
6.13 LZW 365

�l/2�

partition (32 pointers)

l
swap

look-aheadsearch buffer

shift pointers new
pointer

(b)(a)

(c)

partition (32 pointers)

Figure 6.22: Updating an LZRW4 Partition.

6.13 LZW

This is a popular variant of LZ78, developed by Terry Welch in 1984 ([Welch 84] and
[Phillips 92]). Its main feature is eliminating the second field of a token. An LZW token
consists of just a pointer to the dictionary. To best understand LZW, we will temporarily
forget that the dictionary is a tree, and will think of it as an array of variable-size strings.
The LZW method starts by initializing the dictionary to all the symbols in the alphabet.
In the common case of 8-bit symbols, the first 256 entries of the dictionary (entries 0
through 255) are occupied before any data is input. Because the dictionary is initialized,
the next input character will always be found in the dictionary. This is why an LZW
token can consist of just a pointer and does not have to contain a character code as in
LZ77 and LZ78.

(LZW has been patented and for many years its use required a license. This issue
is treated in Section 6.34.)

The principle of LZW is that the encoder inputs symbols one by one and accu-
mulates them in a string I. After each symbol is input and is concatenated to I, the
dictionary is searched for string I. As long as I is found in the dictionary, the process
continues. At a certain point, adding the next symbol x causes the search to fail; string
I is in the dictionary but string Ix (symbol x concatenated to I) is not. At this point
the encoder (1) outputs the dictionary pointer that points to string I, (2) saves string
Ix (which is now called a phrase) in the next available dictionary entry, and (3) ini-
tializes string I to symbol x. To illustrate this process, we again use the text string
sir�sid�eastman�easily�teases�sea�sick�seals. The steps are as follows:

0. Initialize entries 0–255 of the dictionary to all 256 8-bit bytes.
1. The first symbol s is input and is found in the dictionary (in entry 115, since this is

www.it-ebooks.info

http://www.it-ebooks.info/

366 6. Dictionary Methods

the ASCII code of s). The next symbol i is input, but si is not found in the dictionary.
The encoder performs the following: (1) outputs 115, (2) saves string si in the next
available dictionary entry (entry 256), and (3) initializes I to the symbol i.
2. The r of sir is input, but string ir is not in the dictionary. The encoder (1) outputs
105 (the ASCII code of i), (2) saves string ir in the next available dictionary entry
(entry 257), and (3) initializes I to the symbol r.

Table 6.23 summarizes all the steps of this process. Table 6.24 shows some of the
original 256 entries in the LZW dictionary plus the entries added during encoding of
the string above. The complete output stream is (only the numbers are output, not the
strings in parentheses) as follows:

115 (s), 105 (i), 114 (r), 32 (�), 256 (si), 100 (d), 32 (�), 101 (e), 97 (a), 115 (s), 116
(t), 109 (m), 97 (a), 110 (n), 262 (�e), 264 (as), 105 (i), 108 (l), 121 (y),
32 (�), 116 (t), 263 (ea), 115 (s), 101 (e), 115 (s), 259 (�s), 263 (ea), 259 (�s), 105 (i),
99 (c), 107 (k), 280 (�se), 97 (a), 108 (l), 115 (s), eof.

Figure 6.25 is a pseudo-code listing of the algorithm. We denote by λ the empty
string, and by <<a,b>> the concatenation of strings a and b.

The line “append <<di,ch>> to the dictionary” is of special interest. It is clear
that in practice, the dictionary may fill up. This line should therefore include a test for
a full dictionary, and certain actions for the case where it is full.

Since the first 256 entries of the dictionary are occupied right from the start, pointers
to the dictionary have to be longer than 8 bits. A simple implementation would typically
use 16-bit pointers, which allow for a 64K-entry dictionary (where 64K = 216 = 65,536).
Such a dictionary will, of course, fill up very quickly in all but the smallest compression
jobs. The same problem exists with LZ78, and any solutions used with LZ78 can also
be used with LZW. Another interesting fact about LZW is that strings in the dictionary
become only one character longer at a time. It therefore takes a long time to end up with
long strings in the dictionary, and thus a chance to achieve really good compression. We
can say that LZW adapts slowly to its input data.

