordinates, 49
Arithmetic

infinity, 435–438
interval, 448–452
matrix, 25–26
vector, 37–38

Array(s)
bit, 294
grids as arrays of linked lists, 287
representation, 270–272
sorting, 336–338

Artificial neighbors, 406–407
Autopartitioning, 351, 358–359
Axis-aligned bounding boxes (AABBs)

center-radius, 78

closest point on, to point, 130–132
common representations for, 78
compact tree, 529–530
computing and updating, 81–82
features of, 77
hill-climbing vertices, 84–85
intersecting moving AABB against AABB,

230–232
intersecting moving, against plane,

222–223
intersecting moving sphere against,

228–230
intersection/overlapping test, 79–80
merging, 267
min-max, 78
min-width, 78
object bounding spheres, 82
original point set, 82–84
recomputed from rotated, 86–87
storage requirements, 79
testing, against triangle, 169–172
testing sphere against, 165–166
trees, 262–263

B

Barycentric(), 47–48, 51–52, 205
Barycentric coordinates, 46–52
Basis, 35
Best-first search, 254
Binary clustering tree (BCT), 250
Binary space-partitioning (BSP) trees, 71,

207, 340
applications, 350, 374–381
building, 355–373
defined, 349–351
dividing planes, evaluating, 361–364
dividing planes, selecting, 358–360
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Binary space-partitioning (BSP) trees,
(continued)

leaf-storing, 352–354
node-storing, 351–352
performance, 373
polygons, partitioning, 364–373
solid-leaf, 354–355, 374–381

Binary trees, 238–239
Bit arrays, 294
Bit flags, 341–342
Blind signal separation, 244
BottomUpBVTree(), 246, 247–248
Bottom-up construction, 239, 240, 245–251
Boundary-based collision detection,

383–385
Bounding spheres

AABBs from, 82
computing, 89–91
direction of maximum spread, 91–98
features of, 88
intersection/overlapping test, 88–89
iterative refinement, 98–99
minimum, 99–101

Bounding volume hierarchies (BVHs)
AABB and box trees, 262–263
bottom-up construction, 239, 240,

245–251
caching, 280–284
characteristics, 236–237
cost functions, 237–238
differences between spatial partitioning

and, 235
generate-and-prune sphere covering,

264–265
incremental/insertion construction, 239,

240, 251–253
k-DOP trees, 265–266
merging, 266–270
OBB trees, 261–262
sphere tree from sphere-covered surfaces,

264
sphere tree through octree subdivision,

263–264
top-down construction, 239, 240–245
traversal, 253–261
tree degree, 238–239
tree representation and traversal, 270–280

Bounding volumes (BVs), 11
axis-aligned bounding boxes, 77–87
characteristics, 76–77
defined, 75
halfspace intersection, 115–122
oriented bounding boxes, 101–112
other types of, 122–123
spheres, 88–101
sphere-swept volumes, 112–115
testing, 18

Box
intersecting ray/segment against, 179–184
product, 44–46
testing against plane, 161–164

BoxTree, 263
Branching, 547–551
BreadthFirstOrderOutput(), 271
Breadth-first search (BFS), 253, 254
Bresenham line-drawing algorithm, 324
Broad phase, 14–15
Brush-storing trees, 355
Brute-force OBB fitting, 112
BSP. See Binary space-partitioning trees
Buckets. See Grids
Buffer readbacks, 414–415
BuildBSPTree(), 356–357
BuildOctree(), 310–311
BVHCollision(), 256–261
BVHs. See Bounding volume hierarchies
BVHTestCollision(), 277
BVOverlap(), 256
BVs. See Bounding volumes

C

C, 276, 277
Cache(s)/caching

-aware data structures and algorithms,
525–531

CPU, 513–514
data, 517–525
hardware, 512
improving queries with, 280–284
instruction, 515–517
issues, 274–275
line coloring, 522
lines, 513
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obliviousness, 530–531
software, 512, 531–536

Capsules, 113–114
Carathéodory’s theorem, 401
Cartesian coordinate system, 35
Cells and portals, 338–340
Cell size issues, grid, 286–287
Chazelle’s polyhedron, 503
CheckObjAgainstGrid(), 304–306
Chung–Wang separating-vector algorithm,

410–412
Clamp(), 149
ClassifyPointToPlane(), 364–365
ClassifyPolygonToPlane(), 356, 357, 366
Closed hashing, 289
Closest-features algorithms, 385–388
Closest points, 14, 125

on AABB to point, 130–132
on convex polyhedron to point, 145–146
distance of point to segment, 129–130
GJK algorithm and, 405
incremental computation, 126
of line segment and triangle, 153–155
on line segment to point, 127–129
on OBB to point, 132–136
on plant to point, 126–127
on tetrahedron to point, 142–145
on 3D rectangle to point, 135–136
on triangle to point, 136–142
of 2D segment intersection, 151–153
of two lines, 146–147
of two line segments, 148–151
of two triangles, 155–156