� Exercise 6.10: Use LZW to encode the string alf�eats�alfalfa. Show the encoder
output and the new entries added by it to the dictionary.

� Exercise 6.11: Analyze the LZW compression of the string “aaaa...”.

A dirty icon (anagram of “dictionary”)

6.13.1 LZW Decoding

To understand how the LZW decoder works, we recall the three steps the encoder
performs each time it writes something on the output stream. They are (1) it outputs
the dictionary pointer that points to string I, (2) it saves string Ix in the next available
entry of the dictionary, and (3) it initializes string I to symbol x.

The decoder starts with the first entries of its dictionary initialized to all the symbols
of the alphabet (normally 256 symbols). It then reads its input stream (which consists
of pointers to the dictionary) and uses each pointer to retrieve uncompressed symbols
from its dictionary and write them on its output stream. It also builds its dictionary in

www.it-ebooks.info

http://www.it-ebooks.info/

6.13 LZW 367

in new in new
I dict? entry output I dict? entry output

s Y y Y
si N 256-si 115 (s) y� N 274-y� 121 (y)
i Y � Y
ir N 257-ir 105 (i) �t N 275-�t 32 (�)
r Y t Y
r� N 258-r� 114 (r) te N 276-te 116 (t)
� Y e Y
�s N 259-�s 32 (�) ea Y
s Y eas N 277-eas 263 (ea)
si Y s Y
sid N 260-sid 256 (si) se N 278-se 115 (s)
d Y e Y
d� N 261-d� 100 (d) es N 279-es 101 (e)
� Y s Y
�e N 262-�e 32 (�) s� N 280-s� 115 (s)
e Y � Y
ea N 263-ea 101 (e) �s Y
a Y �se N 281-�se 259 (�s)
as N 264-as 97 (a) e Y
s Y ea Y
st N 265-st 115 (s) ea� N 282-ea� 263 (ea)
t Y � Y
tm N 266-tm 116 (t) �s Y
m Y �si N 283-�si 259 (�s)
ma N 267-ma 109 (m) i Y
a Y ic N 284-ic 105 (i)
an N 268-an 97 (a) c Y
n Y ck N 285-ck 99 (c)
n� N 269-n� 110 (n) k Y
� Y k� N 286-k� 107 (k)
�e Y � Y
�ea N 270-�ea 262 (�e) �s Y
a Y �se Y
as Y �sea N 287-�sea 281 (�se)
asi N 271-asi 264 (as) a Y
i Y al N 288-al 97 (a)
il N 272-il 105 (i) l Y
l Y ls N 289-ls 108 (l)
ly N 273-ly 108 (l) s Y

s,eof N 115 (s)

Table 6.23: Encoding sir sid eastman easily teases sea sick seals.

www.it-ebooks.info

http://www.it-ebooks.info/

368 6. Dictionary Methods

0 NULL 110 n 262 �e 276 te
1 SOH . . . 263 ea 277 eas

. . . 115 s 264 as 278 se
32 SP 116 t 265 st 279 es

. 266 tm 280 s
97 a 121 y 267 ma 281 �se
98 b . . . 268 an 282 ea�
99 c 255 255 269 n� 283 �si

100 d 256 si 270 �ea 284 ic
101 e 257 ir 271 asi 285 ck
. . . 258 r� 272 il 286 k�
107 k 259 �s 273 ly 287 �sea
108 l 260 sid 274 y� 288 al
109 m 261 d� 275 �t 289 ls

Table 6.24: An LZW Dictionary.

for i:=0 to 255 do
append i as a 1-symbol string to the dictionary;

append λ to the dictionary;
di:=dictionary index of λ;
repeat
read(ch);
if <<di,ch>> is in the dictionary then
di:=dictionary index of <<di,ch>>;

else
output(di);
append <<di,ch>> to the dictionary;
di:=dictionary index of ch;

endif;
until end-of-input;

Figure 6.25: The LZW Algorithm.

www.it-ebooks.info

http://www.it-ebooks.info/

6.13 LZW 369

the same way as the encoder (this fact is usually expressed by saying that the encoder
and decoder are synchronized, or that they work in lockstep).

In the first decoding step, the decoder inputs the first pointer and uses it to retrieve
a dictionary item I. This is a string of symbols, and it is written on the decoder’s output.
String Ix needs to be saved in the dictionary, but symbol x is still unknown; it will be
the first symbol in the next string retrieved from the dictionary.

In each decoding step after the first, the decoder inputs the next pointer, retrieves
the next string J from the dictionary, writes it on the output, isolates its first symbol x,
and saves string Ix in the next available dictionary entry (after checking to make sure
string Ix is not already in the dictionary). The decoder then moves J to I and is ready
for the next step.

In our sir�sid... example, the first pointer that’s input by the decoder is 115.
This corresponds to the string s, which is retrieved from the dictionary, gets stored in
I, and becomes the first item written on the decoder’s output. The next pointer is 105,
so string i is retrieved into J and is also written on the output. J’s first symbol is
concatenated with I, to form string si, which does not exist in the dictionary, and is
therefore added to it as entry 256. Variable J is moved to I, so I is now the string i.
The next pointer is 114, so string r is retrieved from the dictionary into J and is also
written on the output. J’s first symbol is concatenated with I, to form string ir, which
does not exist in the dictionary, and is added to it as entry 257. Variable J is moved to
I, so I is now the string r. The next step reads pointer 32, writes � on the output, and
saves string r .

� Exercise 6.12: Decode the string alf�eats�alfalfa by using the encoding results
from Exercise 6.10.

� Exercise 6.13: Assume a two-symbol alphabet with the symbols a and b. Show the
first few steps for encoding and decoding the string “ababab...”.

6.13.2 LZW Dictionary Structure

Up until now, we have assumed that the LZW dictionary is an array of variable-size
strings. To understand why a trie is a better data structure for the dictionary we
need to recall how the encoder works. It inputs symbols and concatenates them into a
variable I as long as the string in I is found in the dictionary. At a certain point the
encoder inputs the first symbol x, which causes the search to fail (string Ix is not in
the dictionary). It then adds Ix to the dictionary. This means that each string added
to the dictionary effectively adds just one new symbol, x. (Phrased another way; for
each dictionary string of more than one symbol, there exists a “parent” string in the
dictionary that’s one symbol shorter.)

A tree similar to the one used by LZ78 is therefore a good data structure, because
adding string Ix to such a tree is done by adding one node with x. The main problem
is that each node in the LZW tree may have many children (this is a multiway tree, not
a binary tree). Imagine the node for the letter a in entry 97. Initially it has no children,
but if the string ab is added to the tree, node 97 gets one child. Later, when, say, the
string ae is added, node 97 gets a second child, and so on. The data structure for the
tree should therefore be designed such that a node could have any number of children,
but without having to reserve any memory for them in advance.

www.it-ebooks.info

http://www.it-ebooks.info/

370 6. Dictionary Methods

One way of designing such a data structure is to house the tree in an array of nodes,
each a structure with two fields: a symbol and a pointer to the parent node. A node
has no pointers to any child nodes. Moving down the tree, from a node to one of its
children, is done by a hashing process in which the pointer to the node and the symbol
of the child are hashed to create a new pointer.