ClosestPtPointAABB(), 130–131, 166
ClosestPtPointOBB(), 133
ClosestPtPointPlane(), 126–127
ClosestPtPointRect(), 135–136
ClosestPtPointSegment(), 128–129
ClosestPtPointTetrahedron(), 143–144
ClosestPtPointTriangle(), 139–142, 143
ClosestPtSegmentSegment(), 149–151
Clustering rules, 245
Clustering trees, bottom-up n-ary, 250–251
Coefficient matrix, 30
Cofactors, expansion by, 29
Coherency, 18
CollidePrimitives(), 256

Collinear points, 33, 54
Collision detection

applications, 1–2
boundary-based, 383–385
defined, 1
design issues, 7–21
GPU image-space-based collision

detection, 413–426
interval arithmetic and, 451–452
specialization, 12–13
static versus dynamic, 16–17

Collision filtering, GPU, 423–426
Collision geometry, versus rendering

geometry, 11–12
Collision tree, 282
Column matrix/vector, 24
ComplexMult(), 540–542
Computation, exact and semi-exact, 452–462
ComputeChildAABBs(), 530
ComputeChildPointers(), 526–528
ComputeDOP8(), 119–120
ComputeHashBucketIndex(), 288
ComputeHashKey(), 480
ComputeOBB(), 269
ComputePlane(), 55
Concave objects, GPU testing, 420–423
Cone, testing against plane, 164–165
Configuration space, 72
Conflict minimization and neutralization,

363–364
Constant vector, 30
Constructive solid geometry (CSG), 10
Contact manifolds, 13, 405
Continuous swept test, 214
Convex decomposition. See Convex

partitioning
Convex hull (CH), 58

computing, 64–69
disadvantages of, 115
approximate intersection tests,

121–122
OBBs and, 108–109

Convexity-based methods
boundary-based collision detection,

383–385
Chung–Wang separating-vector

algorithm, 410–412
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Convexity-based methods, (continued)
closest-features algorithms, 385–388
Gilbert–Johnson–Keerthi algorithm,

399–410
hierarchical polyhedron representations,

388–391
linear programming, 391–398
quadratic programming, 398–399

Convex objects
GPU testing, 416–419
separating-axis test for moving, 219

Convex partitioning, 495–496, 500–507
Convex polyhedron

closest point, 145–146
intersecting ray/segment against,

198–201
Coordinate space, 35
Coordinate systems and points, 35

right-hand rule, 41–42
Co-planar faces, merging, 487–495
Covariance, 92
Covariance matrix, 92–95
CovarianceMatrix(), 93–94
C++ code, use of, 5–6, 276, 277
CPU caches, 513–514
Cracks, 484–487
Cramer’s rule, 29–31, 47–48
Cross2D(), 205
Crossings test, 203
Cross (vector) product, 27, 41–44, 140
Cylinders

See also Sphere-swept volumes (SSVs)
capped, 113
intersecting ray/segment against,

194–198
Cyrus–Beck clipping algorithm, 181

D

Data, storing static, 290–291
Data cache, 517–525
Data linearization, 531, 532–536
Debugging, 20–21
Degeneracies, 427–429
Dependency problem, 450
Depth-first search (DFS), 253, 254

generic informed, 256–259

leaf-direct, 260–261
simultaneous, 259–260

DescendA(), 256
Descent rules, 254–256
Determinant predicates, 32–34
Determinants, 27–29
Digit cancellation errors, 428
Dihedral angle, 55
Direction of maximum spread, 91–98
Direct mapping, 513
Discrete-orientation polytopes (k-DOPs),

117
computing and realigning, 119–121
intersection/overlapping test, 118–119
merging, 269–270
trees, 265–266

Dispersion matrix. See Covariance matrix
Distance subalgorithm, 403
DistPointPlane(), 127
Division, integer, 457–459
Dobkin–Kirkpatrick hierarchy, 84, 146, 207,

388–391
DOPs. See Discrete-orientation polytopes
Dot (scalar) product, 27, 39–41
Double description method, 396
Duality (polarity) transformation, 121
Dynamic collision detection, 17, 214–232

E

Ear cutting/clipping, 496–500
Edge cracking, resolve t-junctions by, 485
Edge-to-face table, 479–482
EigenSphere(), 97–98
Ellipsoids, 122–123
Environment simulation parameters, 7–8,

14–17
ERIT, 174
Errors, numerical imprecision due to, 428
Estimated time of arrival (ETA), 14
Euler’s formula, 64, 507–510
Expansion by cofactors, 29
Explicit representation, 9
Explicit stacking, 257, 276
Exponent, 430
ExtremePointsAlongDirection(), 83
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F

Face, 62
Face cracking, 486–487
Face tables, 474, 477–482

testing connectedness, 482–484
Fat objects, robustness of, 448
Feasibility problem, 391
Feature of a polyhedron, 69
Fixed-direction hulls (FDHs), 117
Fixed-point numbers, 429–430
Floating-point numbers, 430–435, 438–448
Fourier–Motzkin elimination, 394–396
Fraction, 430
Frame of reference, 35
Frame-to-frame coherency, 18
Front tracking, 282–284
Funnelsort algorithm, 531

G

Gaps, 484–487
Generate-and-prune sphere covering,

264–265
Geometrical robustness, 19, 465

adjacency information, computing,
474–484

co-planar faces, merging, 487–495
Euler’s formula, 507–510
holes, cracks, gaps, and t-junctions

(t-joints), 484–487
triangulation and convex partitioning,

495–507
vertex welding, 466–474

Geometry, rendering, 11–12
GetAABB(), 332
GetGridCellBucket(), 470–471
GetTriangleNeighbor(), 483
Gilbert–Johnson–Keerthi (GJK) algorithm.