Suppose that string abc has already been input, symbol by symbol, and has been
stored in the tree in the three nodes at locations 97, 266, and 284. Following that, the
encoder has just input the next symbol d. The encoder now searches for string abcd, or,
more specifically, for a node containing the symbol d whose parent is at location 284.
The encoder hashes the 284 (the pointer to string abc) and the 100 (ASCII code of d)
to create a pointer to some node, say, 299. The encoder then examines node 299. There
are three possibilities:
1. The node is unused. This means that abcd is not yet in the dictionary and should
be added to it. The encoder adds it to the tree by storing the parent pointer 284 and
ASCII code 100 in the node. The result is the following:

Node
Address : 97 266 284 299
Contents : (-:a) (97:b) (266:c) (284:d)
Represents: a ab abc abcd

2. The node contains a parent pointer of 284 and the ASCII code of d. This means
that string abcd is already in the tree. The encoder inputs the next symbol, say e, and
searches the dictionary tree for string abcde.
3. The node contains something else. This means that another hashing of a pointer
and an ASCII code has resulted in 299, and node 299 already contains information from
another string. This is called a collision, and it can be dealt with in several ways. The
simplest way to deal with a collision is to increment pointer 299 and examine nodes 300,
301,. . . until an unused node is found, or until a node with (284:d) is found.

In practice, we build nodes that are structures with three fields, a pointer to the
parent node, the pointer (or index) created by the hashing process, and the code (nor-
mally ASCII) of the symbol contained in the node. The second field is necessary because
of collisions. A node can therefore be illustrated by

parent
index
symbol

We illustrate this data structure using string ababab... of Exercise 6.13. The
dictionary is an array dict where each entry is a structure with the three fields parent,
index, and symbol. We refer to a field by, for example, dict[pointer].parent, where
pointer is an index to the array. The dictionary is initialized to the two entries a and
b. (To keep the example simple we use no ASCII codes. We assume that a has code 1
and b has code 2.) The first few steps of the encoder are as follows:
Step 0: Mark all dictionary locations from 3 on as unused.

/
1
a

/
2
b

/
-

/
-

/
- . . .

www.it-ebooks.info

http://www.it-ebooks.info/

6.13 LZW 371

Step 1: The first symbol a is input into variable I. What is actually input is the code
of a, which in our example is 1, so I = 1. Since this is the first symbol, the encoder
assumes that it is in the dictionary and so does not perform any search.
Step 2: The second symbol b is input into J, so J = 2. The encoder has to search
for string ab in the dictionary. It executes pointer:=hash(I,J). Let’s assume that
the result is 5. Field dict[pointer].index contains “unused”, since location 5 is still
empty, so string ab is not in the dictionary. It is added by executing

dict[pointer].parent:=I;
dict[pointer].index:=pointer;
dict[pointer].symbol:=J;

with pointer=5. J is moved into I, so I = 2.
/
1
a

/
2
b

/
-

/
-

1
5
b

. . .

Step 3: The third symbol a is input into J, so J = 1. The encoder has to search for string
ba in the dictionary. It executes pointer:=hash(I,J). Let’s assume that the result is
8. Field dict[pointer].index contains “unused”, so string ba is not in the dictionary.
It is added as before by executing

dict[pointer].parent:=I;
dict[pointer].index:=pointer;
dict[pointer].symbol:=J;

with pointer=8. J is moved into I, so I = 1.
/
1
a

/
2
b

/
-

/
-

1
5
b

/
-

/
-

2
8
a

/
- . . .

Step 4: The fourth symbol b is input into J, so J=2. The encoder has to search for
string ab in the dictionary. It executes pointer:=hash(I,J). We know from step 2 that
the result is 5. Field dict[pointer].index contains 5, so string ab is in the dictionary.
The value of pointer is moved into I, so I = 5.
Step 5: The fifth symbol a is input into J, so J = 1. The encoder has to search for string
aba in the dictionary. It executes as usual pointer:=hash(I,J). Let’s assume that the
result is 8 (a collision). Field dict[pointer].index contains 8, which looks good, but
field dict[pointer].parent contains 2 instead of the expected 5, so the hash function
knows that this is a collision and string aba is not in dictionary entry 8. It increments
pointer as many times as necessary until it finds a dictionary entry with index=8 and
parent=5 or until it finds an unused entry. In the former case, string aba is in the
dictionary, and pointer is moved to I. In the latter case aba is not in the dictionary,
and the encoder saves it in the entry pointed at by pointer, and moves J to I.

/
1
a

/
2
b

/
-

/
-

1
5
b

/
-

/
-

2
8
a

5
8
a

/
- . . .

Example: The 15 hashing steps for encoding the string alf�eats�alfalfa are

www.it-ebooks.info

http://www.it-ebooks.info/

372 6. Dictionary Methods

shown below. The encoding process itself is illustrated in detail in the answer to Ex-
ercise 6.10. The results of the hashing are arbitrary; they are not the results produced
by a real hash function. The 12 trie nodes constructed for this string are shown in
Figure 6.26.
1. Hash(l,97) → 278. Array location 278 is set to (97, 278, l).
2. Hash(f,108) → 266. Array location 266 is set to (108, 266, f).
3. Hash(�,102) → 269. Array location 269 is set to (102,269,�).
4. Hash(e,32) → 267. Array location 267 is set to (32, 267, e).
5. Hash(a,101) → 265. Array location 265 is set to (101, 265, a).
6. Hash(t,97) → 272. Array location 272 is set to (97, 272, t).
7. Hash(s,116) → 265. A collision! Skip to the next available location, 268, and set it
to (116, 265, s). This is why the index needs to be stored.
8. Hash(�,115) → 270. Array location 270 is set to (115, 270, �).
9. Hash(a,32) → 268. A collision! Skip to the next available location, 271, and set it to
(32, 268, a).
10. Hash(l,97) → 278. Array location 278 already contains index 278 and symbol l
from step 1, so there is no need to store anything else or to add a new trie entry.
11. Hash(f,278) → 276. Array location 276 is set to (278, 276, f).
12. Hash(a,102) → 274. Array location 274 is set to (102, 274, a).
13. Hash(l,97) → 278. Array location 278 already contains index 278 and symbol l
from step 1, so there is no need to do anything.
14. Hash(f,278) → 276. Array location 276 already contains index 276 and symbol f
from step 11, so there is no need to do anything.
15. Hash(a,276) → 274. A collision! Skip to the next available location, 275, and set it
to (276, 274, a).

Readers who have carefully followed the discussion up to this point will be happy to
learn that the LZW decoder’s use of the dictionary tree-array is simple and no hashing is
needed. The decoder starts, like the encoder, by initializing the first 256 array locations.
It then reads pointers from its input stream and uses each to locate a symbol in the
dictionary.

In the first decoding step, the decoder inputs the first pointer and uses it to retrieve
a dictionary item I. This is a symbol that is now written by the decoder on its output
stream. String Ix needs to be saved in the dictionary, but symbol x is still unknown; it
will be the first symbol in the next string retrieved from the dictionary.

In each decoding step after the first, the decoder inputs the next pointer and uses
it to retrieve the next string J from the dictionary and write it on the output stream. If
the pointer is, say 8, the decoder examines field dict[8].index. If this field equals 8,
then this is the right node. Otherwise, the decoder examines consecutive array locations
until it finds the right one.

Once the right tree node is found, the parent field is used to go back up the tree
and retrieve the individual symbols of the string in reverse order. The symbols are then
placed in J in the right order (see below), the decoder isolates the first symbol x of J, and
saves string Ix in the next available array location. (String I was found in the previous
step, so only one node, with symbol x, needs be added.) The decoder then moves J to
I and is ready for the next step.