See GJK algorithm
GJK algorithm, 71, 146, 207, 399–410
Goldsmith–Salmon incremental

construction, 252–253
Graphics processing units (GPUs)

buffer readbacks, 414–415
collision filtering, 423–426

image-space-based collision detection,
413–426

interfacing with, 414–416
occlusion queries, 414, 416
pixel shaders, 414
testing concave objects, 420–423
testing convex objects, 416–419

Grids
as arrays of linked lists, 287
cell size issues, 286–287
density, 287
hashed storage and infinite, 288–290
hierarchical, 300–307
implicit, 291–294
intersection test, 324–328
object-object test, 294–299
other names for, 285
partitioning, 18
storing static data, 290–291
uniform, 285–300, 324–328

H

Half-edge data structure, 475–476
Halfplane, 56
Halfspace intersection volumes, 115

convex hull intersection/overlapping
tests, 121–122

discrete-orientation polytopes (k-DOPs),
117–121

Kay–Kajiya slab-based, 116–117
Halfspaces, 9–10, 56

positive and negative, 349
Hash (hashing)

closed, 289
open, 289
storage and infinite grids, 288–290

Height
parallelogram, 42
tetrahedron vertex, over opposing

plane, 49
tree, 238
triangle vertex, over opposing edge, 50

Hertel–Mehlhorn algorithm, 500–502
HertelMehlhorn(), 501–502
Hierarchical grids (hgrids), 300–307
Hierarchical partitioning, 18
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Hierarchical polyhedron representations,
388–391

Hierarchical spatial hash table, 306
Hierarchy of uniform grids, 307
Hill-climbing vertices

AABBs from, 84–85
GJK algorithm and, 405–407

Hinting planes, 360
Histograms, 415
Holes, 484–487
Hyperplanes, 56
Hypervolumes, 27

I

IEEE-754 standard
for floating-point formats, 431–435
for infinity arithmetic, 435–438

Image-space-based collision detection,
413–426

Implementation, ease and use of, 8, 19–21
Implicit grids, 291–294
Implicit objects, 9
Implicit surface, 9
INCIRCLE2D(), 452
Incremental/insertion construction, 239, 240,

251–253
Independent component analysis, 244
IndependentSet(), 389
Inertia tensor (mass matrix), 109
Infinity arithmetic, 435–438
InsertAABBIntoList(), 333–334
InsertObject(), 311–312
InsideSpherePlane(), 161
INSPHERE(), 452
Instruction cache, 515–517
Integer linear programming problems, 461
Integers

division, 457–459
exact arithmetic using, 453–456
segment intersection and, 459–462

Interference detection, 13
IntersectEdgeAgainstPlane(), 373
Intersection (intersecting)

k-d tree, 322–324
line against quadrilateral, 188–190
line against triangle, 184–188

of moving objects, 214–232
ray against a solid-leaf BSP tree,

376–378
ray/segment against box, 179–184
ray/segment against convex polyhedron,

198–201
ray/segment against cylinder, 194–198
ray/segment against sphere, 177–179
ray/segment against triangle, 190–194
segment against plane, 175–177
testing/finding, 13
of three planes, 211–214
2D segment, 151–153
of two planes, 207–210
uniform grid intersection test, 324–328

IntersectLineQuad(), 189
IntersectLineTriangle(), 186
IntersectMovingAABBAABB(), 231–232
IntersectMovingSphereAABB(), 229–230
IntersectMovingSpherePlane(), 221
IntersectPlanes(), 208–209, 210, 212,

213–214
IntersectRayAABB(), 180–181
IntersectRaySphere(), 178
IntersectSegmentCylinder(), 197–198
IntersectSegmentPlane(), 176–177, 438
IntersectSegmentPolyhedron(), 199–200
IntersectSegmentTriangle(), 191–192,

193–194
Interval arithmetic, 448–449

collision detection and, 451–452
examples of, 450–451

IntervalCollision(), 218
Interval halving, 215–218
Interval Newton method, 451
Interval overlap method, 173
IsConvexQuad(), 60–61
IsEmpty(), 258
IsLeaf(), 256
IsPlanar(), 495
IsZeroVector(), 159–160
Iterative refinement, 98–99

J

Jacobi(), 95–97
Jacobi method, 94–97, 109
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Johnson’s algorithm, 403