www.it-ebooks.info

http://www.it-ebooks.info/

6.13 LZW 373

2
6
5

2
6
6

2
6
7

2
6
8

2
6
9

2
7
0

2
7
1

2
7
2

2
7
3

2
7
4

2
7
5

2
7
6

2
7
7

2
7
8

/
-

/
-

/
-

/
-

/
-

/
-

/
-

/
-

/
-

/
-

/
-

/
-

/
-

97
278
l

/
-

108
266
f

/
-

/
-

/
-

/
-

/
-

/
-

/
-

/
-

/
-

/
-

/
-

97
278
l

/
-

108
266
f

/
-

/
-

102
269
�

/
-

/
-

/
-

/
-

/
-

/
-

/
-

/
-

97
278
l

/
-

108
266
f

32
267
e

/
-

102
269
�

/
-

/
-

/
-

/
-

/
-

/
-

/
-

/
-

97
278
l

101
265
a

108
266
f

32
267
e

/
-

102
269
�

/
-

/
-

/
-

/
-

/
-

/
-

/
-

/
-

97
278
l

101
265
a

108
266
f

32
267
e

/
-

102
269
�

/
-

/
-

97
272
t

/
-

/
-

/
-

/
-

/
-

97
278
l

101
265
a

108
266
f

32
267
e

116
265
s

102
269
�

/
-

/
-

97
272
t

/
-

/
-

/
-

/
-

/
-

97
278
l

101
265
a

108
266
f

32
267
e

116
265
s

102
269
�

115
270
�

/
-

97
272
t

/
-

/
-

/
-

/
-

/
-

97
278
l

101
265
a

108
266
f

32
267
e

116
265
s

102
269
�

115
270
�

32
268
a

97
272
t

/
-

/
-

/
-

/
-

/
-

97
278
l

101
265
a

108
266
f

32
267
e

116
265
s

102
269
�

115
270
�

32
268
a

97
272
t

/
-

/
-

/
-

278
276
f

/
-

97
278
l

101
265
a

108
266
f

32
267
e

116
265
s

102
269
�

115
270
�

32
268
a

97
272
t

/
-

102
274
a

/
-

278
276
f

/
-

97
278
l

101
265
a

108
266
f

32
267
e

116
265
s

102
269
�

115
270
�

32
268
a

97
272
t

/
-

102
274
a

276
274
a

278
276
f

/
-

97
278
l

Figure 6.26: Growing An LZW Trie for “alf eats alfalfa”.

www.it-ebooks.info

http://www.it-ebooks.info/

374 6. Dictionary Methods

Retrieving a complete string from the LZW tree therefore involves following the
pointers in the parent fields. This is equivalent to moving up the tree, which is why the
hash function is no longer needed.

Example: The previous example describes the 15 hashing steps in the encoding
of string alf�eats�alfalfa. The last step sets array location 275 to (276,274,a) and
writes 275 (a pointer to location 275) on the compressed stream. When this stream is
read by the decoder, pointer 275 is the last item input and processed by the decoder.
The decoder finds symbol a in the symbol field of location 275 (indicating that the string
stored at 275 ends with an a) and a pointer to location 276 in the parent field. The
decoder then examines location 276 where it finds symbol f and parent pointer 278. In
location 278 the decoder finds symbol l and a pointer to 97. Finally, in location 97
the decoder finds symbol a and a null pointer. The (reversed) string is therefore afla.
There is no need for the decoder to do any hashing or to use the index fields.

The last point to discuss is string reversal. Two commonly-used approaches are
outlined here:
1. Use a stack. A stack is a common data structure in modern computers. It is an array
in memory that is accessed at one end only. At any time, the item that was last pushed
into the stack will be the first one to be popped out (last-in-first-out, or LIFO). Symbols
retrieved from the dictionary are pushed into the stack. When the last one has been
retrieved and pushed, the stack is popped, symbol by symbol, into variable J. When the
stack is empty, the entire string has been reversed. This is a common way to reverse a
string.
2. Retrieve symbols from the dictionary and concatenate them into J from right to left.
When done, the string will be stored in J in the right order. Variable J must be long
enough to accommodate the longest possible string, but then it has to be long enough
even when a stack is used.

� Exercise 6.14: What is the longest string that can be retrieved from the LZW dictio-
nary during decoding?

(A reminder. The troublesome issue of software patents and licenses is treated in
Section 6.34.)

6.13.3 LZW in Practice

The publication of the LZW algorithm, in 1984, has strongly affected the data compres-
sion community and has influenced many people to come up with implementations and
variants of this method. Some of the most important LZW variants and spin-offs are
described here.