K

Kay–Kajiya slab-based volumes, 116–117,
181

KDOPEnclosingKDOPs(), 270
k-DOPs

See also Discrete-orientation polytopes
trees, 265–266

k-d tree, 249, 319–321
compact static, 525–529
intersection test, 322–324

k-nearest neighbor problem, 249
Kruskal’s algorithm, 249–250

L

Lagrange identity, 44, 140–141, 196
Leaf-direct depth-first traversal, 260–261
Leaf-storing BSP trees, 352–354
Least-squares fit, 494
Length, 27, 38, 39
Lexicographic ordering, 479
Lin–Canny algorithm, 385
Linear equations, using Cramer’s rule to

solve, 29–31
Linearization, data cached, 531, 532–536
Linear octrees, 314–316
Linear probing, 289
Linear programming (LP), 391–398
Line pick tests, 322
Lines, 53–54

closest points of two, 146–147
intersecting, against quadrilateral,

188–190
intersecting, against triangle, 184–188

Line segments
closest points of, and a triangle, 153–155
closest points of two, 148–153
closest point on, to point, 127–130
defined, 53
traversals, 322–328
2D intersection, 151–153

Linked lists, 287
sorted, 330–336

LocateVertexInBucket(), 471
Locational code, 314
longjmp(), 277
Loose octrees, 318–319
Lozenges, 113, 114

M

Machine epsilon, 435
Machine numbers, 429
Mailboxes, 344
Mantissa, 430
MarkAllNeighbors(), 483, 484
Matrices

algebraic identities involving, 26
antisymmetric, 25
arithmetic, 25–26
column, 24
defined, 23–25
determinant predicates, 32–34
determinants, 27–29
diagonal, 24
identity, 24
inverses for 2 x 2 and 3 x 3, 31–32
lower triangular, 24
row, 24
singular (noninvertible), 26
skew-symmetric, 25
solving linear equations using Cramer’s

rule, 29–31
square, 24
symmetry, 25
transpose, 24
upper triangular, 24

MaximumObjectMovementOverTime(),
217–218

Median-cut algorithm, 241–242
Memory optimization, 511
Merging criterion, 245
Meshes, polygon, 9, 58
Method of alternating projection (MAP),

121
MinAreaRect(), 111
MinimumObjectDistanceAtTime(), 218
Minimum spanning tree (MST), 249–251
Minimum translational distance, 13
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Minkowski sum and difference, 70–72, 227,
228, 400–401

Morton2(), 317–318
Morton3(), 316
Morton key, computing, 316–318
Morton order, 314
MostSeparatedPointsOnAABB(), 89–90, 243
Motion

discrete versus continuous, 16–17
sequential versus simultaneous, 15–16

MoveElement(), 335
Moving objects

GJK for, 408–410
intersection of, 214–232

Multiplication
matrix, 25, 26
vector, 37–38

N

Narrow phase, 14
n-ary clustering trees, bottom-up,

250–251
n-body processing, 14
Nearest neighbor problem, 249, 320
Newell’s method, 493–495
NewellPlane(), 494
NodeDepth(), 315
Node-storing BSP trees, 351–352
Nodes

internal count, 238
total count, 238
tested during traversal, 260

Nonbinary trees, 274–275
Normalization, 38
n-tuple, 35
NumberInRange(), 437
Numerical robustness, 19

computation, exact and semi-exact,
452–462

fat objects, 448
floating-point usage, 441–448
interval arithmetic, 448–452
lack of sharing calculations, problem

with, 446–448
other methods for improving, 462–463
planes, thick, 444–445

problems, types of, 427–429
representing real numbers, 429–441

O

OBBs. See Oriented bounding boxes
Object-object test, 294–299
Object representations, 8–10
ObjectsCollidingWithCache(), 281–282
Occlusion queries, 414, 416
Octrees, 263–264, 308

linear, 314–316
loose, 318–319
object assignment, 309–313
octants, finding, 313–314

Offsets, instead of pointers, 273–274
Open addressing, 289
OpenGL, 414–416, 418–419, 422
Open hashing, 289
Optimization, 18–19

aliasing, 536–543
branching, 547–551
cache-aware data structures and

algorithms, 525–531
CPU caches, 513–514
data cache, 517–525
instruction cache, 515–517
memory, 511
parallelism through SIMD, 512, 543–547
software caching, 512, 531–536

Order(), 458–459
Oriented bounding boxes (OBBs), 101–112

brute-force fitting, 112
closest point on, to point, 132–136
computing tight, 107–109
intersection/overlapping test, 101–106
making separating-axis test robust, 106
merging, 269
optimizing PCA-based, 109–112
representations, 101
testing sphere against, 166–167
trees, 261–262

ORIENT2D(), 429, 452
ORIENT3D(), 452
Origin of coordinate system, 35
Overflow, 428, 453–454
Overlap of two ranges, 80
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P

Pair processing, 14
Parallelepiped, 27, 44
Parallelism through SIMD, 512, 543–547
Parallelogram law of vector addition, 37
Part1By1(), 317
Part1By2(), 316–317
PartiallyInside() and

PartiallyOutside(), 506–507
Partitioning strategies/axis, top-down

construction and, 241–244
PCA. See Principal component analysis
Penetration depth, 13
Performance, 8, 17–19

BSP tree, 373
Perp-dot product, 43
PickSplittingPlane(), 356, 357,

362, 373
Pixel shaders, 414
Planarity, testing polygon, 491–495
Planarity of two polygons, testing, co-,

489–491
Planes, 54–56

autopartitioning, 351
beveling, 379
closest point on, to point, 126–127
dividing planes, evaluating, 361–364
dividing planes, selecting, 358–360
hinting, 360
intersecting moving AABB against,