6.13.4 Differencing

The idea of differencing, or relative encoding, has already been mentioned in Sec-
tion 1.3.1. This idea turns out to be useful in LZW image compression, since most
adjacent pixels don’t differ by much. It is possible to implement an LZW encoder that
computes the value of a pixel relative to its predecessor and then encodes this difference.
The decoder should, of course, be compatible and should compute the absolute value of
a pixel after decoding its relative value.

www.it-ebooks.info

http://www.it-ebooks.info/

Answers to Exercises 1227

characters AC at positions 19–20 are a repeat of the string at positions 8–9, so they will
be encoded as a string of length 2 at offset 20 − 9 = 11.

6.6: The decoder interprets the first 1 of the end marker as the start of a token. The
second 1 is interpreted as the prefix of a 7-bit offset. The next 7 bits are 0, and they
identify the end marker as such, since a “normal” offset cannot be zero.

6.7: This is straightforward. The remaining steps are shown in Table Ans.21

Dictionary Token Dictionary Token
15 �t (4, t) 21 �si (19,i)
16 e (0, e) 22 c (0, c)
17 as (8, s) 23 k (0, k)
18 es (16,s) 24 �se (19,e)
19 �s (4, s) 25 al (8, l)
20 ea (4, a) 26 s(eof) (1, (eof))

Table Ans.21: Next 12 Encoding Steps in the LZ78 Example.

6.8: Table Ans.22 shows the last three steps.

Hash
p_src 3 chars index P Output Binary output

11 h t 7 any→11 h 01101000
12 �th 5 5→12 4,7 0000|0011|00000111
16 ws ws 01110111|01110011

Table Ans.22: Last Steps of Encoding that thatch thaws.

The final compressed stream consists of 1 control word followed by 11 items (9 literals
and 2 copy items)
0000010010000000|01110100|01101000|01100001|01110100|00100000|0000|0011
|00000101|01100011|01101000|0000|0011|00000111|01110111|01110011.

6.9: An example is a compression utility for a personal computer that maintains all
the files (or groups of files) on the hard disk in compressed form, to save space. Such a
utility should be transparent to the user; it should automatically decompress a file every
time it is opened and automatically compress it when it is being closed. In order to be
transparent, such a utility should be fast, with compression ratio being only a secondary
feature.

6.10: Table Ans.23 summarizes the steps. The output emitted by the encoder is
97 (a), 108 (l), 102 (f), 32 (�), 101 (e), 97 (a), 116 (t), 115 (s), 32 (�), 256 (al), 102
(f), 265 (alf), 97 (a),
and the following new entries are added to the dictionary
(256: al), (257: lf), (258: f�), (259: �e), (260: ea), (261: at), (262: ts),
(263: s�), (264: �a), (265: alf), (266: fa), (267: alfa).

www.it-ebooks.info

http://www.it-ebooks.info/

1228 Answers to Exercises

in new in new
I dict? entry output I dict? entry output

a Y s� N 263-s� 115 (s)
al N 256-al 97 (a) � Y
l Y �a N 264-�a 32 (�)
lf N 257-lf 108 (l) a Y
f Y al Y
f� N 258-f� 102 (f) alf N 265-alf 256 (al)
� Y f Y
�e N 259-�e 32 (w) fa N 266-fa 102 (f)
e Y a Y
ea N 260-ea 101 (e) al Y
a Y alf Y
at N 261-at 97 (a) alfa N 267-alfa 265 (alf)
t Y a Y
ts N 262-ts 116 (t) a,eof N 97 (a)
s Y

Table Ans.23: LZW Encoding of “alf eats alfalfa”.

6.11: The encoder inputs the first a into I, searches and finds a in the dictionary.
It inputs the next a but finds that Ix, which is now aa, is not in the dictionary. The
encoder thus adds string aa to the dictionary as entry 256 and outputs the token 97 (a).
Variable I is initialized to the second a. The third a is input, so Ix is the string aa, which
is now in the dictionary. I becomes this string, and the fourth a is input. Ix is now aaa
which is not in the dictionary. The encoder thus adds string aaa to the dictionary as
entry 257 and outputs 256 (aa). I is initialized to the fourth a. Continuing this process
is straightforward.