222–223
intersecting moving sphere against,

219–222
intersecting segment against, 175–177
intersection of three planes, 211–214
intersection of two planes, 207–210
robustness and thick, 444–445
separating, 64
supporting, 64
testing box against, 161–164
testing cone against, 164–165
testing sphere against, 160–161
Voronoi, 69

Plücker coordinates, 187–188
PointFarthestFromEdge(), 68
PointInConvexPolygon(), 202

PointInSolidSpace(), 375
PointInTriangle(), 204–206
PointInTriangle2D(), 206
PointOutsideOfPlane(), 144
Points, 35

See also Closest points
collinear, 33, 54
location, 319–320
minimum norm in a simplex, 403–404
splitting an axis at, 244–245
Steiner, 500, 503
testing against a solid-leaf BSP tree,

374–375
testing in polygon, 201–203
testing in polyhedron, 206–207
testing in triangle, 203–206

Point sets, AABBs from, 82–84
Polygonal representation, 8
PolygonInSolidSpace(), 378–379
Polygons

components of, 56
concave, 57–58
convex, 57, 58
convex decomposition of, 500–502
convexity, testing, 59–61
defined, 56
diagonal, 57
intersecting moving sphere against,

226–227
mesh, 9, 58
partitioning with respect to a plane,

364–367
simple, 56–57
soup, 8
splitting, against a plane, 367–373
testing co-planarity of two, 489–491
testing point in, 201–203
testing planarity, 491–495
testing sphere against, 168–169
triangulating, 499–500

Polyhedra
bounding boxes, 107–109
Chazelle’s, 503
closest point on convex, 145–146
components of, 62–64
convex decomposition of, 502–506
convexity, testing, 64
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Polyhedra, (continued)
defined, 62
hierarchical representations, 388–391
intersecting ray/segment against convex,

198–201
mass property algorithm, 109
Schönhardt, 503
simple and nonsimple, 507–508
testing point in, 206–207

Polytopes, 62–64
discrete-orientation (k-DOPs), 117–121
queries on solid-leaf BSP trees, 378–381

Pop(), 258
PopCount8(), 528–529
Portals, 338–340
Potentially colliding set (PCS), 424, 425
Precision inaccuracies, 427–429
Predicates, 428–429, 452–453

determinant, 32–34
Prefetching and preloading, 523–525
PreorderOutput(), 273
PreorderTraversal(), 524
Preorder traversal order, 272–273, 524
Primitive ordering, 275–276
Prim’s algorithm, 249–250
Principal component analysis (PCA), 98

optimizing PCA-based OBBs, 109–112
Projection pursuit, 244
Proxy geometry, 11
Pruning, 18, 75, 237, 265
Pseudo cross product, 43
Push(), 258

Q

qsort(), 336
Quad-edge data structure, 477
Quadratic programming, 398–399
Quadrilateral, intersecting line against,

188–190
Quadtrees, 308–314
Quake II and III games, 355
Queries

approximate, 13
caching, 280–284
grouping, 278–280
occlusion, 414, 416

polytope, on solid-leaf BSP trees, 378–381
types of, 7, 13–14

Quickhull algorithm, 66–69

R

Radial-edge data structure, 477
Randomized algorithm, 397
Range search, 320
Ranges, overlap of, 80
RAPID, 109, 262
RayIntersect(), 376–377
Rays, 53–54

traversals, 322–328
Rays, intersecting

against box, 179–184
against convex polyhedron, 198–201
against cylinder, 194–198
against sphere, 177–179
against triangle, 190–194

Real numbers, representing
fixed-point, 429–430
floating-point, 430–435, 438–441
infinity arithmetic, 435–438
precision versus accuracy, 429

Rectangles,
closest point on 3D, to point, 135–136
bounding, of minimum area, 110–112

Rectangular coordinate system, 35
Recursion, 276–277
Recursive grid, 307
RemoveObjectFromHGrid(), 303–304
RenderBSP(), 374
RenderCell(), 339–340
Rendering geometry, 11–12
Restricted pointers, 540–542
Right-hand rule, 41–42
RitterEigenSphere(), 98
RitterIterative(), 98
RitterSphere(), 91, 99
Robustness, 8, 19

adjacency information, computing,
474–484

computation, exact and semi-exact,
452–462

co-planar faces, merging, 487–495
defined, 427
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Euler’s formula, 507–510
fat objects, 448
floating-point usage, 441–448
geometrical, 19, 465–510
holes, cracks, gaps, and t-junctions

(t-joints), 484–487
interval arithmetic, 448–452
lack of sharing calculations, problem

with, 446–448
numerical, 19, 427–463
other methods for improving, 462–463
planes, thick, 444–445
polygon splitting, 372–373
problems, types of, 427–429
representing real numbers, 429–441
of separating-axis test, 106, 159–160
triangulation and convex partitioning,

495–507
vertex welding, 466–474

Rotating calipers, 112
Rotating objects, 408
Round-off errors, 428
Row matrix/vector, 24

S

Scalar multiplication, 25, 26, 37–38
Scalars, 36
Scalar triple product, 44–46
Schönhardt polyhedron, 503
Segments, 53–54

integer arithmetic and intersection of,
459–462

Segments (directed), intersecting
against box, 179–184
against convex polyhedron, 198–201
against cylinder, 194–198
against plane, 175–177
against sphere, 177–179
against triangle, 190–194

Seidel’s algorithm, 396–398
Separate chaining, 289
Separating-axis test, 64, 156–160

for moving convex objects, 219
OBBs and, 101, 102–103
robustness of, 106, 159–160

Separating hyperplane theorem, 156

Separating planes, 64
Separation distance, 13–14
setjmp(), 277
Signed2DTriArea(), 152
Significand, 430
SIMD, 80, 131, 171

parallelism through, 512, 543–547
Simplex (simplices), 62

finding point of minimum norm in,
403–404

method, 394
Slabs, 179–180

Kay–Kajiya slab-based volumes, 116–117,
181

SmallPrime(), 549–550
SmallerVertex(), 479
Software caching, 512, 531–536
Solid-leaf BSP trees, 354–355, 374–381
Solution vector, 30
SortAndSweepAABBArray(), 337–338
Sorting, spatial partitioning, 329–338
Spanning of a space, 35
Spatial partitioning, 18

cells and portals, 338–340
differences between bounding volume

hierarchies and, 235
grids, hierarchical, 300–307
grids, uniform, 285–300
ray and directed line segment traversals,

322–328
retesting, avoiding, 341–346
sorting and sweeping, 329–338
trees, 307–322

Speedbox, 17
SphereEnclosingSpheres(), 268–269
SphereFromDistantPoints(), 89, 90
SphereOfSphereAndPt(), 90–91
Spheres

See also Bounding spheres
generate-and-prune sphere covering,

264–265
intersecting moving, against AABB,

228–230
intersecting moving, against plane,

219–222
intersecting moving sphere against

sphere, 223–226
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Spheres, (continued )
intersecting moving, against

triangle/polygon, 226–227
intersecting ray/segment against, 177–179
merging, 267–269
testing, against AABB, 165–166
testing, against OBB, 166–167
testing, against plane, 160–161
testing, against polygon, 168–169
testing, against triangle, 167–168
tree from sphere-covered surfaces, 264
tree through octree subdivision, 263–264

Sphere-swept lines (SSLs), 113
Sphere-swept points (SSPs), 113
Sphere-swept rectangles (SSRs), 113
Sphere-swept volumes (SSVs), 112–114

computing, 115
intersection/overlapping test, 114–115

Spherical shells, 122
Spherocylinders, 113
SphereTreeCollision(), 278–280
Split point, 244–245
SplitPolygon(), 357, 370–371
SqDistPointAABB(), 131–132, 165–166
SqDistPointOBB(), 134
SqDistPointSegment(), 130
Standard deviation, 92
Star-edge data structure, 477
Static collision detection, 16–17
Steiner points, 500, 503
Storing static data, 290–291
struct AABB {, 78, 330, 331–332, 336, 529
struct CachedLeaf {, 534
struct Capsule {, 113–114
struct Cell {, 288
struct DOP8 {, 117
struct EdgeEntry {, 480
struct Elem {, 330–331, 332
struct HalfEdge {, 476
struct HGrid {, 302
struct IndexedTriangle {, 533
struct KDNode {, 320
struct Leaf {, 533
struct Lozenge {, 114
struct Node {, 308, 315
struct OBB {, 101
struct Object {, 302, 311

struct PackedAABBNode {, 530
struct Plane {, 55
struct Rect {, 135
struct Slab {, 116
struct Sphere {, 88
struct Triangle {, 193, 477, 534
struct TriList {, 478
struct WingedEdge {, 476
struct WingedTriangle {, 476
Subtraction

matrix, 25
vector, 37

Supporting
planes, 64
points and vertices, 62–63

Support mapping (function), 63
Surface caching, 280–282
Sutherland–Hodgman clipping algorithm,

367–368
Sweeping, spatial partitioning, 329–338
Swept volume, 17, 112–115, 409
SymSchur2(), 95

T

Tag identifier, 513
Temporal coherency, 18
TestAABBAABB(), 79–80
TestAABBPlane(), 164
TestAllCollisions(), 313
TestCapsuleCapsule(), 114–115
Testing, Euler’s formula for consistency,

507–510
Testing, GPU

concave objects, 420–423
convex objects, 416–419

TestKDOPKDOP(), 119
TestMovingSpherePlane(), 222
TestMovingSphereSphere(), 217, 224,

225–226
TestOBBOBB(), 103–105
TestOBBPlane(), 163
TestObjectAgainstGrid(), 293–294
TestObjectPair(), 342
TestPointPolyhedron(), 206–207
TestPointTriangle(), 52
TestRaySphere(), 179
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Tests, primitive
AABB against triangle, 169–172
box against plane, 161–164
closest-point computations, 125–156
cone against plane, 164–165
intersecting lines, rays, and directed

segments, 175–201
intersection of moving objects, 214–232
intersection of three planes, 211–214
intersection of two planes, 207–210
intersection tests, dynamic, 214–232
point in polygon, 201–203
point in polyhedron, 206–207
point in triangle, 52, 203–206
separating-axis test, 156–160
sphere against AABB, 165–166
sphere against OBB, 166–167
sphere against plane, 160–161
sphere against polygon, 168–169
sphere against triangle, 167–168
triangle against triangle, 172–175