The result is that strings aa, aaa, aaaa,. . . are added to the dictionary as entries
256, 257, 258,. . . , and the output is

97 (a), 256 (aa), 257 (aaa), 258 (aaaa),. . .

The output consists of pointers pointing to longer and longer strings of as. The first k
pointers thus point at strings whose total length is 1 + 2 + · · · + k = (k + k2)/2.

Assuming an input stream that consists of one million as, we can find the size of
the compressed output stream by solving the quadratic equation (k + k2)/2 = 1000000
for the unknown k. The solution is k ≈ 1414. The original, 8-million bit input is thus
compressed into 1414 pointers, each at least 9-bit (and in practice, probably 16-bit) long.
The compression factor is thus either 8M/(1414×9) ≈ 628.6 or 8M/(1414×16) ≈ 353.6.

This is an impressive result but such input streams are rare (notice that this par-
ticular input can best be compressed by generating an output stream containing just
“1000000 a”, and without using LZW).

6.12: We simply follow the decoding steps described in the text. The results are:
1. Input 97. This is in the dictionary so set I=a and output a. String ax needs to be
saved in the dictionary but x is still unknown.

www.it-ebooks.info

http://www.it-ebooks.info/

Answers to Exercises 1229

2. Input 108. This is in the dictionary so set J=l and output l. Save al in entry 256.
Set I=l.
3. Input 102. This is in the dictionary so set J=f and output f. Save lf in entry 257.
Set I=f.
4. Input 32. This is in the dictionary so set J=� and output �. Save f� in entry 258.
Set I=�.
5. Input 101. This is in the dictionary so set J=e and output e. Save �e in entry 259.
Set I=e.
6. Input 97. This is in the dictionary so set J=a and output a. Save ea in entry 260.
Set I=a.
7. Input 116. This is in the dictionary so set J=t and output t. Save at in entry 261.
Set I=t.
8. Input 115. This is in the dictionary so set J=s and output s. Save ts in entry 262.
Set I=t.
9. Input 32. This is in the dictionary so set J=� and output �. Save s� in entry 263.
Set I=�.
10. Input 256. This is in the dictionary so set J=al and output al. Save �a in entry
264. Set I=al.
11. Input 102. This is in the dictionary so set J=f and output f. Save alf in entry
265. Set I=f.
12. Input 265. This has just been saved in the dictionary so set J=alf and output alf.
Save fa in dictionary entry 266. Set I=alf.
13. Input 97. This is in the dictionary so set J=a and output a. Save alfa in entry 267
(even though it will never be used). Set I=a.
14. Read eof. Stop.

6.13: We assume that the dictionary is initialized to just the two entries (1: a) and
(2:�b). The encoder outputs

1 (a), 2 (b), 3 (ab), 5(aba), 4(ba), 7 (bab), 6 (abab), 9 (ababa), 8 (baba),. . .

and adds the new entries (3: ab), (4: ba), (5: aba), (6: abab), (7: bab), (8: baba), (9:
ababa), (10: ababab), (11: babab),. . . to the dictionary. This regular behavior can be
analyzed and the kth output pointer and dictionary entry predicted, but the effort is
probably not worth it.

6.14: The answer to exercise 6.11 shows the relation between the size of the compressed
file and the size of the largest dictionary string for the “worst case” situation (input that
creates the longest strings). For a 1 Mbyte input stream, there will be 1,414 strings in
the dictionary, the largest of which is 1,414 symbols long.

6.15: This is straightforward (Table Ans.24) but not very efficient since only one two-
symbol dictionary phrase is used.

6.16: Table Ans.25 shows all the steps. In spite of the short input, the result is quite
good (13 codes to compress 18-symbols) because the input contains concentrations of as
and bs.

www.it-ebooks.info

http://www.it-ebooks.info/