TestSegmentAABB(), 183–184
TestSegmentPlane(), 460–461
TestSphereAABB(), 165–166
TestSphereCapsule(), 114
TestSphereHalfspace(), 161
TestSphereOBB(), 166–167
TestSpherePlane(), 160–161
TestSpherePolygon(), 168–169
TestSphereSphere(), 88
TestSphereTriangle(), 167–168
TestTriangleAABB(), 171–172
Test2DSegmentSegment(), 152–153
Tetrahedralization, 503
Tetrahedron, closest point, 142–145
Thrashing, cache line, 513
3D rectangle, closest point, 135–136
Time of impact (TOI), 14
Time stamping, 342–346
t-junctions (t-joints), 484–487
Tolerances

floating-point, 441–448
welding, 466

Top-down construction, 239, 240–245
TopDownBVTree(), 240–241
TransformPoint(), 537, 538, 540

Translational configuration space obstacle
(TCSO), 72

Traversal, bounding volume hierarchies and,
253–261

preorder, 272–273
Traversals, ray and directed line segment,

322–328
Trees

AABB, 262–263
binary, 238–239
binary clustering, 250
binary space-partitioning, 71, 207, 340,

349–381
degree, 238–239
expanded (bloated, grown), 379
k-d, 249, 319–321, 322–324
k-DOP, 265–266
minimum spanning, 249–251
Morton key, computing, 316–318
nodes, primitive ordering, 275–276
OBB, 261–262
octrees, 263–264, 308–319
quadtrees, 308–314
representation and traversal, 270–280

TriangleIsCCW(), 201–203
Triangles

closest point on, to point, 136–142
closest points of line segment and,

153–155
closest points of two, 155–156
intersecting line against, 184–188
intersecting moving sphere against,

226–227
intersecting ray/segment against, 190–194
testing AABB against, 169–172
testing point in, 52, 203–206
testing sphere against, 167–168
testing triangle against triangle, 172–175

Triangulate(), 498–499
Triangulation, 495–500
TriArea2D(), 51
Triple scalar product, 44–46
Tunneling, 17, 214
2D segment intersection, 151–153
2-manifold, 64
Type-based alias analysis, 538–540
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U

Uadd64(), 455
Umult32to64(), 455
Underflow, 428
union KDNode {, 526
UpdateAABB(), 86–87
UpdateAABBPosition(), 334–335

V

van Emde Boas layout, 531
Variance, 91–92
Variance(), 92
Variance-covariance. See Covariance matrix
V-Clip algorithm, 385–388
Vectors 35–46

algebraic identities involving, 38–39
arithmetic, 37–38
cross (vector) product, 27, 41–44
defined, 35
dot (scalar) product, 27, 39–41
free, 36
length, 38
position/bound, 36
scalar triple product, 44–46
spaces, 35

Vertex
caching, 407–408
collapse, resolve t-junctions by, 485
concave (reflex), 57
convex, 57

degree, 58
snapping, resolve t-junctions by, 486
tables, 474, 477–482
welding (shifting/merging), 466–474

Vertices, AABBs from extreme and coplanar,
84–85

VisitCellsOverlapped(), 326–327
VisitLinearOctree(), 315–316
VisitNodes(), 323, 376
VisitOverlappedNodes(), 320–321
Volume, signed, 27, 33, 44, 49, 185
Voronoi-Clip (V-Clip) algorithm. SeeV-Clip

algorithm
Voronoi diagrams, 69
Voronoi planes, 69
Voronoi regions (feature regions), 69–70

W

Welding tolerance/epsilon, 466
WeldVertex(), 472–473
WeldVertices(), 473
WelzlSphere(), 100–101
Winged-edge data structure, 475–476
Winged-triangle data structure, 475–476
Witnesses, 280
Wu’s method, 91–98, 99

Z

Zonotopes, 122



About the CD-ROM

All code (fragments and pseudocode) presented in the book can be found on the
accompanying CD-ROM and is subject to the License agreements below.

No additional files are on the CD-ROM. A file is provided for each chapter (except
for Chapters 1 and 2, which do not contain any code), containing all code presented
in that chapter.

ELSEVIER CD-ROM LICENSE AGREEMENT

Please read the following agreement carefully before using this cd-rom product. This
CD-ROM product is licensed under the terms contained in this cd-rom license agree-
ment (“agreement’‘). By using this CD-ROM product, you, an individual or entity
including employees, agents and representatives (“you” or “your”), acknowledge
that you have read this agreement, that you understand it, and that you agree to
be bound by the terms and conditions of this agreement. Elsevier inc. (“Elsevier”)
expressly does not agree to license this CD-ROM product to you unless you assent
to this agreement. If you do not agree with any of the following terms, you may,
within thirty (30) days after your receipt of this CD-ROM product return the unused,
CD-ROM product, all accompanying documentation to elsevier for a full refund.

LIMITED WARRANTY AND LIMITATION OF LIABILITY

NEITHER ELSEVIER NOR ITS LICENSORS REPRESENT OR WARRANT THAT
THE CD-ROM PRODUCT WILL MEET YOUR REQUIREMENTS OR THAT ITS
OPERATION WILL BE UNINTERRUPTED OR ERROR-FREE. WE EXCLUDE
AND EXPRESSLY DISCLAIM ALL EXPRESS AND IMPLIED WARRANTIES
NOT STATED HEREIN, INCLUDING THE IMPLIED WARRANTIES OF MER-
CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. IN ADDITION,
NEITHER ELSEVIER NOR ITS LICENSORS MAKE ANY REPRESENTATIONS
OR WARRANTIES, EITHER EXPRESS OR IMPLIED, REGARDING THE PER-
FORMANCE OF YOUR NETWORK OR COMPUTER SYSTEM WHEN USED IN
CONJUNCTION WITH THE CD-ROM PRODUCT. WE SHALL NOT BE LIABLE
FOR ANY DAMAGE OR LOSS OF ANY KIND ARISING OUT OF OR RESULTING
FROMYOUR POSSESSION OR USE OF THE SOFTWARE PRODUCT CAUSED BY
ERRORS OR OMISSIONS, DATA LOSS OR CORRUPTION, ERRORS OR OMIS-
SIONS IN THE PROPRIETARY MATERIAL, REGARDLESS OF WHETHER SUCH
LIABILITY IS BASED IN TORT, CONTRACT OR OTHERWISE AND INCLUDING,
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BUT NOT LIMITED TO, ACTUAL, SPECIAL, INDIRECT, INCIDENTAL OR CON-
SEQUENTIAL DAMAGES. IF THE FOREGOING LIMITATION IS HELD TO BE
UNENFORCEABLE, OUR MAXIMUM LIABILITY TO YOU SHALL NOT EXCEED
THE AMOUNT OF THE PURCHASE PRICE PAID BY YOU FOR THE SOFT-
WARE PRODUCT. THE REMEDIES AVAILABLE TOYOU AGAINST US AND THE
LICENSORS OF MATERIALS INCLUDED IN THE SOFTWARE PRODUCT ARE
EXCLUSIVE.

If this CD-ROM Product is defective, Elsevier will replace it at no charge if the
defective CD-ROM Product is returned to Elsevier within sixty (60) days (or the
greatest period allowable by applicable law) from the date of shipment.

YOU UNDERSTAND THAT, EXCEPT FOR THE 60-DAY LIMITED WARRANTY
RECITED ABOVE, ELSEVIER, ITS AFFILIATES, LICENSORS, SUPPLIERS AND
AGENTS, MAKE NO WARRANTIES, EXPRESSED OR IMPLIED, WITH RESPECT
TO THE CD-ROM PRODUCT, INCLUDING, WITHOUT LIMITATION THE PRO-
PRIETARY MATERIAL, AND SPECIFICALLY DISCLAIM ANY WARRANTY OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

IN NO EVENT WILL ELSEVIER, ITS AFFILIATES, LICENSORS, SUPPLIERS OR
AGENTS, BE LIABLE TO YOU FOR ANY DAMAGES, INCLUDING, WITHOUT
LIMITATION, ANY LOST PROFITS, LOST SAVINGS OR OTHER INCIDENTAL
OR CONSEQUENTIAL DAMAGES, ARISING OUT OF YOUR USE OR INABILITY
TO USE THE CD-ROM PRODUCT REGARDLESS OF WHETHER SUCH DAM-
AGES ARE FORESEEABLE OR WHETHER SUCH DAMAGES ARE DEEMED TO
RESULT FROMTHE FAILURE OR INADEQUACY OFANY EXCLUSIVE OR OTHER
REMEDY.

Software License Agreement

This Software License Agreement is a legal agreement between the Author and any
person or legal entity using or accepting any software governed by this Agreement.
The software is available on the CD-ROM in the Book, Real-Time Collision Detection,
which is published by Morgan Kaufmann Publishers. “The software” is comprised of
all code (fragments and pseudocode) presented in the book. No additional files are
on the CD-ROM.

By installing, copying, or otherwise using the software, you agree to be bound by
the terms of this Agreement.

The parties agree as follows:

1. Grant of License. We grant you a nonexclusive license to use the software for
any purpose, commercial or non-commercial, as long as the following credit is
included identifying the original source of the software:“from Real-Time Collision
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Detection by Christer Ericson, published by Morgan Kaufmann Publishers, © 2005
Elsevier Inc”.

2. Disclaimer of Warranty. We make no warranties at all. The software is transferred
to you on an“as is”basis. You use the software at your own peril. You assume all
risk of loss for all claims or controversies, now existing or hereafter, arising out of
use of the software. We shall have no liability based on a claim that your use or
combination of the software with products or data not supplied by us infringes any
patent, copyright, or proprietary right. All other warranties, expressed or implied,
including, without limitation, any warranty of merchantability or fitness for a
particular purpose are hereby excluded.

3. Limitation of Liability. We will have no liability for special, incidental or conse-
quential damages even if advised of the possibility of such damages. We will not
be liable for any other damages or loss in any way connected with the software.
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